Skip to main content

Table 3 Model Performance on the OUD Corpus Modifiers

From: Multi-task transfer learning for the prediction of entity modifiers in clinical text: application to opioid use disorder case detection

Model

Ep

Neg

Sub

DT

IDU

Unc

Avg

macro average F1

 MT-SHR

-

0.769

0.863

-

-

0.542

-

 MT-OUD

3

0.958

0.920

0.838

0.839

0.833

0.878

 MT-OUD.fl

4

0.892

0.855

0.816

0.784

0.632

0.796

 MT-BOTH

20

0.951

0.911

0.846

0.867

0.765

0.868

 MT-SHR-OUD

6

0.948

0.915

0.877

0.848

0.772

0.873

 ST-OUDa

2,3

0.935

0.911

0.846

0.831

0.768

0.858

 MT-OUD-no hinta

3

0.912

0.880

0.739

0.689

0.721

0.788

micro average F1

 MT-SHR

-

0.591

0.732

-

-

0.100

-

 MT-OUD

3

0.912

0.842

0.776

0.688

0.546

0.753

 MT-OUD.fl

4

0.803

0.714

0.729

0.583

0.267

0.619

 MT-BOTH

20

0.912

0.825

0.781

0.743

0.533

0.759

 MT-SHR-OUD

6

0.912

0.842

0.816

0.705

0.593

0.774

  1. Bold font means the best performance
  2. Underline means statistically significant p-value relative to the model in the previous line
  3. Ep: epochs, Neg: negation, Sub: subject, Unc: uncertainty, DT: DocTime, IDU: Illicit Drug Use, Avg: average
  4. aAblation study results