Skip to main content

Table 10 Distribution of error types for medical entity recognition (MER) and keyphrase extraction (KE). # columns indicate the occurrence number of corresponding error type, while % columns indicate the corresponding ratio

From: Sentences, entities, and keyphrases extraction from consumer health forums using multi-task learning

Model

MS

US

ISO

IT

#

%

#

%

#

%

#

%

Medical Entity Recognition (MER)

\(\text {IndoNLU}_{\text {LARGE}}\) (STL)

55

11.55

83

17.44

323

67.86

15

3.15

\(\text {XLM-R}_{\text {LARGE}}\) (STL)

61

13.23

60

13.02

328

71.15

12

2.60

Parallel MER - KE (\(\alpha = 0.7\))

83

17.22

58

12.03

326

67.63

15

3.11

Hierarchical Three-way (\(\alpha = 0.4; \beta = 0.4\))

69

14.94

69

14.94

309

66.88

15

3.25

Keyphrase Extraction (KE)

\(\text {IndoLEM}_{\text {BASE}}\) (STL)

69

19.06

31

8.56

262

72.38

0

0.00

Parallel MER - KE (\(\alpha = 0.3\))

79

22.44

15

4.26

258

73.30

0

0.00

Hierarchical MER - KE (\(\alpha = 0.3\))

109

29.46

17

4.59

244

65.95

0

0.00

Parallel Three-way (\(\alpha = 0.4; \beta = 0.2\))

52

14.99

25

7.20

270

77.81

0

0.00