Skip to main content

Table 6 Evaluation results of sentence recognition (SR), medical entity recognition (MER), and keyphrase extraction (KE) using single-task learning approach. \(^\dagger\) indicates a stochastically dominant performance over other models

From: Sentences, entities, and keyphrases extraction from consumer health forums using multi-task learning

Model/Encoder

SR

MER

KE

CRFs

64.61

36.75

19.87

IndoDistilBERT1

92.35

54.43

42.64

\(\text {IndoLEM}_{\text {BASE}}\) [67]

93.26

56.93

\(^\dagger \ {\textbf {47.48}}\)

\(\text {IndoNLU}_{\text {BASE}}\) [68]

92.08

54.58

43.46

\(\text {IndoNLU}_{\text {BASE}}\) FT2

92.14

54.07

43.44

IndoBERTweet [69]

92.77

53.25

42.63

\(\text {IndoNLU}_{\text {LARGE}}\) [68]

92.81

\({\textbf {59.59}}\)

46.91

XLM-MLM [70]

90.21

54.81

38.40

\(\text {XLM-R}_{\text {BASE}}\) [71]

\(^\dagger \ {\textbf {93.70}}\)

45.78

46.55

\(\text {XLM-R}_{\text {LARGE}}\) [71]

93.37

59.32

43.03

  1. 1https://huggingface.co/cahya/distilbert-base-indonesia
  2. 2https://huggingface.co/stevenwh/indobert-base-p2-finetuned-mer-80k/