Skip to main content

Table 8 Evaluation results of sentence recognition (SR), medical entity recognition (MER), and keyphrase extraction (KE) using three-way multi-task learning approach. \(^\dagger\) indicates a stochastically dominant performance over STL and Pairwise MTL baselines

From: Sentences, entities, and keyphrases extraction from consumer health forums using multi-task learning

Model

\(\alpha\)

\(\beta\)

SR

MER

KE

\(\text {IndoNLU}_{\text {LARGE}}\) [68] (STL)

\({-}{-}\)

\({-}{-}\)

92.81

59.59

46.91

Best Pairwise MTL

\({-}{-}\)

\({-}{-}\)

\({\textbf {92.85}}\)

60.83

49.76

Parallel Three-way

0.33

0.33

92.29

60.16

48.50

0.40

0.40

92.53

60.26

45.67

0.40

0.20

92.41

57.73

\(^\dagger \ {\textbf {51.28}}\)

0.20

0.40

86.70

59.10

47.32

0.60

0.20

92.41

58.66

48.52

0.20

0.60

86.65

60.35

43.92

0.20

0.20

86.59

57.91

47.34

Hierarchical Three-way

0.33

0.33

92.47

59.35

48.02

0.40

0.40

92.13

\({\textbf {61.14}}\)

45.10

0.40

0.20

92.23

58.94

50.16

0.20

0.40

92.44

59.87

45.64

0.60

0.20

92.16

59.91

48.64

0.20

0.60

89.10

54.60

42.00

0.20

0.20

92.17

56.89

47.25