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Abstract

Increasingly sophisticated knowledge about RNA structure and function requires an
inclusive knowledge representation that facilitates the integration of independently –
generated information arising from such efforts as genome sequencing projects,
microarray analyses, structure determination and RNA SELEX experiments. While
RNAML, an XML-based representation, has been proposed as an exchange format for
a select subset of information, it lacks domain-specific semantics that are essential for
answering questions that require expert knowledge. Here, we describe an RNA
knowledge base (RKB) for structure-based knowledge using RDF/OWL Semantic Web
technologies. RKB extends a number of ontologies and contains basic terminology
for nucleic acid composition along with context/model-specific structural features
such as sugar conformations, base pairings and base stackings. RKB (available at
http://semanticscience.org/projects/rkb) is populated with PDB entries and MC-Anno-
tate structural annotation. We show queries to the RKB using description logic rea-
soning, thus opening the door to question answering over independently-published
RNA knowledge using Semantic Web technologies.

Background
The ability to accurately capture biomolecular behaviour is critical to our understand-

ing of cellular systems. With biophysical instruments that measure everything from

bond vibrations to fluorescence as a result of molecular interactions, scientists carefully

translate these observations into a set of positive statements about the entities under

investigation. The set of entities, objects and relations used by scientists, through their

lingua franca, defines a conceptualization of their subjects of study. The explicit com-

mitment to a conceptualization not only enables scientists to easily share knowledge,

but also permits the creation of machine-understandable knowledge bases. An ontol-

ogy is an explicit specification of a conceptualization of a particular domain of knowl-

edge [1], in which the set of objects and their relations define its scope.

In some cases, the conclusions drawn about numerous experimental results do not

necessarily apply universally, but instead appear as a result of a context-dependent

experimental system. Biological situational modelling [2,3] has been used as a metho-

dology to capture this knowledge in a precise and accurate manner, so that conflicting

statements about biochemical entities may be tolerated provided there exists some cir-

cumstantial qualification. Hence, a long term solution for knowledge representation in

the life sciences must consider context, in addition to identity and action.
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Ribonucleic acids (RNAs) are essential cellular components with significant roles in

protein synthesis and gene regulation. Increasingly sophisticated knowledge about

RNA structure and function is being revealed as a result of innovative biochemical

investigations such as genome sequencing projects, sequence alignments, microarray

analyses, structure determination and RNA SELEX experiments. Yet, our capacity to

capture this knowledge by existing systems is limited in several important respects.

First, RNAML [4], an XML-based exchange format for a select subset of information

about RNAs, does not provide explicit formalization of the domain either from a logi-

cally or philosophical perspective. As an example, base stacking can be described with

a natural language comment associated with the base-stack element, but we cannot

specify a machine understandable type – what kind of thing is base stacking and what

specializations of it exist (e.g. adjacent stacking or upward stacking). Second, XML

Schema is primarily interested in the validation of the document structure, as opposed

to the semantics of the domain terminology therein contained, thus language exten-

sions cannot be properly validated. In contrast, RDF/OWL are formal (logic) languages

which enable the explicit formalization of the domain, and as such can be used to

infer new knowledge using some information system. Moreover, as languages of the

Semantic Web, researchers may also publish their knowledge so as to further enhance

structural and functional annotation in a machine accessible, but de-centralized

manner.

Here, we describe an RNA knowledge base (RKB) for structure-oriented knowledge

using RDF/OWL Semantic Web technologies. RKB extends the RNAO, an RNA ontol-

ogy jointly developed with the RNA Ontology Consortium [5], and builds on other

Open Biomedical Ontologies (OBO) for information content entities (e.g. PDB files,

structure models), real world entities (e.g. base pairs, base stacks) and their qualities (e.

g. nucleoside/sugar conformations). RKB is populated from RNA-specific PDB entries

and base pairing/stacking identified by MC-Annotate. We demonstrate how the result-

ing knowledge base supports powerful question answering over OWL-DL ontologies

using a description logic system.

Results
This project pursued four main objectives: i) to unequivocally represent basic biochem-

ical knowledge about nucleic acids and their structural characteristics, ii) to accurately

capture the knowledge generated by a nucleic acid structural feature annotator such as

MC-Annotate in such a way that it complemented other structural or functional

knowledge, iii) to implement a scheme for the representation of knowledge obtained as

information from a computational procedure, iv) to maximize interoperability with a

set of trusted external ontologies. A high quality representation should facilitate data

integration and enable question answering with a reasoning-capable knowledge base.

All materials are available at the project page: http://semanticscience.org/projects/rkb/.

RNA structure ontology

The RNA knowledge base ontology extends the RNAO and provides a core set of hier-

archically organized terminology for the accurate representation of RNA and their

structural features. The RKB builds on material entities and qualities as defined by the

BFO upper level ontology, the RO relation ontology for reusable domain independent
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relations, the Information Artifact Ontology (IAO) for information content entities and

ChEBI for specific chemical entities and their parts.

Material entities are spatially extended entities whose identity are independent and

can be maintained through time. Material entity is the top level class for nucleic acids,

base pairs, base stacks, chemical bonds / interactions and fiat parts of nucleic acids

(nucleotide residues, sugar moieties, nucleobases) where bonds extend into another

part from certain terminal atoms base pairs.

Qualities are categorical properties that existentially depend on, among other things,

material entities. This forms the top level class for the syn- or anti- quality, a confor-

mation (RNAO:0000123) borne specifically by the nucleoside (RKB:000027) part of a

nucleotide residue (CHEBI:50319) and imparts knowledge of the orientation of its

respective base and sugar parts. Similarly, the envelope conformation is a quality that

is solely borne by the sugar part of a nucleotide residue.

The Information Artifact Ontology’s Information Content Entities (ICEs) generically

depend on at least one, but possibly more material entities. ICEs are the top level class

for structure models, PDB records, coordinates and measurement values (Figure 1).

We applied the Minimum Information to Reference an External Ontology Term

(MIREOT) guidelines [6] to augment the RKB ontology with relevant classes, their

annotations and minimal hierarchy from the RNAO, ChEBI [7], IAO, RO and BFO.

The MIREOT document consists of 45 classes from the RNAO including nucleotide

base pairs, base stacks and their structural qualities and the externally connected to

spatial relation, 10 classes from the IAO for molecular structure data, 24 classes from

Figure 1 Information content entities are about material entities in the RKB. Illustration of the RDF-
based representation used to relate Information Content Entities with their corresponding Material Entities.
Molecular structure files are specific manifestations of structure models therefore structure models are
represented by their corresponding PDB files. Structure models are also about molecules and other real
entities (atoms, base pairs, etc).
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ChEBI which referred to nucleobases, nucleotides and their related sugar moieties.

Conceptual overlap was captured using OWL’s class equivalence relation.

The formalization used here departs from our previous work [3] by considering a

more information-oriented representation. Thus, instead of referring to those qualities,

roles, or parts of the molecule that are involved in a situationally-dependent base pair-

ing process, we instead consider PDB structures composed of coordinates as informa-

tion content entities which are generically dependent on the material entities to which

they pertain to, such as molecules and base pairs. Thus, since there is always some

pairing/stacking process that existentially depends on the pair/stack, we name only the

latter.

RKB population

The RKB is populated with RNA structures from the PDB and results of MC-Annotate

using in house scripts. The conversion of PDB structures follows our previous work on

small molecule chemistry [8]. Ontology population involved three basic steps: assigning

names, asserting class membership, and assigning relations between entities. Having a

consistent naming scheme makes data integration from PDB entries with MC-Anno-

tate information straightforward. Unique names were generated as valid Uniform

Resource Identifiers (URI) where each name consisted of the PDB identifier followed a

different naming convention for objects and qualities:Material Entities:

a. Structure Model: PDBID_cCHAIN

b. Nucleotide residue: PDBID_cCHAIN_rRESIDUE

c. Atom: PDBID_cCHAIN_rRESIDUE_aATOMQualities:

PDBID_mMODEL_cCHAIN_rRESIDUE_QUALITY

RNA structure representation

RNA structures obtained through experimental procedures and computational model

building and refinement yields a file containing information about a molecule or col-

lection of molecules. More specifically, the file is a serialization of a data structure and

contains a description of the structure model in terms of the spatial positioning of

atoms as a set of coordinates in three-dimensional space. In NMR, multiple structure

models may be obtained, each of which captures a significantly populated conforma-

tion. The key relation is that information content entities (e.g. coordinates and collec-

tions of coordinates) are about real world entities (e.g. atoms, molecules). Importantly,

structure models provide the means by which more information about the structure

and function may be determined through additional analysis.

We used MC-Annotate over the set of PDB files that contain RNA structures to

identify base pairing and base stacking in terms of their adjacency and relative orienta-

tion. A different individual was generated for each structural feature (base pairing, base

stacking) of each model in the PDB file. This maintains provenance, in that entity

assertions are related to the model from it was derived and also allows comparison of

structures from different models.
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Base pairing: Nucleotide base pairs may occur between any pair of nucleotide resi-

dues, and involve any number of atoms. Canonical base pairs, as described by Leontis

and Westhof [9], occur as a result of the hydrogen bonding between the edges of

nucleobases. Since edges are composed of multiple atoms and hydrogen bonds occur

between pairs of atoms, Lemieux and Major [10] developed a system of finer granular-

ity that refers to sub-edges or so-called faces. The sub-edges extend from the nucleo-

base along the ribose sugar and hence includes two new atoms, the O2’ and N9 or N1

for the case of purines or pyrimidines respectively. Hence, nucleotide base pairs can be

represented in the RKB using either the Leontis and Westhof (LW) or the Lemieux

and Major (LW+) specifications, both of which contain at least one edge or sub-edge

interaction respectively. The RKB uses an “externally connected to” relation to repre-

sent the weak interactions between edges and the sub-edges in nucleotide base pairs,

and this also suggests future qualitative spatial reasoning across the regions they

occupy using Region Connection Calculus (RCC-8).

Different models of the same RNA sequence may suggest flexibility through struc-

tural rearrangements. Models 5 and 10 of chain A in NMR structure PDB:1AJU sug-

gests a difference in sub-edge interactions (Figure 2). Where model 5 shows a single

sub-edge interaction between the Watson-Watson sub-edge of G34 residue and the

O2’ sub-edge of the G36 residue base pair, model 10 pairs indicates two sub-edge

interactions between the Ww/O2’ sub-edges and the Ss/O2’ sub-edges.

Base stacking: Base stacking involves a proximate spatial orientation of the top or

bottom face of bases that is mitigated through weak interactions. The “externally con-

nected to” relation stands in for non-covalent inter-molecular interactions between

nucleobases. Base stacks also bear the RNAO’s “base stack base-normal orientation”

and “base stack sequence adjacency” qualities for an accurate description of the relative

directionality of the nucleobase normal vectors and for the description of adjacent and

non-adjacent stacks.

Puckering: The ribose ring represents two main puckering modes, “envelope” and

“twist”. The “envelope” geometry is observed when one atom is located over or below

the plane formed by the four others, whereas the “twist” geometry is observed when

one atom is over and another is below the plane formed by the three others. The clas-

sification of a ribose, into either geometry, is dependent on the relative position of the

carbon atoms of the ribose to its C5’ atom. Hence while the carbon atoms in a ribose

bear either the endo or exo qualities with respect to the plane formed by the other

atoms, the ribose ring bears more specific envelop or twist qualities.

Question answering

Example questions expressed using the Manchester OWL syntax are described below.

They were formulated with the rdfs:label annotation properties using the DL Query

plugin for Protégé 4 and answered using the embedded Pellet/FaCT++ reasoners.

Queries (A)-(D) were performed on model 7 of PDB: 1AM0, queries (E) and (F) were

performed on all models of the latter.

(A) How many structure models were defined in the PDB file for 1AM0:

’structure model’ that ‘is represented by’ some {’Molecular Structure File

PDB:1am0’}

Cruz-Toledo et al. Journal of Biomedical Semantics 2010, 1(Suppl 1):S2
http://www.jbiomedsem.com/content/1/S1/S2

Page 5 of 10



This conjunctive query with a distinguished variable returns the 8 structure models

that constitute the molecular structure file 1AM0. The results of this query also illus-

trate how the RKB represents structure models as being representations of their corre-

sponding PDB files.

(B) Find all base pairs that involve a Hoogsteen edge:

’nucleotide base pair’ that ‘has part’ some ((’hoogsteen edge’ or ‘part of’ some

‘hoogsteen edge’) and externally_connected_to some (’nucleotide edge’ or ‘part of’

some ‘nucleotide edge’)

This conjunctive query involves existentially qualified variables. The individual must

be an instance of the nucleotide base pair class, but this base pair must further be

Figure 2 RKB nucleotide base pairs with varying sub-edge interactions. Illustration of the RDF-based
representation of molecular structure obtained from PDB files and from structure feature analysis of MC-
Annotate. (A) Structure model 5 of PDB 1AJU is about a nucleotide base pair that is composed of a sub-
edge interaction between the Watson-Watson sub-edge of the guanine residue at position 34 of chain A
and the O2’ sub-edge of the guanine residue at position 36 of chain A. (B) Structure model 10 of PDB
1AJU is about a nucleotide base pair between guanine residue at position 34 in chain A and guanine
residue at position 36 in chain A, which is composed of two sub-edge interactions – a Watson-Watson
sub-edge and O2’ sub-edge, as well as a Sugar-sugar sub-edge and the O2’ sub-edge.
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specified by a hoogsteen edge. Yet, no individuals are asserted to be instances of Hoogs-

teen edges, rather since MC-Annotate generates assertions at the sub-edge level, it is

also necessary to ask for any parts of the edges. The mereological inference that a sub-

edge is part of an edge makes use of agglomerating sub-edge classes, where for exam-

ple the “hoogsteen sub-edge” (RKB:000092) is equivalent to {“C8 sub-edge” or “hoogs-

teen hoogsteen sub-edge” or “hoogsteen watson sub-edge” or “bifurcated hoogsteen

sub-edge”}, that establish a parthood mapping to edges, whereby the existential restric-

tions for the 3 edges are restricted to differing subsets of sub-edges. Finally, it is neces-

sary to specify that the edge/sub-edge we are interested in is externally connected to

another nucleotide edge/sub-edge. Two base pairs are retrieved in which the hoogsteen

sub-edge is existentially known to be part of a hoogsteen edge and is also externally

connected to another nucleotide edge/sub-edge.

(C) Find all base pairs with a Hoogsteen edge that is part of a guanine residue

’nucleotide base pair’ that ‘has part’ some ((’hoogsteen edge’ or ‘part of’ some

‘hoogsteen edge’) and ‘part of’ some ‘GMP residue [chebi:50324]’ and externally_-

connected_to some (’nucleotide edge’ or ‘part of’ some ‘nucleotide edge’))

This query further refines Query (B), in that the Hoogsteen edge must be attached to

a guanine residue and must be externally connected to another edge/sub-edge. Two

base pairs are found.

(D) Find all base pairs involving a Watson-Watson sub-edge and a Hoogsteen-

Hoogsteen sub-edge

’nucleotide base pair’ that (’has part’ some (’watson watson sub edge’ and external-

ly_connected_to some ‘hoogsteen hoogsteen sub edge’))

This query aims to discover sub-edge interactions that are uniquely identified by

MC-Annotate and are specified in RKB/RNAO using the externally connected to rela-

tion. Two results are obtained in model 7.

(E) Find all nucleotide base pairs involving at least one Hoogsteen sub edge inter-

action which is contained in a structure model from the PDB file 1AM0.

’nucleotide base pair’ that ‘has part’ some ((’hoogsteen edge’ or ‘part of’ some

‘hoogsteen edge’) and externally_connected_to some (’nucleotide edge’ or ‘part of’

some ‘nucleotide edge’)) and inv(’is about’) some (’structure model’ that ‘is repre-

sented by’ some {’Molecular Structure File PDB:1am0’})

This conjunctive query with undistinguished variables (hoogsteen/nucleotide edge/

part of edge, structure model) and a distinguished variable (the 1AM0 PDB file) identi-

fied 14 nucleotide base pairs out of a total of 40 across all models in the 1AM0 that

involve at least one Hoogsteen edge.

(F) Find how many structure models were defined in the pdb file for 1AM0

’structure model’ that ‘is represented by’ some {’Molecular Structure File

PDB:1am0’}
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This conjunctive query uses a distinguished variable to find all 7 structure models

represented by the 1AM0 structure file.

Discussion
RNA on the Semantic Web

The aim of the RNA Ontology Consortium is “to create an integrated conceptual fra-

mework, an RNA Ontology (RNAO), with a common, dynamic, controlled, and struc-

tured vocabulary to describe and characterize RNA sequences, secondary structures,

three dimensional structures, and dynamics pertaining to RNA function” [5]. The work

described here on RNA structure and structural features provides the basis towards

which other essential RNA structural and functional features may be added in the

future. With contextual modelling, we represent highly dynamic features of RNA struc-

ture and function as is observed in NMR and other experiments that characterize

molecular dynamics.

While the RKB requires an OWL2 compliant reasoning system to obtain all infer-

ences, there exists substantial value in being able to publish the knowledge base as a

collection of Semantic Web documents which are also accessible through a SPARQL

endpoint. Future work involves provisioning the knowledge base through the Bio2RDF

linked data network [11], thus enabling entity resolution and web-based interlinking

between datasets.

OWL modelling

Modelling knowledge using OWL is challenging for a number of reasons. The first is

that relations between objects are binary, of the form relation(x,y), which precludes

temporal qualification as a third argument in a ternary relation. Thus n-ary relations

must be converted into n-ary objects, and this approach is exemplified in our represen-

tation of base pairing and base stacking. A second challenge is that OWL imposes cer-

tain non-structural restrictions on properties in order to remain decidable. These

restrictions ensure that properties which are either transitive or part of a role chain

may not be involved in cardinality restrictions (min, exactly, max), and may not also

be declared as functional, inverse functional, irreflexive, antisymmetric or disjoint with

another property. Role chains involving part of / is about and their inverses are useful

in finding all entities that are described by information content entities. But this pre-

cludes the use of these roles in cardinality restrictions. In order to overcome this

restriction, more specific sub-properties such as has grain / hasquality / hasrole could

be used to make knowledge base assertions, and these roles are then used to make

queries with cardinality restrictions. Thus cardinality restrictions can be placed in the

ontology, and also in the instance base. For instance, the AA base pair class is equiva-

lent to a Nucleotide base pair that has proper part exactly 2 adenine monophosphate

residues. In this way, we can discover all such instances in RNA structure data.

Future directions

The RKB makes use of the MIREOT scheme to incorporate selected parts of trusted

external ontologies. RKB’s coverage will continue to grow alongside other resources

represented with Semantic Web technologies such as the 30+ databases provided by

the Bio2RDF [11] project, including UniProt [12] and the PDB. Yet a major challenge
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exists in ensuring that the raw linked data is massaged into more sophisticated knowl-

edge representation schemes, such as the one described here. Ultimately, integration at

both the syntactic and semantic levels across domains will allow maximum interoper-

ability between the RKB and other relevant knowledge.

Conclusions
The RKB facilitates RNA knowledge discovery using a set of expressive OWL ontolo-

gies instantiated with PDB structure data and annotations from MC-Annotate. The

resulting knowledge base can be used for simple information retrieval and more

sophisticated ontology-based knowledge discovery. Our work demonstrates the repre-

sentation of information content entities such as PDB files and structure models, and

how these relate to real world entities and their qualities. Continued collaboration with

other members of the RNA Ontology Consortium should maximize interoperability of

RNA-related information, particularly with sequence alignments, motifs and other

structural and functional knowledge. Together, we will provide new avenues for biolo-

gical knowledge discovery powered by the standards provided by the W3C Semantic

Web effort.

Methods
Ontology design

The RKB ontology was designed using the OWL editor Protégé Ontology Editor (v4

Build 113) using Pellet or FaCT++ [13,14] reasoners for consistency checking.

Nucleic acid structures were obtained from the PDB [15], and MC-Annotate [10]

was used to identify base pairs, base stacks, and various spatial conformations includ-

ing sugar puckering. Our design approach followed a well used methodology [16].

RNA structural feature terminology was obtained from literature [17], and new termi-

nology created to group together classes related by subsumption. Subclasses are homo-

genous and increasingly specialized, while each child term can be easily differentiated

from its parent with clear human readable labels, accurate and concise definitions and

existential / universal / cardinal axiomatic descriptions where feasible.

Upper level ontologies suggests increased interoperability and semantic coherency

between domain ontologies due to grounding of the basic types of domain entities and

the imposing of restrictions on the relationships that these entities may specify. Our

New Upper Level Ontology (NULO), inspired by the Basic Formal Ontology (BFO)

[18], offers a simple framework that enables the distinction of objects, qualities, pro-

cesses and spatial regions and also features object-process, object-quality, parthood,

spatial, temporal relations drawn from foundational work [19].

Classes defined in the RKB are mapped to NULO concepts. For example, when con-

sidering the horizontal plane on a ribose, and the C5’ atom is positioned to the left

side, the location of the atoms with respect to the plane define either an “exo” or

“endo” quality (below or above the plane, respectively) which is a quality of the corre-

sponding atom of the ribose.

New object properties were added to further describe some of the more specific rela-

tions required in (but not restricted to) this domain. The pair isImmediatelyAfter/isIm-

mediatelyBefore provides a relation between any two entities that are spatially related

by adjacency. These properties permit the description of the relative positioning of
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nucleotide bases within a nucleic acid. They also allow for the description of the rela-

tive positioning of nucleobases that participate in either adjacent or non-adjacent

stacking interactions.
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