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Abstract

Background: Existing methods for calculating semantic similarity between gene
products using the Gene Ontology (GO) often rely on external resources, which are
not part of the ontology. Consequently, changes in these external resources like
biased term distribution caused by shifting of hot research topics, will affect the
calculation of semantic similarity. One way to avoid this problem is to use semantic
methods that are “intrinsic” to the ontology, i.e. independent of external knowledge.

Results: We present a shortest-path graph kernel (spgk) method that relies
exclusively on the GO and its structure. In spgk, a gene product is represented by an
induced subgraph of the GO, which consists of all the GO terms annotating it. Then
a shortest-path graph kernel is used to compute the similarity between two graphs.
In a comprehensive evaluation using a benchmark dataset, spgk compares favorably
with other methods that depend on external resources. Compared with simUI, a
method that is also intrinsic to GO, spgk achieves slightly better results on the
benchmark dataset. Statistical tests show that the improvement is significant when
the resolution and EC similarity correlation coefficient are used to measure the
performance, but is insignificant when the Pfam similarity correlation coefficient is
used.

Conclusions: Spgk uses a graph kernel method in polynomial time to exploit the
structure of the GO to calculate semantic similarity between gene products. It
provides an alternative to both methods that use external resources and “intrinsic”
methods with comparable performance.

Background
The Gene Ontology (GO) [1] systematically organizes knowledge by means of well-

structured controlled vocabularies and provides consistent descriptions to organisms

across species. GO terms have been widely used to annotate genes and gene products

in the Gene Ontology Annotation (GOA) project [2]. As the GO becomes more and

more important in biomedical research, computational methods are often needed to

explore the GO to calculate the semantic similarity between gene products. Such

methods have been used in a broad range of applications, including: clustering of

genes in pathways [3-6], prediction of protein-protein interactions [7], and the evalua-

tion of similarity between gene products with respect to expression profiles [8], protein

sequence [9-11], protein function [12], and protein family [13].

The semantic similarity between two gene products is usually calculated based on the

term similarity. First, pairwise semantic similarities between GO terms that annotate
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the gene products are calculated. Then, the these pairwise similarities are combined

to derive an overall semantic similarity between the gene products. Different meth-

ods have been used to combine pairwise GO term similarities in previous research

[4,8,10,11,14,15]. A representative collection of methods for calculating the semantic

similarity between GO terms has been reviewed in [16]. Most of those methods use

the information content (IC) of the nearest common ancestor (NCA) or most infor-

mative common ancestor (MICA) to quantify the amount of shared information

between two GO terms. However, the IC is calculated based on the frequency of

GO terms in external resources, such as GOA databases. External resources change

as knowledge is updated (e.g., more annotations are included in GOA). Conse-

quently, for the same pair of GO terms, their semantic similarity computed by these

methods might change as the external resources evolve. However, semantic similari-

ties between GO terms should not be affected by such changes. In addition, certain

annotations might be frequent simply because of popular research topics, leading to

biased results. Some other methods rely on distance measures [17,18], e.g. counting

the number of edges on the shortest path between the involved terms in the GO, to

compute the GO term similarity. One shortcoming of this approach is that the

edges in the GO do not imply equal length in semantics. Although some methods

tried to address this issue by assigning different weights to edges at different levels,

they still suffer from the fact that GO terms at the same level do not necessarily

have the same specificity. Other methods calculate the semantic similarity between

gene products without considering the semantic similarity between GO terms. In

these methods, a gene product is represented by a set or a vector of GO terms that

annotate it. Then, the semantic similarity between gene products is calculated as

the overlap between sets or the inner product of vectors [4,10]. However, these

methods did not exploit the structure of the GO and ignored the relationship

between GO terms.

To address the aforementioned issues, we propose a shortest-path graph kernel

(spgk) method for calculating the semantic similarity between gene products. In

spgk, each gene product is represented as a graph, which is an induced subgraph of

the GO. Then a graph kernel method is used to calculate the semantic similarity

between the graphs. Spgk is intrinsic to the GO, i.e., it does not rely on external

resources to calculate the semantic similarity. Thus, it does not have the same draw-

backs as the methods based on the IC of GO terms. At the same time, it uses a

graph to explicitly explore the GO structure and exploit the relationship between

GO terms. Graph matching is computationally expensive in general, being an NP-

complete problem on general graphs. To reduce the computational complexity, we

develop a graph kernel to calculate the similarity between graphs. Using a compre-

hensive evaluation benchmark developed by another group, we compare spgk with

other state-of-the-art methods.

Methods
In this section, we present a novel method for calculating the semantic similarity

between proteins. First, we introduce basic background of the Gene Ontology. Then

we describe the details of the graph kernel method.
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Gene ontology and gene ontology annotations

The GO project [1] maintains a dynamic, structured, precisely defined, and controlled

vocabulary of terms for describing the properties of gene products across species. The

GO consists of three different ontologies describing: 1) biological processes (BP),

where a process often involves a chemical or physical transformation (e.g. cell growth);

2) molecular functions (MF), where functions are defined as the biochemical activity of

gene products (e.g. enzymes); and 3) cellular components (CC), which refers to places

in the cell where gene products are active (e.g. nuclear membrane). Each ontology is

structured as a directed acyclic graph, where nodes (GO terms) are linked to each

other through “is-a”, “part-of” or “regulates” relationships. On the other hand, the

annotation of gene products is the process of assigning ontology terms to gene pro-

ducts in order to describe their activities and localization. For example, the GOA pro-

ject [2], at the European Bioinformatics Institute (EBI), aims to provide high-quality

electronic and manual annotations to UniProt KnowledgeBase (UniProtKB) entries

[19]. GOA annotations are obtained from strictly controlled methods, where every

association is supported by a distinct evidence source. A protein can be annotated with

multiple GO terms from any of the three ontologies in the GO. Functional annotations

of UniProtKB proteins currently consist of over 32 million annotations, which cover

more than 4 million proteins [2].

Graph representation of proteins

We represented a protein using a subgraph of the ontology that consisted of all the

GO terms annotating the protein and their ancestors in the ontology. Each edge of the

graph corresponds to a relationship between two terms in the ontology. There are

three types of relations in the GO: is-a, part-of, and regulates. Since the GO includes

three different ontologies, the resulting graph will be different when a different ontol-

ogy is used. For example, Figure 1 shows the graph generated for UniprotKB protein

P17252, using the Cellular Component (CC) ontology.

A shortest-path graph kernel for proteins

We used a shortest-path graph kernel to compare two graphs as proposed in [20].

First, let’s define the shortest-path graph. Given a graph G = (V, E), its shortest-path

graph is Gsp = (V, E’), where E’ = {e’1,...,e’l} such that e’i = (u, v), where u Î V, v Î V,

and path(u, v)≠0. That is, Gsp has the same vertices as G and the edge (u, v) in Gsp has

the same length as the shortest distance between u and v in G. This transformation

can be performed using any all-pairs shortest path algorithm. In particular, the Floyd-

Warshall algorithm is used in spgk because it is straightforward and has time complex-

ity of O(n3). Then, for a pair of graphs, the shortest-path kernel calculates their simi-

larity by comparing every pair of edges in their shortest-path graphs. For example, Let

G1 = (V1, E1) and G2 = (V2, E2) be two graphs and G1sp = (V1, E’1) and G2sp = (V2, E’2)

be their shortest-path graphs respectively. The similarity between G1 and G2 can be

calculated using Eq. 1.

Ksp(G1,G2) =
∑

e1∈E′
1

∑
e2∈E′

2

(kwalk(e1, e2)) (1)
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where kwalk is a positive definite kernel for comparing two walks. In this case, a walk

includes an edge and its two end nodes. Let e1 be the edge connecting nodes v1 and w1,

and e2 be the edge connecting nodes v2 and w2, then kwalk(e1, e2) is defined by Eq. 2.

kwalk(e1, e2) = knode(v1, v2) ∗ kedge(e1,e2) ∗ knode(w1,w2) (2)

where knode is a kernel function for comparing two nodes, which returns 1 when the

two nodes are identical and 0 otherwise, and kedge is a kernel function for comparing

two edges. kedge is a Brownian bridge kernel that returns the largest value when two

edges have identical length, and 0 when the edges differ in length more than a con-

stant c as shown in Eq. 3. In this study, we use c = 2 as suggested by [20].

kedge(e, f ) = max(0, c − |length(e) − length(f )|) (3)

Evaluation approach

We evaluated the performance of spgk by comparing the resulting semantic similarities

with protein functional similarities derived from expert annotations. Functional

Figure 1 A subgraph generated from GO. The subgraph consisting of terms annotating protein P17252
(Protein kinase C alpha type) and their ancestors in the Cellular Component ontology.
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similarities between proteins were derived from the Pfam database [21] as described by

Couto et al. [13]. Let P denote a protein and F(P) = {f1, f2,..., fn} be the set of Pfam

families that P is associated with. Then the functional similarity between two proteins

Pi and Pj is given by Eq. 4

FSf (Pi,Pj) =
|F(Pi) ∩ F(Pj)|
|F(Pi) ∪ F(Pj)| (4)

Previous study by Xu et al. [7] shows that having more annotations per protein in

the dataset leads to more reliable functional similarity estimation from the GO. Thus,

for the purpose of evaluation, we carefully selected a set of 100 proteins from GOA,

such that they were the top 100 proteins with the highest numbers of annotations. We

also ensured that for any selected protein: 1) it existed in the UniProtKB/Swiss-Prot

database, 2) it had at least one annotation from each of the three ontologies in GOA-

Uniprot, and 3) it had at least one Pfam-A annotation. The evaluation proceeded as

follows: First, the graph kernel was used to calculate pairwise semantic similarities for

a set of proteins. Second, pairwise functional similarities between the proteins were

calculated based on the Pfam database annotations. Last, the Pearson’s Correlation

Coefficient between the semantic and functional similarities was calculated. If two pro-

teins have similar function, then a good semantic similarity method should detect high

semantic similarity between them. Thus, higher values of Pearson’s Correlation Coeffi-

cient indicate better performance in the calculation of the semantic similarity. This

procedure was repeated for each of the three ontologies in the GO, namely, BP, MF,

and CC.

Results and discussion
Datasets

In our experiments, we used the revision 1.723 of the GO and the release 74.0 of

GOA-Uniprot, where GO terms are assigned to proteins in UniProtKB by manual and

electronic methods [2]. As mentioned before, the GO contains three different ontolo-

gies that describe gene products in terms of their associated biological processes, mole-

cular functions, and cellular components.

Performance of spgk

100 proteins with the most GOA annotations were selected as described in the Meth-

ods section. Spgk was used to calculate pairwise semantic similarities between the pro-

teins. The correlation coefficient between the resulting semantic and functional

similarities was calculated. The evaluation was repeated using three different ontologies

of the GO. The results are shown in Table 1 which reveals a couple of interesting

points. First, spgk produces semantic similarities that are highly correlated with func-

tional similarities for all three ontologies. Second, when the CC ontology is used, the

correlation coefficients are lower than when the MF and BP ontologies are used. This

is not surprising because the MF and BP ontologies are directly related to functions

while the CC ontology is related to cellular components and locations.

Comparison of spgk with state-of-the-art methods

To compare spgk with other existing methods, we used the Collaborative Evaluation of

GO-Based Semantic Similarity Measures (CESSM) online tool [22]. This tool has been
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made available by the XLDB research group at the University of Lisbon. For the pur-

pose of comparisons, CESSM provides a standard dataset consisting of 13,340 pairs of

proteins involving 1,039 distinct proteins and implements 11 state-of-the-art semantic

similarity methods, namely, simGIC and simUI [9], and three versions (the average,

maximum and best-match average) of three different term similarity methods, namely

Resnik [23], Lin [24], and Jiang & Conrath [25]. As a result, users can compare their

methods with the 11 methods using the standard dataset.

As pointed out by Pesquita et al. [9] in a comprehensive evaluation, the maximum

and average versions of term similarity methods have limitations from a biological

point of view. Comparisons using the standard datasets at CESSM also confirmed that

the best-match average version has better performance than the maximum and average

versions for Resnik [23], Lin [24] and Jiang & Conrath [25] methods. Thus, in this sec-

tion, we will compare spgk with simGIC, simUI, and the best-match average version of

Resnik [23], Lin [24] and Jiang & Conrath [25] methods using CESSM. CESSM pro-

vides three different ways for evaluating a semantic similarity method, i.e., comparing

the resulting semantic similarities with (1) functional similarities measured as sequence

similarities, (2) functional similarities derived from enzyme commission (EC) classifica-

tion, and (3) functional similarities derived from Pfam annotations.

Since the MF ontology is more closely related to function than the BP and CC ontol-

ogies, we will use the MF ontology to compare different methods. As pointed out by

Pesquita et al. [9], the relationship between the semantic similarity and the sequence

similarity is not linear. Thus, they recommended to use resolution instead of correla-

tion coefficient to evaluate how well the semantic similarity matches the sequence

similarity. Based on their definition, resolution is the relative intensity where variations

in the sequence similarity scale are translated into the semantic similarity scale. Higher

resolution values mean that the semantic similarity method has a higher capability to

distinguish between different levels of protein functions. Therefore, a method with a

higher resolution performs better than a method with a lower resolution. Table 2

shows the resolutions for different methods when the sequence similarity is compared

with the semantic similarity computed by the methods. When the semantic similarity

is compared with the function similarity derived from the EC classification and Pfam

annotations, the Pearson’s correlation coefficient is used as described in Methods.

Tables 3 and 4 show the results.

The spgk method achieves the best results in tables 2 and 3, and is the second best

in table 4. In addition to the better performance, the key advantage of spgk is that it is

intrinsic to the ontology, i.e., it does not rely on external resources in the calculation

of the semantic similarity. In contrast, all the other methods (except simUI) shown in

tables 2, 3 and 4, rely on external resources, i.e., the annotations in GOA. Despite the

high computational cost associated with the general graph comparisons, spgk does not

suffer from this drawback. Using the shortest-path graph kernel, spgk requires a poly-

nomial time (O(n4)), where n is the number of vertices. In additioin, each step of the

Table 1 Performance of spgk.

Ontology BP MF CC

Pearson’s Correlation Coefficient 0.855 0.852 0.703

The performance is measured by the Pearson’s correlation coefficients between the semantic similarity given by spgk
and the functional similarity estimated from Pfam annotations. BP, MF, CC are the three ontologies in the GO.
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graph kernel is simple to compute. For example, knode only needs to compare whether

two vertex IDs are identical, and kedge considers the length difference between two

edges. Thus, the constant factors associated with the polynomial time complexity are

very small and spgk can run very fast in real applications.

SimUI is also intrinsic to the ontology. In simUI, the semantic similarity between two

proteins is defined as the fraction between the number of GO terms shared by the two

proteins and the number of GO terms in their union. Thus, simUI requires only a lin-

ear time (O(n)) and has the advantage that it is simple and faster for calculation. How-

ever, tables 2, 3, 4 show that spgk slightly outperformed simUI in all cases. We

estimated the statistical significance of the improvement of spgk over simUI using

Fisher’s transformation. The p values were less than 0.001 when resolution was used to

measure performance (table 2), 0.0384 for the EC similarity correlation coefficient

(table 3) and 0.2266 for the Pfam similarity correlation coefficient (table 4). Therefore,

compared with the conventional threshold of 0.05, the improvement is significant

when the performance is measured by resolution and EC similarity correlation coeffi-

cient, but is insignificant when measured by Pfam similarity correlation coefficient.

Comparing tables 2, 3, 4, we can see that the performance in table 4 is the poorest for

all the methods. That might partially explain why the improvement is insignificant

when Pfam similarity correlation coefficient is used as the measurement (table 4).

Conclusions
In this manuscript, we have presented a method (spgk) that computes the semantic

similarity between gene products using only information intrinsic to GO. In compre-

hensive evaluations using a benchmark dataset, spgk compares favorably with other

state-of-the-art methods that depend on external resources. Compared to simUI, spgk

achieves slightly better results but also has a higher time complexity. A big difference

between spgk and simUI is that spgk takes into account the structure of the ontology.

Since the structure of the ontology contains important information, it is important to

Table 2 Comparison I.

Method Resolution

spgk 0.976

simUI 0.967

Resnik 0.958

simGIC 0.956

Lin 0.571

Jiang & Conrath 0.241

The performance is measured by the resolution score.

Table 3 Comparison II.

Method EC Similarity

spgk 0.646

Lin 0.642

simUI 0.637

simGIC 0.622

Resnik 0.603

Jiang & Conrath 0.561

The performance is measured by the Pearson’s correlation coefficient between the resulting semantic similarity and the
functional similarity derived from the EC classification.
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exploit them to capture semantic similarity. The results presented here show that spgk

provides an alternative to both methods that rely on external resources and “intrinsic”

methods with comparable performance.

In light of future development, there are still some limitations in spgk at its current

form. For example, in spgk, the function (knode) that compares nodes only considers

whether the two nodes are identical. However, each node in the GO is associated with

a text definition, which contains rich information that is useful for deriving biological

relationship between nodes. Thus, one direction for future improvement is to take into

account the semantics of the text definition when comparing nodes. Furthermore, the

kedge function only considers the length difference between two paths. In GO, the

edges are associated with different types of relationship. Since different types of rela-

tionship have different biological meanings, they should be given different weights.

Thus, another direction for improvement is to systematically explore weighting meth-

ods that assign different weights to the edges based on the biological relationships.
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