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Abstract

Background: Extracting medication information from clinical records has many
potential applications, and recently published research, systems, and competitions
reflect an interest therein. Much of the early extraction work involved rules and
lexicons, but more recently machine learning has been applied to the task.

Methods: We present a hybrid system consisting of two parts. The first part, field
detection, uses a cascade of statistical classifiers to identify medication-related named
entities. The second part uses simple heuristics to link those entities into medication
events.

Results: The system achieved performance that is comparable to other approaches
to the same task. This performance is further improved by adding features that
reference external medication name lists.

Conclusions: This study demonstrates that our hybrid approach outperforms purely
statistical or rule-based systems. The study also shows that a cascade of classifiers
works better than a single classifier in extracting medication information. The system
is available as is upon request from the first author.

Background
Narrative clinical records store patient medical information, and extracting this

information is an important problem with practical application [1]. In this work we

describe a system for extracting detailed medication information from hospital dis-

charge summaries using a combination of rules and statistical learning.

Related work

Until recently, much of the work done on extracting medication information from

clinical documents involved rules and lexicons. Gold et al. used a set of parsing rules

formatted as regular expressions and a drug name lexicon [2], while Xu et al. filled a

semantic representation model using lexicon lookups, regular expressions, and disam-

biguation rules [3]. While convenient in the absence of a large corpus of annotated

data, such rule-based systems can be time-consuming to build and difficult to manage

[4]. More recently, machine learning has been applied to the task: Patrick and Li used

a conditional random fields (CRF) named entity identifier and a support vector
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machine (SVM) relationship classifier [5], Tikk and Solt also employed CRF to finding

named entities [6], and Li et al. worked with AdaBoost and CRF [7].

Maximum Entropy (MaxEnt) is a machine learning algorithm that, in the biomedical

domain, has been used to identify personally identifiable information [8] and assign

gene function codes to genes [9]. In information extraction, Chieu and Ng used it to

extract succession management templates [10]. As far as we know, MaxEnt has not

been applied to medication information extraction in the clinical domain.

The problem task

For this work we are interested in the automatic extraction of information about medi-

cations that a patient takes. Specifically, we extract the following fields from hospital

discharge summaries: names of medications (m), dosages (do), modes (mo), frequencies

(f), durations (du), and reasons (r) for taking these medications. We refer to the

medication field as the name field and the other five fields as the non-name fields. All

non-name fields should be linked to exactly one name field in the system output.

A name field and all the non-name fields that link to it form one or more entries, each

of which corresponds to a medication event. An entry appears in either a list of

medications (“list”) or in narrative text (“narrative”). Table 1 shows an excerpt from a

discharge summary and the corresponding entries in the gold standard. The first entry

appears in narrative text, and the second in a medication list.

In this paper we present our approach to this task. A pre-processor generates section

information via regular expressions and part-of-speech tags from the Stanford tagger

[11]. The next step is the system’s core: a cascade of statistical classifiers that identify

medication fields. Simple rules then form entries from these fields.

Data sets

The data for training and evaluating our methods came from the 2009 i2b2 challenge

[12]. The challenge organizers released 696 summaries for system development; a gold

standard for entries was provided for 17 of them. The University of Sydney team [5]

annotated 145 of the 696 summaries and generously shared their annotations with

Table 1 A sample discharge summary excerpt and the corresponding entries in the gold
standard

Excerpt of Discharge Summary
55 the patient noted that he had a recurrence of this
56 vague chest discomfort as he was sitting and
57 talking to friends. He took a sublingual
58 Nitroglycerin without relief.
...
65 Flomax ( Tamsulosin ) 0.4 mg, po, qd,...

Gold standard:
m=“Nitroglycerin” 58:0 58:0 ||do=“nm”||
mo=“sublingual” 57:6 57:6 ||f=“nm” ||du=“nm” ||
r=“vague chest discomfort” 56:0 56:2 ||
ln=”narrative”
...
m="flomax ( tamsulosin )” 65:0 65:3||do="0.4 mg”
65:4 65:5||mo="po” 65:6 65:6||f="qd” 65:7
65:7||du="nm"||r="nm"||ln="list”

The fields inside an entry are separated by “||”. Each field is represented by the string and its position (i.e., “line number:
token number” offsets). “nm” means the field value is not present for this medication event. The fields are medication
name (m), dosage (do), mode (mo), frequency (f), duration (d), and reason (r).
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i2b2 after the challenge for future research. We obtained and used 110 of those anno-

tations as our training set and the remaining 35 as our development set. After the

challenge, 251 more summaries were annotated by the challenge participants, and

those summaries formed the final test set on which our system was evaluated.

The sizes of the data sets used in our experiments are shown in Table 2. The average

number of entries and fields vary across the sets because the summaries in the test set

were chosen randomly from a set of 547 held-out summaries, whereas the University

of Sydney team chose to annotate the longest summaries in the released set.

Methods
We developed a hybrid system with three processing steps: (1) a pre-processing step,

(2) a field detection step that identifies the six fields, and (3) a field linking step that

links fields together to form entries. The second step is a statistical system, whereas

the other two steps are rule-based. The second step was the main focus of this study.

The entire system was first presented at the 2010 Louhi Workshop [13], where the

authors were invited for the special issue of this journal.

Pre-processing

In addition to common processing steps such as part-of-speech (POS) tagging, our pre-

processor includes a section segmenter that breaks discharge summaries into sections.

Discharge summaries tend to consist of sections such as “ADMIT DIAGNOSIS”,

“PAST MEDICAL HISTORY”, and “DISCHARGE MEDICATIONS”. Knowing section

boundaries is important for the task because, according to the i2b2 challenge annota-

tion guidelines for creating the gold standard, medications occurring under certain

sections (e.g., “FAMILY HISTORY” and “ALLERGIES”) were to be excluded from the

system output. Knowing the sections could also be useful for field detection and link-

ing. For example, the ‘DISCHARGE MEDICATIONS’ section is more likely to contain

medications in a list than medications embedded in narrative text.

The set of sections and the exact spelling of section headings vary across discharge

summaries. The section segmenter uses a regular expression (a line starting with a

sequence of capitalized letters followed by a colon) to collect potential section headings

from the training data. The headings whose frequencies are higher than a threshold are

used to identify section boundaries in the discharge summaries.

Field detection

This step consists of three modules: find_name, which finds medication names,

context_type, which determines whether each identified medication name appears in

narrative text or in a list of medications, and find_others, which detects the five

Table 2 The data sets used in our experiments

Data
Sets

# of
Summaries

# of
Entries

# of Fields # of
Name

# of
Dose

# of
Freq

# of
Mode

# of
Duration

# of
Reason

Training
set

110 5970
(54.3)

14886
(135.3)

5684
(51.7)

2929
(26.6)

2740
(24.9)

2146
(19.5)

302 (2.7) 1085
(9.9)

Dev set 35 2401
(68.6)

5988
(171.1)

2302
(65.8)

1163
(33.2)

1096
(31.3)

880
(25.1)

111 (3.2) 436
(12.5)

Test set 251 8936
(35.6)

22041
(87.8)

8495
(33.8)

4387
(17.5)

3999
(15.9)

3307
(13.2)

511 (2.0) 1342
(5.3)

The numbers in parentheses are the average numbers of entries or fields per discharge summary.
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non-name field types. For all three modules we use the Maximum Entropy (MaxEnt)

learner in the MALLET package [14] because the training time for MaxEnt can be

shorter than more sophisticated algorithms such as CRF [15]. For find_name and

find_others, we follow the common practice of treating named entity (NE) detection as

a sequence labeling task with the Inside-Outside-Beginning (IOB) tagging scheme; that

is, each token in the input is tagged with B-x (beginning an NE of type x), I-x (inside

an NE of type x) and O (outside any NE).

The find_name module

As this module identifies medication names only, the tagset under the IOB scheme has

three tags: B-m for beginning of a name, I-m for inside a name, and O for outside.

Various features are used for this module, which we group into four types:

• (F1) includes word n-gram features (n=1,2,3). For instance, the bigram wi-1 wi looks

at the bigram consisting of the previous word and the current word.

• (F2) contains features of properties of the current word and its neighbors (e.g.,

their POS tags, affixes, lengths, containing section, capitalization, etc.)

• (F3) checks the IOB tags of previous words

• (F4) contains features that check whether an n-gram in the text appears as part of

a medication name in some medication name lists.

For (F4) we used two medication name lists. The first list consists of medication

names from the training data and is the only list used in set F4a. The second list

includes drug names from the FDA National Drug Code Directory (http://www.access-

data.fda.gov/scripts/cder/ndc/) and is used to test whether features that check an exter-

nal resource improve performance. Feature set F4b uses both lists.

The context_type module

This module is a binary classifier that determines whether a medication name occurs

in a list or narrative context. Features used by this module include the section name as

identified by the pre-processing step, the number of commas and words on the line,

the medication name itself and its position on the line, and nearby words.

The find_others module

This module complements the find_name module and uses eleven IOB tags to identify

five non-name fields. The feature set used in this module is similar to the one used in

find_name, but some features in (F2) and (F4) are modified to suit the non-name

fields. For instance, one feature that was not present in find_name checks whether a

word fits a common pattern for dosage. In addition, some features in find_others look

at the output of previous modules, like the location of nearby medication names, as

this information can be provided by the find_name module at test time.

Field linking

The final step is to form entries by associating each medication name with its related

fields. Our current implementation uses simple heuristics. First, for each non-name

field the closest prior and subsequent name fields are identified. Second, each non-

name field is linked to one of those two name fields. In most cases, the non-name field

is linked to the prior name field, but if the distance to the subsequent name field is
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shorter than the distance to the prior name field by more than two lines, we link the

non-name field to the subsequent name field. Third, the (name, non-name) pairs are

assembled into entries with a few rules that apply if more than one non-name field of

the same type is linked to the same name field. More information about the modules,

including the features and the linking rules, is available in [16].

Results
In this section, we report our system’s performance on the development and test sets.

Evaluation metrics

We use two sets of evaluation metrics: horizontal and vertical. Horizontal metrics

measure performance at the entry level, whereas vertical metrics measure performance

at the field level. Both metrics compare fields between the system output and the gold

standard for an exact match. A field in the system output exactly matches a field in

the gold standard if the two fields’ spans are identical and they have the same field

type [12]. The primary metric for the i2b2 challenge was horizontal F-score, which is

the metric we use in this section unless otherwise specified.

Statistical significance

To determine whether the difference between two systems’ performances is statistically

significant, we use approximate randomization tests [17]. Given two systems that we

would like to compare, we first calculate the difference between horizontal F-scores.

Then two pseudo-system outputs are generated by swapping (at 0.5 probability) the

two system outputs for each discharge summary. These new pseudo-sets are scored as

normal, and the difference between F-scores calculated. If the difference between

F-scores of these pseudo-outputs is no less than the original F-score difference, a

counter, i, is increased by one. This process is repeated n=10,000 times, and the

p-value of the significance is equal to (i+1)/(n+1). If the p-value is smaller than a pre-

defined threshold (e.g., 0.05), we conclude that the difference between the two systems

is statistically significant. A conservative statistical correction (Bonferroni) was used to

adjust for multiple significance comparisons.

Performance of the field detection step

Table 3 shows the vertical precision, recall, and F-score on identifying the six field

types in the development set, using all 110 training files and the F1-F4b feature sets.

Table 3 shows that, while the system detects most fields well, it has trouble with “dura-

tion” and “reason,” and particularly with the recall of those fields.

Table 3 The performance of field detection on the development set

Precision Recall F-score

Name 91.2 88.5 89.9

Dosage 96.6 90.8 93.6

Frequency 93.9 89.0 91.8

Mode 95.7 90.3 92.9

Duration 73.8 43.2 54.5

Reason 72.2 31.0 43.3

All fields 92.6 84.5 88.4

Vertical precision, recall, and F-score.
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When making the “narrative” vs. “list” distinction, the accuracy of context_type is

95.4%. In contrast, the accuracy of the baseline (which assigns a “list” context to each

medication name) is only 55.6%.

Performance of the field linking step

In order to evaluate the field linking step, we generated a list of unique (name, non-

name) pairs from the gold standard where the name and non-name fields appear in

the same entry. We then compared the fields in these pairs with the ones produced

by the field linking step for exact matches and calculated precision, recall, and

F-score. Table 4 shows the results of two experiments: in the gold standard input

experiment, the input to the field linking step is the fields from the gold standard,

which allows us to evaluate the linker directly assuming the field detection step is

perfect; in the system input experiment, the input is the actual output of our

system’s field detection step. Both experiments were performed on the development

set. This table shows that our heuristics perform well when given perfect input, but

perform considerably worse when given the imperfect fields as detected by the

system as input.

Effect of feature sets

To test the effect of feature sets on system performance, we trained the find_name and

find_others modules with different feature sets. The models were trained on the train-

ing set and the system was tested on the development set.

The results are in Table 5. For the last two rows, the F1-F4a row uses a medication

name list derived from the training data and the F1-F4b row adds the FDA’s National

Drug Code Directory list. The F-score difference between all adjacent rows is statisti-

cally significant at p≤0.05, except for the pair F1-F3 vs. F1-F4a. It is not surprising that

using the first medication name list on top of F1-F3 does not improve the perfor-

mance, as the same kind of information has already been captured by F1. The

improvement of F1-F4b over F1-F4a shows that the system can incorporate additional

resources and achieve a statistically significant gain.

Results on the test data

Table 6 shows the system performance on the test data. This includes the horizontal

precision, recall, and F-score, as well as the vertical metrics. The system was trained

on the union of the training and development data. These results are good overall, and

confirm our findings on the development set that the system has difficulty finding

“duration” and “reason” fields. Despite the poor performance on these fields, the

vertical “all fields” scores are still closer to those of the other four fields, reflecting the

sparseness of the challenging fields in the data.

Table 4 The performance of the field linking step on the development set

Input Precision Recall F-score

Gold standard 87.4 75.1 80.8

System 96.2 94.5 95.3

Gold standard input: assuming perfect input from the field detection step; System input: using the actual output of the
system’s field detection step.
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Discussion
Field detection

As mentioned, the results for “duration” and “reason” are the lowest of all fields, which

was also the case for all the participating systems in the challenge [12]. Those two

fields are also the most difficult for humans to annotate, as indicated by their low

inter-annotator agreement [18]. One possible reason for these fields’ difficulty is that

their content varies considerably more than that of “mode” and “frequency” [12].

Another possibility is that, because they are longer and have more variability in their

length than other fields, it is more difficult to locate their exact boundaries [16].

Field linking

The results shown in Table 4 are intriguing. The linking rules appear to be adequate

when given perfect input, but perform worse when operating on the imperfect input

from the system’s field detection module. It is unclear how much of the drop in

performance is due to the rules themselves and how much is due to the limiting factor

of the imperfect fields. One way to explore this in future work would be a manual

effort to construct the best possible set of entries given the system-defined fields and

evaluate those entries against the gold standard.

Effect of training data size

Figure 1 shows the system performance on the development set when different por-

tions of the training set are used for training. The curve with “+” signs represents the

results for F1-F4b, and the curve with circles represents the results for F1-F4a.

The figure illustrates that, as the training data size increases, the horizontal F-score

with both feature sets improves. In addition, the external list is most helpful when the

training data size is small, as indicated by the decreasing gap between the two curves.

Table 5 System performance on the development set with different feature sets

Features Precision Recall F-score

F1 72.5 60.3 65.8

F1-F2 82.5 78.2 80.3

F1-F3 88.4 77.9 82.8

F1-F4a 87.4 77.9 82.4

F1-F4b 88.1 79.4 83.5

Horizontal precision, recall, and F-score demonstrates that including all proposed feature sets and the external data lists
results in the best performance.

Table 6 System performance on the test set

Field Precision Recall F-score

Horizontal N/A 88.6 80.2 84.1

Vertical Name 92.6 87.1 89.8

Dosage 96.3 90.2 93.1

Frequency 95.6 90.8 93.2

Mode 96.7 90.2 93.3

Duration 70.6 40.5 51.5

Reason 73.4 34.7 47.1

All fields 91.6 82.7 86.9

Horizontal and vertical metrics for system trained on the union of the training and development sets using all features
in sets F1-F4b.
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Cascade vs. find_all

Using three separate modules for field detection allows each one to use the features

most appropriate for it. In addition, later modules can use features based on the output

of previous modules. However, a potential downside is errors propagating through the

cascade. An alternative is to use a single module to detect all six field types.

We built and tested such an alternative, which we call find_all. This module elimi-

nates find_name and context_type. It finds medication names by adding two more class

labels to find_others: B-m and I-m. Thus it is a 13-way MaxEnt classifier that can find

all six field types in one pass through the text.

Figure 2 compares the horizontal F-score of the system using the find_all algo-

rithm as its field detection step with that of the system with cascading modules.

Both use the F1-F4b feature sets except that, since find_others uses some features

that check the output of previous modules which are not available to find_all, such

as the look-ahead proximity of name fields, those features have been removed from

find_all. Both algorithms are trained on the training set and evaluated on the devel-

opment set.

Interestingly, when 10% of the training set is used for training, find_all has a higher

F-score than the cascading approach, although the difference is not statistically signifi-

cant at p≤0.05. As more data is used for training, the cascade outperforms find_all,

and the difference between the two is statistically significant at p≤0.05 when at least

50% of the training data is used. One possible explanation for this phenomenon is that

as more training data becomes available, the early modules in the cascade make fewer

errors; as a result, the disadvantage of potential error propagation in the cascading

Figure 1 System performance on the development set with different training set sizes.
Key: + represents horizontal F-scores with features in F1-F4b; ○ represents horizontal F-scores with features
in F1-F4a.
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approach is outweighed by the advantage that the later modules can use features that

check the output of the earlier modules.

I2b2 challenge entrants as benchmark

Strictly for purposes of providing a benchmark, we report the horizontal precision,

recall, and F-score on the test set of the top five systems [5][19][20][21][6] that partici-

pated in the 2009 i2b2 challenge [12] in Table 7. The table shows that the performance

of our system is comparable to the top systems in the i2b2 challenge.

A caveat of comparing Tables 6 and 7 is that time, availability of training data, and

differences in available resources make it difficult to compare these systems to one

another. First, as non-entrants in the challenge, we had more time to work on our

system than the other systems cited here. Mork et al. report that their entry into the

challenge used simple rules and lookup-lists due to time constraints [21]. Second,

there was a disparity in the amount of data used. While teams were allowed to

Figure 2 Cascade vs. find_all for field detection on the development set. Key: + represents horizontal
F-scores with the three-module cascade; ○ represents horizontal F-scores with find_all.

Table 7 Benchmark performances of the top five i2b2 systems on the test set

Rank Team Precision Recall F-score

1 USyd 89.6 82.0 85.7

2 Vanderbilt 84.0 80.3 82.1

3 Manchester 86.4 76.6 81.2

4 NLM 78.4 82.3 80.3

5 BME-Humboldt 84.1 75.8 79.7

Horizontal precision, recall, and F-score.

Halgrim et al. Journal of Biomedical Semantics 2011, 2(Suppl 3):S2
http://www.jbiomedsem.com/content/2/S3/S2

Page 9 of 11



annotate their own training set, only one team in the top five did: the University of

Sydney team [5]. This disparity in data may also explain why, of the top five

performing systems, only one used any kind of machine learning. As the University of

Sydney graciously shared their data, we were able to emphasize machine learning in

our approach. In fact, both the Spasić et al. [20] and Tikk and Solt [6] teams reported

that they implemented a rule-based system with lexicons because of the small amount

of training data provided. Finally, teams were allowed to use any resource, including

existing systems and lexicons unavailable to the general public. Doan et al. applied

their existing rule-based medication extraction system to the problem and placed

second in the challenge [19]. These variations in resources made the challenge similar

to the so-called open-track challenge in the general NLP field and complicate head-

to-head comparisons.

Conclusions
We present a hybrid system for medication information extraction. It is built around a

series of cascading MaxEnt classifiers for field detection. Its performance compares

favorably to systems approaching the same task with rules and other machine learning

algorithms. Incorporating additional resources as features improves performance.

Given enough training data, the cascade system outperforms a single classifier that

finds all fields at once. In the future, we plan to try to improve scores on the “dura-

tion” and “reason” fields by adding more specialized classifiers. We also plan to replace

the rule-based linking module with a statistical linker to improve results.
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