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Abstract

Background: Event extraction following the GENIA Event corpus and BioNLP shared
task models has been a considerable focus of recent work in biomedical information
extraction. This work includes efforts applying event extraction methods to the entire
PubMed literature database, far beyond the narrow subdomains of biomedicine for
which annotated resources for extraction method development are available.

Results: In the present study, our aim is to estimate the coverage of all statements
of gene/protein associations in PubMed that existing resources for event extraction
can provide. We base our analysis on a recently released corpus automatically
annotated for gene/protein entities and syntactic analyses covering the entire
PubMed, and use named entity co-occurrence, shortest dependency paths and an
unlexicalized classifier to identify likely statements of gene/protein associations. A set
of high-frequency/high-likelihood association statements are then manually analyzed
with reference to the GENIA ontology.

Conclusions: We present a first estimate of the overall coverage of gene/protein
associations provided by existing resources for event extraction. Our results suggest
that for event-type associations this coverage may be over 90%. We also identify
several biologically significant associations of genes and proteins that are not
addressed by these resources, suggesting directions for further extension of
extraction coverage.

Background
In recent years, there has been a significant shift in focus in biomedical information

extraction from simple pairwise relations representing associations such as protein-pro-

tein interactions (PPI) toward representations that capture typed, structured associa-

tions of arbitrary numbers of entities in specific roles, frequently termed event

extraction[1]. Much of this work draws on the GENIA Event corpus [2], a resource of

1500 PubMed abstracts in the domain of transcription factors in human blood cells

annotated for genes, proteins and related entities, events and syntax [3-5]. This

resource served also as the source for the annotations in the first collaborative evalua-

tion of biomedical event extraction methods, the 2009 BioNLP shared task on event

extraction (BioNLP ST) [6] as well as for the GENIA subtask of the second task in the

series [7,8].
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Another recent trend in the domain is a move toward the application of extraction

methods to the full scale of the existing literature, with results for various targets cov-

ering the entire PubMed literature database of nearly 20 million citations being made

available [9-12]. As event extraction methods initially developed to target the set of

events defined in the GENIA / BioNLP ST corpora are now being applied at PubMed

scale, it makes sense to ask how much of the full spectrum of gene/protein associations

found there they can maximally cover. This issue is independent of the evaluation of

the extraction performance of systems for the associations they target, addressed in the

BioNLP ST and numerous other studies. Here, we will for simplicity assume that sys-

tems can eventually achieve satisfactory performance for associations for which anno-

tated data is available. By contrast, we will assume that associations not appearing in

this data cannot be extracted: as the overwhelming majority of current event extraction

methods are based on supervised machine learning or hand-crafted rules written with

reference to the annotated data, it reasonable to assume as a first approximation that

their coverage of associations not appearing in that data is zero. In this study, we seek

to characterize the full range of associations of specific genes/proteins described in the

literature and estimate what coverage of these associations event extraction systems

relying on currently available resources can maximally achieve. To address these ques-

tions, it is necessary not only to have an inventory of concepts that (largely) covers the

ways in which genes/proteins can be associated, but also to be able to estimate the

relative frequency with which these concepts are used to express gene/protein associa-

tions in the literature. Possible approaches to developing such an estimate include

broad categories that could be characterized as “bottom-up” and “top-down”: either

progressing from the unstructured natural language text toward the set of target con-

cepts and their frequencies in the targeted expressions, or from a predefined set of

concepts toward an estimate of these frequencies. As concepts relating to gene/protein

associations are within the scope of many domain ontologies, most notably the com-

munity standard Gene Ontology (GO) [13], a top-down approach building on the iden-

tification of GO concepts in text is intuitively appealing. However, GO is intended for

the annotation of gene/protein function and the structure of its terms removed from

the way in which concepts are expressed in natural language text [14] and the recogni-

tion of concepts from ontologies such as GO in text is a challenging task where the

reliability of available methods is limited [15]. Recognition performance is further likely

to vary by concept depending on the ambiguity and variability of typical forms of

expression (contrast e.g. protein phosphorylation with protein binding), leading to bias

in frequency estimates. Finally, even given perfect recognition of concepts potentially

expressing gene/protein associations it would remain necessary to determine which

specific instances actually state such associations. We argue that when this determina-

tion is made, expressions stating the associations can be straightforwardly identified,

making separate prior concept detection unnecessary. As a “bottom-up” approach is

also more general in not relying on manually constructed resources, we chose to pur-

sue such an approach in this work.

Task definition
We term our extraction target gene/protein associations. So as not to limit the applic-

ability of our results, we define our target entities (“genes/proteins”) broadly. The
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specific definition of this entity type applied in this study is provided by the GENE-

TAG corpus annotation [16], as we make use of an automatic tagger trained on this

resource for the recognition of genes/proteins. GENETAG annotates a single class of

entities that encompasses genes and gene products (proteins and RNA) as well as

related entities such as domains, promoters, and complexes. This inclusiveness permits

the identification of associations between more than only the strict gene and gene pro-

duct entities included in e.g. BioNLP ST annotation [4]. The corpus annotation

includes a specificity constraint that excludes generic, non-named entity references

such as DNA sequence from annotation, which is appropriate for our goal to identify

associations of specific genes and proteins.

We also intend “associations” broadly, understanding it to encompass direct PPI-type

interactions as well as experimental findings suggesting them (as targeted e.g. in the

BioCreative PPI tasks [17]), BioNLP ST-style biomolecular events (“things that happen”

involving genes/proteins) such as expression and localization, as well as static relations

[18], associations such as part-of that hold between entities without necessarily imply-

ing change. Indeed, while we take “association” to exclude properties and states that

involve only a single entity, we do not set other specific constraints, following instead a

loose biologically motivated definition that can be characterized informally as “any

association between genes, gene products, or related entities that is of biological

interest.”

We note that while our aims and approach share a number of features with tasks

such as protein-protein interaction extraction, they differ in focus on statements of

association (as opposed to the entities stated to be associated) and in that we do not

aim to reliably detect instances of the expressions of interest, but rather to estimate

the distribution of association types. Due to the large scale of the PubMed corpus it is

possible to pursue an approach that only considers a small, high-reliability portion of

the available data (discarding most instances) and still identifies associations of interest.

Thus, instead of instance-level extraction performance, we pay particular attention to

not introducing overt bias e.g. toward particular forms of expression so as to be able

to estimate relative frequencies of the associations in the full corpus.

Corpus resources
This study is based on the 2009 distribution of the full PubMed literature database,

encompassing approximately 18 million citations of biomedical domain scientific arti-

cles. For the analysis of this data, we make use of the Turku PubMed Scale (TPS) cor-

pus [10], a corpus covering the entire PubMed automatically annotated for sentence

boundaries, gene/protein named entities, sentence syntax (both constituency and

Figure 1 Illustration of TPS corpus annotations for an example sentence. Sentence splitting and
constituency syntax not shown.
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dependency), and events. Figure 1 illustrates these annotations. Note that while the ori-

ginal focus of the corpus is on BioNLP ST events, we ignore the event annotations of

the corpus. Instead, we make use of the automatic annotations originally created for

supporting the extraction of the events, briefly presented in the following.

All PubMed documents in the TPS corpus were initially processed with the GENIA

sentence splitter with simple heuristic post-processing to correct some errors from the

machine learning-based splitter [19]. The sentence splitter is estimated to achieve an

F-score of 99.7% on the GENIA corpus. Gene/protein named entities were tagged in

all sentences using the BANNER named entity recognition system [20] trained on the

GENETAG corpus [16] and thus reflect its inclusive definition of gene/protein (as dis-

cussed above). The release of BANNER applied to tag the TPS corpus was reported to

achieve 86.4% F-score on the GENETAG corpus, and an evaluation on a random sam-

ple of tagged entities in TPS data found 87% precision [21], suggesting that the tagger

generalizes well to the whole PubMed.

Finally, the TPS corpus distribution includes syntactic analyses for all sentences in

which at least one named entity has been tagged. (Sentences not containing entities

are not parsed as parsing was the most computationally intensive part of the automatic

corpus annotation and the event extraction system could only extract events from sen-

tences containing entities.) Parses were produced using the McClosky-Charniak parser

[22], a version of the Charniak-Johnson parser [23] adapted to the biomedical domain.

The parser has shown state-of-the-art performance in recent intrinsic [22,24] and

extrinsic [25,26] evaluations. The McClosky-Charniak parser produces constituency

(phrase structure) analyses in the Penn Treebank scheme, with Penn part-of-speech

tags. In addition to the these analyses, dependency analyses in the Stanford Depen-

dency (SD) scheme [27], created from the constituency analyses by automatic conver-

sion using the using the Stanford parser tools [28] (Version 1.6.1) are provided in the

TPS corpus. In addition to the TPS corpus, we use the BioNLP ST 2009 data [6] for

training the statistical component of our method and for one aspect of the evaluation,

as described in detail in the sections on Machine Learning and Evaluation.

Identification of gene/protein associations
In this section, we present our approach to identifying statements of gene/protein asso-

ciations. We assume throughout that gene/protein associations are stated through spe-

cific words, analogously to the widely applied concepts of interaction words in protein-

protein interaction extraction and trigger (or text binding) words in event extraction.

We follow a statistical approach to identifying such candidate words, introduced in the

following through an extended analysis of word statistics in PubMed.

Overall statistics

As expected for a corpus of English, the most frequent words in PubMed are preposi-

tions, determiners, conjunctions, forms of the copula (“is”, “are” etc.) and, if non-word

tokens are included, punctuation. In this work, we focus on content words, filtering

closed class words and non-words and applying a basic stopword list including the

PubMed stopwords [29]. Table 1 shows the most frequent such words in PubMed. For

this and other word statistics in this section, basic tokenization separating punctuation

from words and lowercasing has been applied but stemming or lemmatization is not
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performed. The distribution suggests that medical topics dominate biomolecular ones

overall, with e.g. the word “patients” occurring more than three times as often as the

word “protein”. Although general expressions such as the included “activity” and

“effect” can be used to describe gene/protein associations, this list contains no word

specific to such associations.

Gene/protein mentions

The automatic tagging for mentions of gene/protein entities in the TPS corpus covers

a total of 36.4 million gene/protein mentions in 5.4 million documents, approximately

30% of all PubMed citations. These annotations allow focus on texts likely relevant to

gene/protein associations. Here, as we are interested in particular in texts describing

associations between two or more gene/protein related entities, we apply a focused

selection, picking only those individual sentences in which two or more mentions co-

occur. While this excludes associations in which the entities occur in different sen-

tences, their relative frequency is expected to be low: for example, in the BioNLP ST

data, all event participants occurred within a single sentence in 95% of the targeted

biomolecular event statements. Based on our experience with event annotation, we

further expect that in a corpus of this size the great majority of association types that

are expressed across multiple sentences in some statements will also appear within a

single sentence in others. In the TPS data, there are 9.0 million sentences with at least

two tagged gene/protein entities. These sentences contain 25.4 million entity mentions;

approximately 70% of the corpus total. Table 2 shows the most frequent words in

Table 1 Most frequent words in PubMed

Word Frequency

patients 8728330

cells 5384960

results 4175016

study 4149760

treatment 3436331

cell 3230831

activity 2763031

group 2635275

protein 2553732

effect 2457417

Table 2 Most frequent words in sentences containing two or more gene/protein entity
mentions in PubMed

Word Frequency

cells 1455897

protein 1057920

expression 923002

activity 753521

cell 750293

gene 704434

receptor 641766

human 635468

levels 603117

factor 518676
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sentences with at least two tagged protein mentions. The list suggests that this simple

selection is sufficient to identify a subset of PubMed where biomolecular topics are

prominent: both “protein” and “expression” appear ranked near the top.

Dependency paths

The TPS corpus contains both constituency and dependency analyses of sentence syn-

tax for all sentences with at least one gene/protein mention. While both forms of

representation arguably capture largely the same information, dependency representa-

tions have been argued to make the relevant syntactic relations more immediately

accessible and have been successfully employed in many recent domain information

extraction approaches, frequently in conjunction with the use of the shortest depen-

dency path between two entities to discover stated associations (see e.g. [30-33]).

Here, we follow the assumption that when two entities are stated to be associated in

some way, the most important words expressing their association will typically be

found on the shortest dependency path connecting the two entities (cf. the shortest

path hypothesis of Bunescu and Mooney [30]). The specific dependency representation

applied here is the collapsed, coordination-processed variant of the Stanford represen-

tation, which is expressly oriented toward use in this type of information extraction

approaches [27]. When extracting the shortest paths, we further avoid traversing coor-

dinating conjunction dependencies (conj*) to assure that relevant words are not

excluded in sentences involving coordination and that similar paths are extracted for

all coordinated words (Figure 2).

The corpus contains 31.8 million pairs of gene/protein mentions co-occurring in a

sentence, and a connecting shortest path could be extracted for 97% of these (failures

to extract a path were primarily due to clause-level coordination – e.g. “we study P1
and we find that P1 is ...” – and, rarely, failures from the parser or the dependency

conversion). Table 3 shows the words most frequently occurring on these paths. This

list again suggests an increased focus on words relating to gene/protein associations:

expression is the most frequent word on the paths, and binding appears in the top-

ranked words.

Path probabilities

Entities often co-occur in text without any association being stated between them, but

some shortest dependency path can be found connecting (nearly) all co-occurring

Figure 2 Variants of the Stanford Dependency representation. a) Basic representation. b) Collapsed,
coordination-processed representation.
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entities. Distinguishing paths that state associations from those that do not could thus

help identify words that are key to expressing those associations.

A wealth of approaches for distinguishing relevant paths from irrelevant ones have

been proposed in the protein-protein interaction extraction literature, including rule-

based, pattern-based (hand-written and learned) and supervised classification-based

methods (e.g. [31,32,34-38]). However, writing explicit rules conflicts with our aim of

discovering associations (and statements of associations) that we do not already know

about, and application of standard supervised learning methods would similarly limit

the scope of what can be extracted by the (known) training data.

Here, drawing in part on ideas from Open Information Extraction [39], we adopt a

probabilistic approach using an “unlexicalized” machine learning method. We defer

detailed description of the method to a later section (Machine Learning), now simply

assuming a way to assign to each path p an (estimated) probability P(p) that the path

expresses an association between the entities it connects. We make use of P(p) in two

obvious ways to refine the pure frequency-based word rankings presented above: first,

only count words when they occur on paths that have an estimated probability higher

than a given threshold of being relevant, and second, replacing the “raw” word count

with the expected number of times that word appears in a relevant path, informally Ew
= ∑p:wÎpP(p).

Table 4 shows the top-ranked words by Ew as calculated using the method described

below. We find in this listing only words that are regularly used to express gene/

Table 3 Most frequent words on shortest dependency paths connecting two gene/
protein entity mentions in PubMed

Word Frequency

expression 590810

activity 470393

levels 386130

cells 349648

activation 240942

induced 221177

binding 153806

mediated 129620

effect 124948

increased 124564

Table 4 Words ranked highest by Ew, the expected number of times they occur on
shortest paths likely to express a gene/protein association

Word Ew

expression 68803.3

activity 56372.9

activation 43987.9

binding 28989.3

induced 24132.8

phosphorylation 22971.9

binds 17757.0

production 16893.2

inhibited 15972.9

inhibition 14546.0
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protein associations, suggesting that probabilistic ranking can allow clear focus on the

targeted statements.

Machine learning
We applied supervised machine learning to estimate the probability that a dependency

path connecting two gene/protein named entity mentions expresses an association of

these entities, training with “unlexicalized” features [40] to force the learning method

to generalize and to learn based on the patterns of expression only.

Training data

For training data, we could potentially draw from a wealth of corpus resources anno-

tated for some form of association between genes/proteins, such as PPI corpora (see e.

g. [41]). However, as we are in particular interested in event extraction approaches, we

chose to use the BioNLP ST 2009 data (the BioNLP ST 2011 datasets were not avail-

able when this work was performed). This dataset also identifies the expressions stating

the annotated events (“trigger words”), providing test material for the method.

As the BioNLP ST data does not explicitly identify simple pairs of entities that are

stated to be associated (but rather event graphs), it was first necessary to derive a pair-

wise representation from the event representation. We applied a mapping similar to

that introduced by [42] for deriving pairwise relations from the event-style annotations

of the Biolnfer corpus [43]: for each co-occurring entity pair, we identified all paths

through event structures connecting the two entities. If these paths included at least

one where the direction of causality was not reversed on the path, the pair was marked

as a positive example of an association; otherwise it was marked negative. Finally, we

interpreted the Equiv annotations identifying equivalent entity references in the data:

any pair where entities are equivalent to those of at least one positive pair was marked

positive (see Figure 3).

Finally, to make this pair data consistent with the TPS event spans, tokenization and

other features, we aligned the entity annotations of the two corpora. Alignment was

necessary in particular for entities as the GENETAG corpus annotation criteria differ

notably from those of the BioNLP ST data, which only annotates specific gene and

gene product names and not, for example, protein domains or complexes [44]. We

mapped a BioNLP ST entity to a TPS entity if their spans matched or the source entity

was entirely contained within the span of the candidate target entity. Unmatched enti-

ties were removed from the data. This processing was applied to the BioNLP ST train-

ing set, creating a corpus of 6889 entity pairs of which 1119 (16%) were marked as

expressing an association (positive).

Learning method

We applied the libSVM Support Vector Machine implementation using probabilistic

outputs [45]. For training the classifier, we applied features derived only from the

words and dependencies along the shortest path between any two entities. We first

replaced each word marked as a gene/protein mention with a placeholder string and

each other word with its part of speech tag, using the Penn tags included in TPS data

(Figure 4). We then generated a set of frequently used dependency path features from

this representation (see e.g. [32,33,38,46]): path length, path “tokens” (PoS/placeholder),
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dependency types on the path, and “token”/dependency 2-grams and 3-grams. Preli-

minary experiments using cross-validation on the training data suggested performance

was not sensitive to the details of the feature representation. The SVM regularization

parameter was selected similarly, testing parameter values on the scale ..., 2–1, 20, 21,...

and selecting c = 2–3 for the final experiment.

The resulting classifier is intentionally weak, being trained to recognize not the speci-

fic properties of positive examples in its training set but rather their general character-

istics. Development testing indicated an F-score and AUC of approximately 50% and

Figure 3 Reinterpreting BioNLP Shared Task event structures as associated entity pairs. A positive
pair is extracted for the proteins in a) but not in b) as there is no causal connection leading from one to
the other. In c), two positive pairs, (Raf-1,MAP kinase) and (Raf-1,MAPK), are extracted due to the
equivalence relation.

Figure 4 Unlexicalized shortest path representation a) Applied annotations with original sentence text.
b) Unlexicalized representation. c) Shortest path connecting two gene/protein mentions.
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70%, substantially below the state of the art for the comparable PPI pair extraction task

[32] as expected.

Calculating Ew
Ew, informally characterized as the expected number of times a word w occurs on a

dependency path which is estimated to be likely to express a gene/protein association,

is central to the applied probabilistic ranking. In technical detail, we derived Ew as

follows.

We first extracted all instances of shortest dependency paths connecting two genes/

proteins. We then combined all paths sharing the same “unlexicalized” representation,

giving a total of 6.8 million unique paths. To make storage and processing more feasi-

ble, we removed paths occurring only once in the entire corpus. This filtered out 6.0

million paths – 88% of the total number of unique paths – but due to the Zipfian

properties of the distribution, the remaining 0.8 million unique paths account for 16.7

million occurrences, or 74% of the total occurrences. We thus do not expect this prac-

tically motivated filtering to fundamentally alter the basic statistical properties of the

data.

Each path was then assigned the estimated probability P(p) using the probabilistic

outputs of the SVM trained as described above. At this stage, we could potentially

introduce a threshold parameter into the method defining a tradeoff between path

quality and inclusiveness. However, as initial testing suggested the method to be rela-

tively robust to the choice of cutoff, we simply take the obvious choice of defining as

“likely positive” path any for which P(p) > 0.5. We then removed any path that did not

meet this condition as not likely expressing an association, leaving 46437 unique

unlexicalized paths (5.7% of the total) predicted to express gene/protein associations.

Finally each occurrence of a word w on one of these paths is assigned the path prob-

ability P(p). In cases where words appear on multiple paths, they are simply assigned

the maximum of the path probabilities. Ew is then the sum of these probabilities over

the entire corpus.

We note that this formulation does not include any normalization by the overall fre-

quency of words. This implies that high-frequency irrelevant words (such as “gene”)

are likely to receive higher Ew values than rare relevant words (such as “biotinylation”).

However, normalization was not included as it would reduce the ability to use the

results to estimate the relative frequency of the words in relevant expressions. For

efforts aiming only to discover new expressions of entity associations without regard to

their frequency, we expect incorporation of some form of correction by the overall fre-

quency of words would be beneficial.

Evaluation
We first evaluated each of the word rankings discussed in the section on Identification

of Gene/Protein Associations by comparing the ranked lists of words against the set of

single words marked as trigger expressions in the BioNLP ST development data. These

single-word triggers account for 92% of all trigger expressions marked in the data, and

there are 343 unique triggers. Figure 5 shows precision/recall curves for each of the

four rankings generated by the word frequency/expected value. The result supports the

informal observations made through the top-ranked words in Tables 1, 2, 3 and 4: the
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later approaches provide a much more relevant ranking for identifying words expres-

sing associations.

To evaluate the capability of the presented approach to identify new expressions of

gene/protein associations, we next performed a manual study of candidate words for

stating gene/protein associations using the Ew ranking. Here, we take as known any

word for which the normalized, lemmatized form (using the NLM LVG norm normali-

zer [47]) matches that of any word appearing as a trigger expression in the BioNLP ST

training or development test data. We then selected the words ranked highest by Ew
that were not known, grouped by normalized and lemmatized form, and added for

reference examples of frequent shortest dependency paths on which any of these

words appear (see example in Table 5). These groups were evaluated by a PhD biolo-

gist with expertise in event annotation and basic understanding of the Stanford Depen-

dency representation of syntax (TO), with instructions to mark as positive words that

in contexts like those provided can be understood to express a gene/protein associa-

tion, defined broadly as described in the Task Definition section.

In total, 1200 candidate expressions were manually evaluated, proceeding from can-

didates ranked highest by Ew to lower. While no stopping criterion was specified in

advance, evaluation was stopped after reaching a point of diminishing returns where
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Figure 5 Precision/recall curves of the four word rankings for BioNLP ST trigger words

Table 5 Example shortest paths for candidate gene/protein association-expressing word
“acylation”

GGP <prep_of acylation prep_by> GGP

GGP <hyphen dependent <amod acylation prep_of> GGP

GGP <nsubj stimulated dobj> acylation prep_of> GGP

GGP <prep_of acylation prep_by> GGP appos> GGP

GGP <nsubj decreased dobj> acylation prep_of> GGP
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no positives had been identified in a run of over 100 examined candidates. This pro-

cess necessarily misses relevant types of associations in the “long tail” of the distribu-

tion, but they are expected to be rare: for illustration, the lowest-ranked positive event-

type association word “biotinylation” has an Ew value of 42.3; by contrast, “phosphory-

lation” (the most frequent post-translational modification) has an Ew of 35708.2, sug-

gesting the latter is several orders of magnitude more common as an expression of

gene/protein association. (Note that these values differ from those in Table 4 as they

include variants that are lemmatized to the same string.)

Of the examined candidates, 660 were judged as positive in total, confirming that the

approach can identify expressions of entity associations not appearing in the reference

annotated data. We next proceeded to manually cluster these by the type of association

they would typically be expected to express. Following preliminary analysis, we per-

formed a top-level division into three categories: events (“things that happen”) invol-

ving gene/protein entities in their natural environment (55% of associations), “static”

relations holding between the entities (28%), and experimental observations and

manipulations that do not occur naturally (17%). (Note that these numbers are on the

level of association types and do not take into account the number of instances of

each type.) We further grouped the new event statements into event classes using the

Gene Ontology [13] for reference and identified event classes that were not previously

included in the GENIA event ontology. This process suggested 18 event classes that

were not previously considered in GENIA resources, shown in Figure 6 with a tentative

proposal on how these classes could be organized into the GENIA ontology and exam-

ples of identified words expressing each new event type. It should be noted that while

these classes are new to the GENIA ontology, they could be found in other ontologies,

again notably GO. However, as GO contains more than 20,000 biological process

terms, purely manual identification of terms specifically relevant to frequent associa-

tions of entities of interest would require considerable effort.

Finally, to estimate the relative prominence of the known (i.e. BioNLP ST) expres-

sions of associations in PubMed compared to those that were newly identified, we

compared the E values of the unique lemmas, counted as the sum of Ew for words

sharing the lemma. Figure 7 shows a plot of the values ranked from high to low E.

The result was unexpected: the estimate suggests that even though the newly identified

association words are drawn from PubMed without subdomain restrictions and include

more than only event expressions, expressions of event-type associations using the pre-

viously known words are overall much more prominent in PubMed. Specifically the

total E value mass of all the newly identified associations (the area under the curve in

Figure 7) is just 22% of that of the known events, and the mass of the newly identified

events 37% of all the new associations; only 8% of that of the known events. If static

relations and experimental observations and manipulations are excluded as (arguably)

not in scope for event extraction, this estimate suggests that currently available

resources for event extraction cover over 90% of all events involving gene/protein enti-

ties in PubMed.

Discussion
We found that out of all gene/protein associations in PubMed, currently existing

resources for event extraction are lacking in coverage of a number of event types such
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as dissociation, many relatively rare (though biologically important) protein post-trans-

lational modifications, as well as some high-level process types involving genes/proteins

such as apoptosis. In addition to event types, associations characterized as experimental

outcomes and manipulations and static relations (e.g. part-of) were prominent among

those not covered by the considered resources. Only the first of these categories is

unambiguously within scope for event extraction. However, while statements of

“co-immunoprecipitate, hybridize”
“immunoblotting, electrophoresis”

“chemotaxis”
“exocytosis”
“endocytosis, phagocytosis”

“depolymerization, dissociate”

“hydrolysis”

“replication”
“repair”

“homeostasis”

“acylation”
“biotinylation”
“palmitoyation”
“peroxidation”
“farnesylation”
“sulfation”

Acylation

Sulfation
Prenylation

Palmitoylation
Oxidation

Biotinilation

Phosphorylation “phosphorylation””

…

“apoptosis”
“necrosis”

Apoptosis
Necrosis

Figure 6 Organization of proposed new event classes into the GENIA ontology. New classes shown
as dotted rectangles with examples of expressions stating each type.
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experimental results such as colocalize and coprecipitate do not directly state a biologi-

cally meaningful association between genes/proteins, they suggest a possible association

and have been specifically included in a number of tasks targeting protein-protein

interactions, including BioCreative challenges [17]. This suggests that for practical

applications it may be important to consider also this class of associations. Likewise,

while static relations are (by definition) not events and rarely primarily targeted in

domain information extraction studies, the analysis suggests they are relatively frequent

among gene/protein associations not covered by the considered resources, and they

have been argued to play a potentially important supporting role in event extraction

[18].

Despite these areas of missing coverage, the statistical analysis suggests that

resources already cover the clear majority of gene/protein events in PubMed, indicating

that annotation-based approaches to extending coverage of event types (e.g. [48-51])

may offer a realistic path to near-complete coverage of all major gene/protein events

in the near future. With resources for static relation extraction this coverage can be

further extended beyond event-type associations, for example applying static relations

in support of event extraction as considered in the REL task of BioNLP Shared Task

2011 [52].

While these results are highly encouraging, it must be noted that the approach to

identifying gene/protein associations considered here is limited in a number of ways: it

excludes associations stated across sentence boundaries and ones for which the short-

est path hypothesis does not hold, does not treat multi-word expressions as wholes,

ignores ambiguity in implicitly assuming a single sense for each word, and only directly

includes associations stated between exactly two entities. The approach is also funda-

mentally limited to associations expressed through specific words and thus blind to e.g.

 0

 5000

 10000

 15000

 20000

 25000

 0  50  100  150  200

E

rank

Known events
All new associations

New events

Figure 7 Comparison of estimated coverage of previously known and newly identified words
expressing gene/protein associations. Note truncated ranges.
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part-of relations implied by statements such as CD14 Sp1-binding site. Further, our

estimate of overall association statement frequency ignored much of the “long tail” of

the distribution, thus excluding rare expressions which may nevertheless add up to a

not insignificant fraction of the total. These factors limit the reliability of the presented

coverage estimates. Mitigation or elimination of these factors remains future work.

Finally, it should be recalled that while we have taken any expression of association for

which even a single annotated instance exists as “known”, the performance at which

many of these association can be extracted in practice may be limited.

Conclusions
We have presented an approach to discovering expressions of gene/protein associations

from PubMed based on named entity co-occurrences, shortest dependency paths and

an unlexicalized classifier to identify likely statements of gene/protein associations.

Drawing on the automatically created full-PubMed annotations of the Turku PubMed-

Scale (TPS) corpus and using the BioNLP’09 shared task data to define positive and

negative examples of association statements, we distilled an initial set of over 30 mil-

lion protein mentions into a set of 46,000 unique unlexicalized paths estimated likely

to express gene/protein associations. These paths were then used to rank all words in

PubMed by the expected number of times they are predicted to express such associa-

tions, and 1200 candidate association-expressing words not appearing in the BioNLP’09

shared task data evaluated manually. Study of these candidates suggested 18 new event

classes for the GENIA ontology and indicated that the majority of statements of gene/

protein associations not covered by currently available resources are not statements of

biomolecular events but rather statements of static relations or experimental

manipulation.

The event annotation of the GENIA corpus was originally designed to cover events

discussed in publications on a limited subdomain of biomolecular science. It could

thus be assumed that the event types and the specific statements annotated in GENIA

would have only modest coverage of all gene/protein association types and statements

in PubMed. However, our results suggest that even the BioNLP’09 shared task data, a

subset of GENIA, may represent a clear majority of all gene/protein associations. This

estimate of coverage is a first attempt and involves many uncertain factors and poten-

tial sources of error, calling for more research.

The data derived from TPS created in this study, including the shortest paths, their

estimated probabilities, and the word lists ranked by probability of stating a gene/pro-

tein association are available for research purposes from from the GENIA project

homepage http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA.
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