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Abstract

The increasing number of scientific literature on the Web and the absence of
efficient tools used for classifying and searching the documents are the two most
important factors that influence the speed of the search and the quality of the
results. Previous studies have shown that the usage of ontologies makes it possible
to process document and query information at the semantic level, which greatly
improves the search for the relevant information and makes one step further
towards the Semantic Web. A fundamental step in these approaches is the
annotation of documents with ontology concepts, which can also be seen as a
classification task. In this paper we address this issue for the biomedical domain and
present a new automated and robust method, based on a Maximum Entropy
approach, for annotating biomedical literature documents with terms from the
Medical Subject Headings (MeSH).
The experimental evaluation shows that the suggested Maximum Entropy approach
for annotating biomedical documents with MeSH terms is highly accurate, robust to
the ambiguity of terms, and can provide very good performance even when a very
small number of training documents is used. More precisely, we show that the
proposed algorithm obtained an average F-measure of 92.4% (precision 99.41%, recall
86.77%) for the full range of the explored terms (4,078 MeSH terms), and that the
algorithm’s performance is resilient to terms’ ambiguity, achieving an average
F-measure of 92.42% (precision 99.32%, recall 86.87%) in the explored MeSH terms
which were found to be ambiguous according to the Unified Medical Language
System (UMLS) thesaurus. Finally, we compared the results of the suggested
methodology with a Naive Bayes and a Decision Trees classification approach, and we
show that the Maximum Entropy based approach performed with higher F-Measure
in both ambiguous and monosemous MeSH terms.

Background
In this section we provide the background for this study, including our motivation for

addressing the problem of automated document annotation in the biomedical literature

with an approach that is robust to the ambiguity of the indexed terms. A formulation

of the problem is also presented, as well as a summary of the suggested approach and

of the reported results.
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Introduction and motivation

With the rapid expansion of the internet as a means of retrieving related scientific and

educational literature, the search for relevant information has become a difficult and time

consuming process. The current state of the internet data can be characterized by weak

structures and, practically, the absence of relationships between them. Current popular

search engines, such as Google and Yahoo, provide a keyword-based search, which takes

into account mainly the surface string similarity between query and document terms, and

often a simple synonym expansion, omitting other types of information about terms, such

as polysemy and homonymy. In order to address this problem and improve search results,

the usage of ontologies has been employed in several previous works, that allows for docu-

ment annotation with domain specific ontology concepts. The usage of ontologies pro-

vides a content-based access to the data, which makes it possible to process information

at the semantic level and significantly improve the search of relevant documents, as it has

been shown by recent studies in the case of the search in the life sciences literature [1,2].

Some representative examples of such search engines for the biomedical domain are:

(a) GoPubMed (http://www.gopubmed.com/web/gopubmed/) which uses the Gene

Ontology (GO) and the Medical Subject Headings (MeSH) as background knowledge

for indexing the biomedical literature stored in the PubMed database (http://www.ncbi.

nlm.nih.gov/pubmed/), and various text mining techniques and algorithms (stemming,

tokenization, synonym detection) for the identification of relevant ontology entities in

PubMed abstracts, (b) semedico (http://www.semedico.org), which provides access to

semantic metadata about abstracts indexed in PubMed using the JULIE Lab text

mining engine (http://www.julielab.de) and MeSH as a knowledge base, and (c) novo-

seek (http://www.novoseek.com), which uses external available data and contextual

term information to identify key biomedical terms in biomedical literature documents.

However, in all aforementioned engines there are several challenges that arise and

need to be addressed, in order for the respective systems to be maintained up-to-date;

more precisely: (i) the amount of scientific documents to be annotated and indexed is

very large, as the number of indexed PubMed documents grows really fast, (ii) the pre-

sence of ambiguous terms constitutes the classification (annotation) process, and, thus,

the indexing process of articles with MeSH terms a challenging task, and, (iii) any clas-

sifier model being used to annotate the literature documents with MeSH terms needs

to be trained and tuned specifically for this domain, in order to achieve the best possi-

ble results, and in tandem needs to be fast and robust to address challenges (i) and (ii)

respectively. In this work we address these challenges and propose a robust method to

annotate automatically literature articles with MeSH terms, following a Maximum

Entropy-based approach. The notion behind the Maximum Entropy-based approaches

is simple and realistic: it is a statistical learning method that models all that is known

and assumes nothing about that which is unknown. Thus, given a collection of training

instances, it chooses a model consistent with all the instances, but otherwise as uni-

form as possible. In the section Approach, we explain in detail how the suggested Max-

imum Entropy-based approach operates, as well as why we selected it among other

learning alternatives, with the most representative reasons being robustness and provi-

sion of the importance of the features that are most representative for each of the

learned classes. This latter property gives interpret ability to the learned models.
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Growth of the biomedical literature

As a proof of concept for (i), i.e., the tremendous growth of the biomedical literature, we

present in Figure 1 the growth of PubMed indexed documents over the time period

1965 – 2010. The figure shows clearly that new PubMed documents are nowadays

doubled within the past 20 years (Figure 1(a)), as also discussed in [3]. The exponential

trend (red line) also shows that this tendency continues. In parallel, we can observe that

the annotated documents with MeSH concepts (red line) attempts to keep up with the

document growth (Figure 1(b)). For this purpose, the Medical Text Indexer System is

used (http://ii.nlm.nih.gov/mti.shtml), which makes the annotation process semi-auto-

matic and improves the efficiency of indexing PubMed articles compared to a respective

manual annotation which would have been impossible given the reported growth. This

constitutes as fundamental the need for fast and accurate methods for automated anno-

tation of biomedical literature articles with MeSH concepts, so that the growth of

PubMed documents can be followed with respective MeSH terms annotations.

Ambiguity analysis of MeSH subject headings

As a proof of concept for (ii), i.e., the existence of the ambiguity of MeSH terms used to

index biomedical literature documents, we performed some measurements with regards

to the ambiguity levels of 4,078 MeSH terms, which are all the terms under the roots dis-

eases, anatomy, and psychology. In these terms we will also base our analysis and our

experimental evaluation. For all of these terms we have measured the number of differ-

ent meanings that they may carry, consulting three very popular thesauri/lexica, namely

the WordNet thesaurus for the English language, the Wikipedia encyclopedia (English

version), which is currently the largest electronic encyclopedia available, and the Unified

Medical Language System (UMLS -http://www.nlm.nih.gov/research/umls/), which is

currently the largest available thesaurus for the biomedical domain.

The measurements are shown in Figure 2. The figure shows a pie chart with the distri-

bution of the examined MeSH terms into polysemous, i.e., ambiguous, and monose-

mous, after consulting each of the aforementioned thesauri/lexica. It also presents the

percentage of terms found in exactly one or in more than one of the used lexica/

Figure 1 Trend of indexed PubMed articles and MeSH annotations In Figure 1(a) we show the
number of PubMed articles(blue line) indexed over the period 1965 − 2010 and the respective logarithmic
trend (red line). In Figure 1(b) the number of PubMed articles(blue line) is plotted with the number of the
respective MeSH annotated documents (red line).
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thesauri. According to the measurements, 23.3% of the examined terms are ambiguous,

i.e., they have more than one meaning. Another interesting finding is the coverage of the

non-domain specific lexica, i.e., WordNet and Wikipedia, which is 78% combined. In

fact only 22% of the examined have entries only in the domain specific UMLS thesaurus.

In order to stress out the implications of the existence of ambiguous terms in the annota-

tion process, we have furthermore analyzed the number of different documents these 4,078

terms appear literally in GoPubMed, as well as in another popular and general purpose

search engine, namely Yahoo. The aim of this analysis is to show how the number of docu-

ments, in which these terms appear literally, varies depending on their number of entries in

the used lexica/thesauri. In Figure 3 we present four plots showing the results of this

analysis.

Figure 3(a) shows a scatter plot for all of the terms; it plots the number of docu-

ments in which each of the examined term appears literally in the GoPubMed (hori-

zontal axis) and the Yahoo (vertical axis) indexed documents. Comparing the number

of results returned by GoPubMed and Yahoo, the figure shows that their difference in

absolute numbers of the retrieved documents is several orders of magnitude. A typical

term appears literally in almost 5,000 GoPubMed documents, while the respective

number returned by Yahoo is approximately 1,000,000 documents. The remaining

three scatter plots highlight respectively the terms for which there is no entry in the

majority of the used lexica (yellow color in Figure 3(b)), the terms for which there is

exactly one entry in the majority of the used lexica (red color in Figure 3(c)), and the

terms which are ambiguous according to the majority of the used lexica (black color in

Figure 3(d)). It is obvious from the plots, that there is a shift of the placement of the

terms from left to right and, in parallel, from bottom to top as the number of entries

increase, i.e., as we read the plots starting from 3(b) to 3(d). This fact shows that the

ambiguous terms may appear in a very large number of documents (contexts), larger

compared to the rest of the terms, and, thus, any context-based approach for docu-

ment annotation will have to handle a lot of noise for these terms, highlighting the

need for a very robust annotator.

Figure 2 Ambiguity of MeSH terms Pie chart showing the ambiguous MeSH terms, after examining
4,078 terms, and consulting three dictionaries/thesauri.
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Overview of the suggested approach and summary of the results

Taking into consideration the findings of the previous sections, in this work we present a

novel approach based on Maximum Entropy, that may annotate biomedical literature

documents with MeSH terms automatically, and with very high F-Measure. The

approach is supervised and for each of the MeSH terms considered it requires a number

of positive and negative training examples in order to build a respective context-based

model. Thus, the methodology trains a Maximum Entropy based classifier for each of

the MeSH terms, and for the annotation process of an new document, it applies each

model to predict whether the respective MeSH term should annotate the document or

not. The context-based model for each term uses as features terms from the title and/or

the abstract of publications indexed by PubMed, their publication year, and the name of

the journal or forum that that the publication was made. The model for each term

retains a list of ranked positive and a list of ranked negative features which was created

during the learning process from the positive and negative examples.

Since the problem we are addressing is a multi-label text classification problem, each

of the trained models can be applied sequentially, as well as in parallel, as the decision

of each of the classifiers does not influence the decision of any of the rest, e.g., a new

document may be annotated with any number of MeSH terms, without any of the

annotations affecting by definition the rest. The results reported from our experimental

evaluation show that the suggested method, the details of which are presented in

Figure 3 Relationship between literal appearance and ambiguity of MeSH terms Scatter plots
showing the relationship of the number of documents where the examined MeSH terms appear literally in
GoPubMed (horizontal axis), and in Yahoo (vertical axis). Red lines show medians.
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Section Approach, may achieve an average F-Measure of 92.4% for the full range of the

explored terms (4,078 MeSH terms). In addition, the results show that the algorithm’s

performance is resilient to terms’ ambiguity, achieving an average F-measure of 92.42%

in the explored MeSH terms which were found to be ambiguous according to the

Unified Medical Language System (UMLS) thesaurus.

Finally, we have compared the suggested method with three other approaches,

namely: (1) a simple baseline approach which uses exact matching of the MeSH terms

in the title and/or the abstract of the examined test documents, (2) a Naive Bayes clas-

sification approach, and, (3) a decision tree classification approach. In all cases, the

reported results from the compared methods show that our approach produces higher

F-Measure, both in the set of monosemous, as well as in the set of the polysemous

examined MeSH terms’ set.

Related work

Given the formulation of our problem, which if seen from the data mining or machine

learning perspective it is a multi-label text classification problem, the options are

many. In order to decide for an appropriate supervised learning algorithm, however, to

perform the task of classification (annotation of documents with MeSH concepts) one

has to consider the challenges that are raised and which were analyzed in the previous

sections. More precisely an assessment must be made on several criteria such as

whether the learner always finds a unique solution, transparency of the produced

model, efficiency in cases where the model is built out of complex data (e.g., large

number of features), ability of the produced models to handle noise, as well as ability

to avoid overfitting, ability of the produced models to handle missing or incomplete

data, training and testing performance time, and, finally, whether the method requires

the tuning of additional parameters.

In the work of Mitchell [4] analysis of several alternatives can be found that may

provide satisfying answers to all or at least many of the above criteria. Some examples

of such alternatives may be Maximum Entropy, Hidden Markov Models, Neural

Networks, Bayesian Networks, Naive Bayes, Decision Trees and Support Vector

Machines. Most of the aforementioned approaches may provide in fact a robust unique

classification model which is fast in performance (theoretical complexity and execution

times). Each of these classifiers, however, may have several advantages and disadvan-

tages in specific applications, and, thus, one has to also consider the fact that in our

case we are addressing the specific domain of biomedical documents, and that the task

is one of text classification, related with text features.

Considering the above, and given the fact that the Maximum Entropy approach has

been applied successfully in the past to several natural language and computational lin-

guistic tasks, such as word sense disambiguation (e.g., the method introduced by Doms

[1]), part of speech tagging (e.g., the method by Ratnaparkhi [5]), prepositional phrase

attachment (e.g., the method by Ratnaparkhi et al. [6]), named entity recognition (e.g., the

method by Borthwick [7]), and many more tasks, in this work we decided to adopt the

Maximum Entropy approach as our supervised learning algorithm for the context models

of the MeSH terms. We compare, however, the suggested approach in the experimental

evaluation with three other methods for the same task, two of which exist in the afore-

mentioned list of popular learners, namely Naive Bayes and Decision Trees (C4.5).

Tsatsaronis et al. Journal of Biomedical Semantics 2012, 3(Suppl 1):S2
http://www.jbiomedsem.com/supplements/3/S1/S2

Page 6 of 17



An additional argument for selecting a Maximum Entropy-based approach for our task

is the fact that similar approaches have been applied to text related tasks in the biomedical

domain. More precisely, in [8] Pakhomov et al. apply successfully a Maximum Entropy-

based approach to extract patient medication status from text, and classify fragments of

unrestricted text that exist in biomedical papers to respective patient medication status

categories. However the task that they address is different than the one of annotating bio-

medical documents with MeSH terms, from the point of view that it pertains mostly to

the ability of a system to extract successfully at a first stage the different mentioned medi-

cation status from text, and then attempt to classify the respective fragment accordingly.

It, thus, pertains more to information extraction techniques [9], rather than to text classifi-

cation techniques. In another work, Raychaudhuri et al. [10] apply a Maximum Entropy-

based approach to annotate biomedical documents with gene functions using terms from

GO. They report that compared to the Naive Bayes approach that they also test, as well as

a Nearest Neighbor approach, the Maximum Entropy-based approach performs better.

Our study is complementary to [10] from two perspectives: (i) we evaluate thoroughly the

use of other features as well, e.g., title of journal publication and name of the journal,

instead of considering solely the terms in the documents’ abstracts, and (ii) we perform

our analysis using MeSH terms, which were created exclusively for the purpose of index-

ing biomedical documents for text retrieval, compared to the GO, which was created for

conceptualizing genes and their functions. Prom this later perspective, the task we address

is very different, as these two ontologies, i.e., MeSH and GO address very different needs,

are constructed for totally different purposes, and, thus, their terms carry totally different

roles and properties; e.g., as we saw in Figure 2, exactly 23.3% of the examined terms were

found to be ambiguous. It is, thus, for the first time to the best of our knowledge that a

Maximum Entropy-based approach is designed and implemented to annotate automati-

cally biomedical documents with MeSH terms.

The most closely related work to this study is probably the work by Trieschnigg

et al. [11], who conduct an experimentally study on six different automated MeSH clas-

sification systems (MetaMap, EAGL, a language-based model approach, a vector space

model approach, a nearest neighbor approach and MTI).

However, the methodology they follow to create the models for their experimental

evaluation is totally different than the one which should be expected for the case of

the evaluation of a multi-label text classification system. The idea they use stems from

the field of information retrieval. For each candidate MeSH term, they build a huge

document, let that be Di for the MeSH term Mi that contains all titles and abstracts of

papers which have been manually annotated with that term. When a new document

arrives that needs to be annotated with the underlying MeSH terms, they use a retrie-

val model to rank each of the Di documents according to their similarity of the incom-

ing document. Thus, they use the incoming document as a query to retrieve the most

related of the Di documents. This process implies that there is a cut-off value in the

list of the retrieved documents Di, which, as they show in their experimental evalua-

tion, is usually sensitive to the number of the training documents used. This methodol-

ogy is, thus, totally different from the suggested methodology in our work, where we

address the problem as one of a multi-label text classification task, and create a trained

model for each of the underlying MeSH terms by using a selection of negative and

positive examples, rather than a problem of text retrieval.
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Results
In this section we provide the details of our Maximum Entropy-based approach for

document annotation with MeSH terms. In addition we present the results of our

experimental evaluation giving also an overview of the experimental set up. Several of

the methodological details, e.g., with respect to how the positive and the negative

examples were chosen and which implementations of the compared algorithms were

used, are given in Section Methods.

Approach

The approach that we follow for automated document annotation of biomedical litera-

ture documents with MeSH concepts creates a context model for each and every con-

cept of the used ontology. Each model is created following a Maximum Entropy-based

approach, and aims at characterizing the respective terms with using very well indicative

features. The Maximum Entropy (MaxEnt) method is insensitive to noisy data and cap-

able to process incomplete data such as sparse data or data with missing attributes [12].

However, because of sparseness, MaxEnt models can suffer from overfitting [13]. Over-

fitting can be reduced and the performance can be improved with the integration of the

Gaussian prior into MaxEnt [14]. In addition, the MaxEnt models can be trained on

massive data sets [15], and their implementation is publicly available through open

source projects, such as OpenNLP (http://opennlp.sourceforge.net/index.html).
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Maximum Entropy (MaxEnt) is a machine learning approach that is used in statisti-

cal modelling. The principle of MaxEnt is the classification of the testing data into a
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finite number of classes An. We assume that each of the classes Ai is assigned with the

probability of occupancy p(Ai), where i is the index running over all the possible

classes. Also, we assume that the sum of the probabilities of all classes equals to 1, i.e.,

p Ai

i

n

( ) =∑ 1 . In the case one of the probabilities equals to 1, it follows that all the

others are equal to 0. This is the case where it is known exactly in which class the

data is located and, thus, there is no uncertainty. The uncertainty (also known as

entropy) is expressed by information that we do not have about the class occupied by

the data. Eventually, from a given collection of facts, the probability distribution that

leads to the highest value of uncertainty, i.e., maximum entropy, is selected. For the

case of text classification, this can be done for example by the application of the

improved iterative scaling algorithm, as described in [14].

In Algorithm 1 we show in detail how we apply MaxEnt for the annotation of docu-

ments with MeSH concepts. The algorithm is separated into two parts: training and

testing. For each MeSH term we measure the values of pre-selected features by exam-

ining PubMed documents. The features in our case are of four types: (1) lexical tokens

from the titles of PubMed documents, (2) lexical tokens from the abstracts of PubMed

documents, (3) name of the journal in which the respective documents were published,

and (4) year of the published documents. The algorithm constructs a context model

for each of the terms, trained on a pre-selected set of positive and negative examples.

In Section Methods we explain in detail how we compute the features, which are the

options for selecting the positive and negative examples, and which are the differences

in performance between them. For the training part, the weights of the features are

maximized using iteratively reweighted least squares (IRLS). The classes on which the

classifier is trained are always two for each constructed model, i.e., for each term: posi-

tive, denoted with 1, and negative, denoted with 0. Once the feature weights for each

class are maximized and known for each term mj Î M (bj1 and bj0 respectively), the

testing procedure can be applied, which decides for each term mj Î M separately

whether it should annotate the instance ti Î Ts (positive class), or not (negative class).

For this reason, a classification threshold using a parameter δ is used. In Section Meth-

ods we also show how the algorithm behaves for different δ values.

Experimental evaluation and discussion

For our experimental setup we have used 4,078 MeSH terms, which are the terms

under the MeSH roots: diseases, anatomy, and psychology (the list of the MeSH terms

used, along with all of the reported numbers are provided in additional file 1). The

selection of the terms under those roots is not random, as psychology is considered to

have difficult terms for annotation, because many terms are general, diseases is consid-

ered to have easy terms for annotating documents, as most of the terms are very speci-

fic, and anatomy is a category of unknown difficulty. So the selection spans across all

levels of expected annotation difficulty.

All of the experiments shown next were conducted using 10-fold cross validation,

and in all cases we measure average precision, recall and F-Measure based on the clas-

sification results. Table 1 shows the results for our method (MaxEnt) as well as of

three other methods: (1) a simple baseline technique for annotation, which is the use
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of exact matching; Exact Matching searches for the exact or stemmed appearance of

each of the terms in the abstract or the title of the documents and in case it is found,

the document is annotated with that term, (2) the Naive Bayes classifier, and (3) the

Decision Trees classifier (C4.5).

In all cases, only the title and the abstract of each document were used for the lexi-

cal features. MaxEnt, Naive Bayes and Decision Trees always used the same four fea-

ture types described previously. Also, all methods were trained (besides Exact

Matching which does not need training) and tested always on the same documents.

The δ parameter for MaxEnt was set to the value that was found optimal in the valida-

tion set (10% of the training was always kept as validation set), i.e., in our case equal to

0.1. The table shows that our MaxEnt approach gives an average F-Measure of 92.4%

for all the terms of our experiment, which is almost four times larger than the F-Mea-

sure of the Exact Matching approach (23.92% respectively). The other two compared

approaches report lower F-Measures from MaxEnt, with the Decision Trees achieving

86.06% and the Naive Bayes just a little higher, at 88.79%. The most interesting obser-

vations arise from the separate study of the ambiguous terms, i.e., in this case the

terms with more than one entry in UMLS, which are included, however, in the results

of all terms shown in Table 1. Naturally, the Exact Matching approach drops its preci-

sion in those terms, compared to its performance in the monosemous terms, by almost

7 percentage points (p.p.), and increases its recall by almost 20 p.p.; MaxEnt manages

to retain its performance in those terms, compared to its performance in the monose-

mous. Naive Bayes and Decision Trees also retain their performance almost at the

same levels, compared to the monosemous terms, but their F-Measure remains signifi-

cantly lower than the F-Measure of MaxEnt. Regarding the performance for the indivi-

dual MeSH branches, the MaxEnt F-Measure was 93.52% for anatomy, 92.21% for

diseases and 91.35% for psychology, which practically verifies our initial assumption

about the psychology branch, which proved just a bit more difficult to annotate with.

In the following we will discuss the performance of MaxEnt with regards to how the

number of the training examples affects the F-Measure, how are the F-Measure scores

distributed over the ambiguous terms, and how the four features contribute to the

overall performance. In Figure 4 we show two plots; Figure 4(a) shows the respective

F-Measure of MaxEnt for increasing number of training documents. As shown, Max-

Ent can perform really well, even when only few hundreds of training documents per

term are used. The figure shows the number of positive training documents, and a

respective number of negative training documents is selected (section Methods explains

how both positive and negative examples are selected). Figure 4(b) shows the

Table 1 Annotation results for the four methods

Method All Terms Monosemous Terms Ambiguous Terms

P R F P R F P R F

Exact Matching 52.3 22.1 23.92 53.73 18.87 21.61 45.48 37.01 34.82

Naive Bayes 82.06 97.45 88.79 81.95 97.48 88.72 82.57 97.29 89.09

Decision Trees 95.55 79.42 86.06 95.54 79.72 86.24 95.57 78.01 85.2

MaxEnt 99.41 86.77 92.4 99.43 86.75 92.39 99.32 86.87 92.42

Results of annotation for the four methods: Exact Matching, Naive Bayes, Decision Trees and MaxEnt.

Results on ambiguous and monosemous terms are also shown separately.

Tsatsaronis et al. Journal of Biomedical Semantics 2012, 3(Suppl 1):S2
http://www.jbiomedsem.com/supplements/3/S1/S2

Page 10 of 17



distribution of the F-Measure values in the ambiguous terms. In the majority of the

cases, the F-Measure is really high, more than 90%.

In Figure 5 we show an analysis of the contribution of the four different features

used to the overall MaxEnt performance, again as a function of the number of training

documents used. Both figures show F-Measures obtained when using each feature type

individually. Figure 5(a) shows the individual contribution of each feature type sepa-

rately (abstract, title, year and journal). As shown, title and year are the most impor-

tant features, while journal is very important when a large number of training

documents is used. The feature abstract does not seem to contribute to the overall

performance more as the number of training documents is increased, probably due to

the fact that the documents’ abstracts contain much context which in the majority of

the cases can also contain noise for the purposes of annotating it with the 4,078 terms

used. Figure 5(b) presents the F-Measures for MaxEnt when several combinations of

features are explored. The results show again that year is very important (blue and

black lines), since, if it is omitted (green and red lines), the performance drops

Figure 4 The effect of the number of training examples and ambiguity in the F-Measure values The
changes in F-Measure when number of training examples increases, and the distribution of the
performance in F-Scores of MaxEnt in the ambiguous terms.

Figure 5 The contribution of each feature to the annotation performance Analysis of the contribution
of the four features to the overall performance of MaxEnt.
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significantly. It is also shown that when all four features used, MaxEnt achieves its best

F-Measure, with little difference in its performance when the journal feature is

omitted. In the following we give some interpretations and two examples of the reason

why the feature year turns out to be an important feature for annotating documents

with MeSH terms. With regards to this feature’s importance, first, it might be the case

that a particular MeSH term was widely discussed after/before some specific year in

time, i.e., the term has a trend in publications during particular years. Therefore, the

respective MaxEnt model might learn that a certain term is very important during a

particular period of time. As a result, the model captures the connections between the

term and years of publications. A second explanation would have been that the train-

ing examples used for the creation of the MaxEnt models had overpopulated a specific

time frame. This would mean that the data set used for each term is biased for the

respective time period. We ruled out this second explanation as we went over the

training examples for each of the 4,078 terms and did not find in any of the cases a

significant overpopulation of instances over a specific time frame, i.e., both the used

positive and the negative examples cover almost all of the respective PubMed docu-

ments that were annotated with that term, and, thus, always spanned across large and

many different time frames.

Thus, the first explanation is more probable in our case. As a proof of concept for

this explanation of the importance of the feature year in Figure 6 we plot the trend

lines of publications that are annotated with the MeSH terms “Tricuspid Atresia”

(Figure 6(a)) and “omega- Agatoxin IVA” (Figure 6(b)) respectively. The smoothed

trend line (dark gray line) shows the relative growth of publications in comparison to

the growth of the whole PubMed. As it is indicated for the term “Tricuspid Atresia”

most of the publications were conducted before 1999. The term “omega-Agatoxin IVA”

had attracted much interest before year 2004, but after 2004 and until the end of 2010

respective number of publications decreases. This can definitely explain the fact that

the feature “year after 2004” can be important indicator of a negative example in this

case. Similarly, the feature “year before 1999” may appear in the features’ list of the

positive examples. Thus, the proposed explanation about the importance of the year

feature is highly possible due to possible research trends appearing around some of the

MeSH terms during specific time periods.

Overall, the analysis of the experimental results shows that the suggested MaxEnt

can annotate documents successfully with MesH terms. The results also show that

MaxEnt produces robust models that are not affected in precision, recall and F-Mea-

sure by the ambiguity of the terms, and that it performs better than three other anno-

tation methods used, two of which are also popular learners (Naive Bayes and Decision

Trees).

Conclusions
In this work we introduced a novel approach for annotating documents of the biome-

dical literature with concepts from the MeSH hierarchy. The approach is based on the

use of Maximum Entropy (MaxEnt) classifiers to perform the annotation. For each of

the terms, a MaxEnt model is trained and it can be applied to any document in order

to decide whether it should be annotated with the respective term or not. We per-

formed a thorough experimental evaluation on the application of the proposed MaxEnt
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approach on a selected set of 4,078 MeSH terms that were used to annotate biomedical

literature documents indexed by PubMed. We showed that the used feature types (title,

abstract, year, and journal) are sufficient for producing high accuracy annotations. The

results showed that the proposed approach was able to annotate automatically PubMed

documents with an average precision of 99, 41%, average recall of 86.77%, and average

F-Measure of 92.4%. As a future work, we plan to investigate role of the MeSH hierar-

chy topology in the annotation results and also experiment on efficient approaches

that can combine the annotations of several different types of classifiers.

Methods
Algorithm 1, described in the Approach section, raises several questions regarding the

details of its implementation and application for the purposes of this work. In this sec-

tion we explain these details. More precisely, the following questions are answered: (1)

how are the feature vectors constructed, (2) how are the positive and the negative

examples selected, and, (3) what is the optimal threshold δ.

Feature vectors

For each MeSH term a feature vector may be constructed for each of its associated

documents, in order to enable the MaxEnt classifier to learn the b parameters (feature

weights). The associated documents of interest for the learning step are of two types:

Figure 6 Examples of MeSH terms’ trends in time Trend lines of publications over time for the MeSH
terms “Tricuspid Atresia” and “omega- Agatoxin IVA”.
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positive and negative, with the former being documents that should be annotated with

the examined MeSH term, and the later being documents that should not have the

examined term as an annotation. For both types of examples a feature vector can be

constructed for each document using the procedure described below, the difference

between the feature vectors of the training step and the testing step being that the

training feature vectors contain an additional feature, which is the class variable (posi-

tive or negative), and which is the test cases it is the one that should be predicted.

The feature vectors for each MeSH term are of four types: title, abstract, journal, and

year. Regarding the first two types of the features, they are created with the use of

tokenization and stemming procedures. During tokenization, the title and abstract of

the article are split into tokens, e.g., words. Next, a stemming procedure is applied,

which in our case is Porter’s algorithm, which transforms tokens into their morphologi-

cal root. Next, stop words, i.e., words with low information value like personal pro-

nouns and frequently used verbs are removed from the feature list, and, finally, the

remaining tokens are added to the feature list, concatenated with a label, so that we

are able to distinguish the features that came from the title, and the features that came

from the abstract. The journal feature is constructed by the name of the journal, as a

string, and a concatenation with a respective label, so that we can distinguish it from

the other feature types. For the creation of the year feature, which refers to the publi-

cation year of the respective document, the words “after” or “before” are concatenated

with the years starting from 1950 until 2010. Whether “ after” or “before” is concate-

nated, depends on the publication year of the article. For example, considering an arti-

cle which was published in 1990, the procedure adds “after” to the years starting from

1950 till 1990 and “before” to the years starting from 1991 till 2010. This results to the

inclusion of exactly 59 year features inside each feature vector of each term.

Selection of negative training examples

The algorithm requires an initial set of both positive and negative training examples to

construct a MaxEnt model for each term. Given a MeSH term, the selection of the

positive examples is easy, as the manually annotated PubMed documents with the spe-

cific MeSH term can be used (we use all of them, unless they exceed 10, 000, in which

case we keep randomly a maximum of 10,000 documents). The challenge is the selec-

tion of the negative examples for the training set for each MeSH term. For the selec-

tion of the negative examples we examined the following three methodologies, which

always select documents randomly, equal in number to the positive examples: (a) con-

sider selecting negative examples by randomly selecting documents from all of the

available PubMed documents, (b) consider only PubMed documents that contain lit-

erally the MeSH term for which the training data set is built, or (c) the subset of (b),

for which the abstract content is semantically distant from the term. In all cases the

documents that are used as positive examples are excluded from the examined set.

For the option (b), the documents were extracted from PubMed using the query ”

term” NOT”term” [mh:noexp]. Such queries retrieve documents that contain the term

literally but removes documents with this MeSH term. Option (c) is similar to option

(b), but requires the measurement of the semantic distance between MeSH terms and

PubMed abstracts. For this purpose we defined our own measure, based on work done

in [16], though many more measures exist in the bibliography regarding term similarity
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or distance in the biomedical domain that can be used [17]. A MeSH term is consid-

ered to be semantically distant from the PubMed abstract if the distance in the MeSH

tree between the MeSH terms of this abstract and the current term is above a specified

depth threshold. In our case we set the depth threshold to 6. Thus, we define the dis-

tance between two MeSH terms t1 and t2 as follows:

D t t L t L t CP( , ) ( ) ( )1 2 1 2 2= + − ∗ (1)

where L(ti),L(t2) are the minimal depth-levels of the terms t1,t2 respectively in the

MeSH tree, and CP is the number of their common parents. The semantic distance

between a MeSH term and an abstract is then defined as the maximum distance found

between the term and any MeSH term of the abstract.

Among the three options mentioned ((a), (b), and (c)), experiments conducted

showed that there are really small differences in the reported performance, with option

(c) producing by a really small margin more robust models. Thus, in the experimental

evaluation presented in Section Results, all the experiments were conducted with the

use of option (c) as a means of selecting the negative examples.

Classification threshold δ

As shown in Algorithm 1, the testing step of the algorithm requires the definition of a

parameter δ, with which the algorithm can then decide on the positive or the negative

class for each new instance, based on the value of the probability produced by the

model, and using the value t = 0.5 + δ as a threshold. In order to discover the opti-

mum δ, we have executed experiments with ranging values of δ between 0.0 and 0.4.

The aim of this experiment was to determine the appropriate accuracy threshold that

achieves the best prediction accuracy of the trained models. We altered the parameter

δ in the validation set from 0.0 to 0.4 and in the vast majority of the cases the results

in the validation set were better with δ = 0.1. Thus, the reported results in Table 1 use

this value for the δ parameter.

Availability of data and implementations of methods

The MeSH terms used for our experiments have been made publicly available (please

consult the Additional Files section on how to obtain them), along with the reported

performance of all of the four compared methods. We used a custom implementation of

the Exact Matching and the MaxEnt method, and for the implementation of the Naive

Bayes and the Decision Trees (C4.5) methods we used the publicly available out-of-the-

box Mallet platform (http://mallet.cs.umass.edu/index.php) implementations [18].

Additional material

Additional file 1: MeSH terms and F-Measures The reader may wish to consult the file named
“MeSHTermsAndFMeasures.xls” which contains the MeSH ids of the 4,078 terms used for the experimental
evaluation, as well as the analytical average precision, recall and F-Measure per term, and four all four methods
(Exact Matching, Naive Bayes, Decision Trees and MaxEnt).

List of abbreviations
GO: Gene Ontology; MaxEnt: Maximum Entropy; MeSH: Medical Subject Headings; UMLS: Unified Medical Language
System.
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