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Abstract

Motivation: Ontologies such as the Gene Ontology (GO) and their use in
annotations make cross species comparisons of genes possible, along with a wide
range of other analytical activities. The bio-ontologies community, in particular the
Open Biomedical Ontologies (OBO) community, have provided many other
ontologies and an increasingly large volume of annotations of gene products that
can be exploited in query and analysis. As many annotations with different
ontologies centre upon gene products, there is a possibility to explore gene
products through multiple ontological perspectives at the same time. Questions
could be asked that link a gene product’s function, process, cellular location,
phenotype and disease. Current tools, such as AmiGO, allow exploration of genes
based on their GO annotations, but not through multiple ontological perspectives. In
addition, the semantics of these ontology’s representations should be able to,
through automated reasoning, afford richer query opportunities of the gene product
annotations than is currently possible.

Results: To do this multi-perspective, richer querying of gene product annotations,
we have created the Logical Gene Ontology, or GOAL ontology, in OWL that
combines the Gene Ontology, Human Disease Ontology and the Mammalian
Phenotype Ontology, together with classes that represent the annotations with these
ontologies for mouse gene products. Each mouse gene product is represented as a
class, with the appropriate relationships to the GO aspects, phenotype and disease
with which it has been annotated. We then use defined classes to query these
protein classes through automated reasoning, and to build a complex hierarchy of
gene products. We have presented this through a Web interface that allows arbitrary
queries to be constructed and the results displayed.

Conclusion: This standard use of OWL affords a rich interaction with Gene Ontology,
Human Disease Ontology and Mammalian Phenotype Ontology annotations for the
mouse, to give a fine partitioning of the gene products in the GOAL ontology. OWL
in combination with automated reasoning can be effectively used to query across
ontologies to ask biologically rich questions. We have demonstrated that automated
reasoning can be used to deliver practical on-line querying support for the ontology
annotations available for the mouse.

Availability: The GOAL Web page is to be found at http://owl.cs.manchester.ac.uk/
goal.
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Background
In this paper, we explore the use of the Web Ontology Language (OWL) [1] as a prac-

tical means of delivering sophisticated querying of mouse gene product annotations

such as the Gene Ontology Annotations (GOA) [2], the Mammalian Phenotype Ontol-

ogy (MPO) [3] and the Human Disease Ontology (HDO) [4]. To achieve this goal, we

present the Logical Gene Ontology Annotations (GOAL) tool as a practical way to

query across ontologies and explore mouse gene products.

The creation of the Gene Ontology (GO) [5,6] has had a major impact on the

description and communication of the major functionalities of gene products for many

species. At the time of writing, GO has more than 35 000 terms for annotating gene

products; it is used in more than 40 species-specific model organism databases and in

cross-species databases such as UniProt and InterPro [2]. It is widely used for querying

such databases, making cross-species comparisons or in data analyses, such as over-

expression analysis in microarray data [7,8].

Similarly, the MPO and HDO have been used, with a lesser coverage, to indicate the

associations of gene products with phenotype and disease [4,9]. The MPO is used in

the Mouse Genome Informatics (MGI) database [10] to characterise the phenotypic

outcome of mutagenesis experiments in mouse, and serves as a vocabulary that is

being applied in the International Mouse Phenotyping Consortium [11] to semantically

annotate phenotypes of knockout mice. Both the MPO and the HDO afford a rich

potential for querying and analysing a gene products’ biology.

The GO and other bio-ontologies are mainly used as a controlled vocabulary to

ensure genes are consistently annotated using standard terminology across many data

resources; this alone offers many benefits for data integration and analysis. Bio-ontolo-

gies are, however, much more than just vocabularies; they also provide additional

information about how the entities they describe are related to each other. In well-

formed ontologies, these relationships have a well-defined semantics that bring added

value to the ontologies [12]. For example, the hierarchical relationships allow for all

kinds of a particular entity to be retrieved, as well as those with an annotation to the

entity itself. These and other relationships provide support for navigation, as well as

making explicit the relationship between the entities being described. It is these rela-

tionships and their associated semantics that enable communication of knowledge and

the analysis of the data arising from many experiments.

For the GO, software tools such as the AmiGO browser [13], DynGO [14] or

QuickGO [15]) provide interfaces to exploit the hierarchical structure of the GO and

to support query expansion. For example, when searching AmiGO for receptor activity

genes, the results returned also include genes involved in GPCR activity, because

GPCR activity is a subclass of receptor activity. The ontologies’ hierarchical structure

is also useful for data mining tasks [16]. Enrichment analysis over the GO [8] is a com-

mon technique used in the analysis of high-throughput gene expression data; sets of

interesting genes can be grouped or clustered based on common GO annotations (see

[17] for more GO tools).

While GO is relatively rich with query-based tools, other ontologies and their anno-

tations are less well endowed. Only a few query tools are able to take the information

in several ontologies into account when retrieving annotated data [18-20]. In particular,

in the context of complex diseases and syndromes, it can be important to retrieve data
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based on explicit and implicit relations that hold between classes in several biomedical

ontologies. For example, diseases may be related to gene products annotated with a

particular molecular function and biological process, so that they produce a distinct

phenotype when defective or deactivated. Relations between different kinds of entities

(functions, processes, phenotypes, diseases) can be exploited both to perform expres-

sive queries and to add background knowledge in an ontologies’ class definitions. For

example, diseases can be characterized based on their phenotype, and phenotypes in

turn can be characterized based on molecular functions and biological processes in an

organism. These relations can be exploited to suggest causal genes for diseases, identify

genes participating in the same pathways and group orthologous genes together

[21,22].

Bioinformatics is, of course, replete with systems for querying data [23,24]. Cross-

resource querying has long been a goal, and to achieve this goal, integration of data

and associated meta-data is required. Ontologies are proposed as a means for such

integration—a common schema and vocabulary across resources will ease integration,

querying and subsequent data analysis [25]. TAMBIS [26] was an early attempt to use

ontologies to integrate and query across multiple resources. Latterly, the adoption of

ontologies across many resources has eased cross-resource query answering [5,6]. The

rise of Semantic Web [27] technologies, such as the Resource description Framework

(RDF) and OWL, has eased some features of integration with resources such as

Bio2RDF [28] bringing together many resources in a common format and semantics.

Other RDF stores have used ontologies to a greater or lesser extent [25,29]. Yet, little

work has been done to bring ontologies together with the data they annotate in order

to use automated reasoning to query those data using the knowledge expressed in bio-

medical ontologies. Achieving this goal demands the use of complex query languages

as well as highly efficient and optimised automated reasoners.

Whilst highly useful, many of the GO-orientated tools fail to exploit the full potential

of the GO’s representation for reasoning and querying over gene annotations. In parti-

cular, most of the GO tools that we investigated do not facilitate rich querying that

takes into account the semantics of the GO. For example, it was difficult to ask for all

proteins that are located in a membrane, or part of a membrane, that are receptor pro-

teins involved in a metabolic process. Extending the queries to include associations of

gene product functional attributes, location with phenotype and disease phenomena,

such as linking together proteolysis, insulin secretion, plasma membrane, increased

glucose concentration and diabetes, is not yet possible. To answer such a query cor-

rectly, some form of reasoning over the ontologies is required. The ability to perform

such rich queries would enable more precise and flexible exploration of the annota-

tions with GO, MPO and HDO, as well as other ontologies used to annotate gene

products.

OWL [1] and the OBO Flat File Format [30] have a strict semantics that makes it

possible to use automated reasoners to help build and use knowledge captured in an

ontology. In order to explore the potential of reasoning over the various gene product

annotations, we need to describe the relationships between the genes and their annota-

tion within a framework that can also exploit the semantics encoded into the ontolo-

gies. Our approach uses OWL, for which a mapping from the OBO Flat File Format

has been created [30], to represent the GO, MPO and HDO based annotations and the
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axioms in the ontologies so that query systems can exploit both the ontology and its

annotations. In doing this, we will also investigate the ability of OWL to scale to such

a task and how to deliver the querying facilities on offer to users in a way that is rea-

sonable to use without having to write complex queries.

As an ontology of biological processes, molecular functions and cellular components,

GO itself does not explicitly contain classes for gene products; GO annotations are

attached to gene products in databases or flat-files (See http://www.geneontology.org/

GO.annotation.shtml). We can use these annotations to create explicit OWL descrip-

tions of the relationships between gene products and their annotations. For example,

the mouse gene Taar4 [MGI:2685072] has several GO annotations including ‘integral

to membrane’ [GO:0016021], ‘G-protein coupled receptor activity’ [GO:0004930] and

‘signal transduction’ [GO:0007165]. We can create an OWL class that captures the

annotations using the following Manchester OWL syntax [31] (note that an axiom

annotation is used to assert the evidence code for each annotation):

Class: MGI_2685072

oboInOwl: hasDefinition ”trace amine–associated receptor 4”,

rdfs: label ”Taar4”

SubClassOf:

Annotations: oboInOwl: evidenceCode ”IEA”

ro: located_in some GO: GO_0016021, (integral to membrane)

Annotations: oboInOwl: evidenceCode ”IEA”

GOAL: is_capable_of_function some GO: GO_0004930, (G–protein coupled

receptor activity)

Annotations: oboInOwl: evidenceCode ”IEA”

GOAL: is_capable_of_process some GO: GO_0007165 (signal transduction)

Using the compositional approach to ontology building [32], we can create an ontol-

ogy from these annotations that explicitly relates gene products to GO, HDO and

MPO and then add defined classes to impose a hierarchy. To construct the GOAL

ontology we take the existing GO, HDO and MPO classes and create a set of defined

classes that enable us to query for gene products. For example, for the GO class

G-protein coupled receptor activity we would create a new class that queries for the

gene product using the following Manchester OWL syntax:

Class: GOAL: GO_0004930

rdfs: label ’G–protein coupled receptor activity gene product’

EquivalentTo:

GOAL: is_capable_of_function some GO: GO_0004930 (G–protein coupled

receptor activity)

This defined class will recognize any class of gene product that has these attributes,

or children of these attributes, and subsume it within the hierarchy of gene products.

In this standard use of OWL subsumption querying and automated reasoning, we can

add more of such defined classes to build an arbitrarily complex polyhierarchy for
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querying and navigation of entities annotated with the GO. Figure 1 shows such an

inferred polyhierarchy centered on annotations for the TAAR4 gene product.

As the use of other ontologies besides GO for annotation of gene products has

spread, we can broaden this approach further. There are, however, several challenges

that arise in creating a tool such as GOAL:

1. How should these annotations be represented ontologically;

2. How do we achieve appropriate performance with automated reasoners;

3. How do we enable a broad spectrum of users to access such a querying mechan-

ism without demanding complex query syntaxes to be used;

4. How should the ontology and its queries be presented to users?

Results
The following ontologies and annotations were downloaded on 4 October 2011 and

processed as described:

• We extracted all mouse genes from the MGI database and applied our filtering,

producing a total of 231 880 gene-annotation pairs.

• On conversion to OWL primitive classes this represents 17848 individual gene

products.

We created the following ‘singleton’ defined classes to act as the ‘building blocks’ for

GOAL queries:

• ‘molecular_function gene product’ for GO molecular function;

Figure 1 OWLViz view of the TAAR4 superclasses. This view shows the inferred superclass annotations
for the TAAR4 gene viewed using the Protégé 4.1 OWLVIZ plugin.
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• ‘biological_process gene product’ for GO biological process;

• ‘cellular_location gene product’ for GO cellular location;

• ‘phenotype gene product’ for MPO classes;

• ‘disease gene product’ for HDO classes.

The numbers of these classes simply reflect the numbers of classes in each of the

supporting ontologies. The total number of defined classes in the GOAL ontology is

37943.

After importing the three branches of GO, the HDO, the MPO, the GOAL ontology

of named gene product classes plus the gene product annotations, the ontology con-

tains 108226 OWL classes.

Classification of the GOAL was performed on a 2.2GHz i7 Mac Book Pro requiring

around 3GB of memory. Table 1 shows the performance times for each reasoner.

Figure 2 shows the classification times in a chart. The ELK reasoner significantly out-

performs the other three reasoners when classifying the GOAL ontology. Given that

the GOAL ontology is within the OWL 2 EL profile and that ELK is specifically opti-

mised for classifying ontologies in this profile, this result is not surprising.

The following queries illustrate the capabilities of the generated ontology that span

the annotations from all five imported ontologies. The first query class, written in

Manchester OWL syntax, returns subclasses of gene product that are annotated with

immune system disease from the HDO. In addition, we know that cytokine genes are

secreted by numerous cells of the immune system, so we extended the description to

include genes that have a phenotype associated with abnormal cytokine secretion from

the MPO. Using the GO annotations, we then reduced the result set further by filter-

ing on genes that have the function of ion binding, participate in an inflammatory

response and are located in intracellular membrane-bounded organelle s.

Class: ImmuneSystemDiseaseGeneProduct

EquivalentTo:

GOAL: GO_0006954 (‘intracellular membrane–bounded organelle gene

product’)

and GOAL: GO_0043167 (‘inflammatory response gene product’)

and GOAL: GO_0043231 (‘ion binding gene product’)

and MouseGOAL–MP: MP_0003009 (‘abnormal cytokine secretion gene

product’)

and MouseGOAL–HD: DOID_2914 (‘immune system disease gene product’)

Using the GOAL browser, we constructed the intersection of the gene product

Table 1 Reasoner classification times table

Reasoner classification times

Reasoner t1 (ms) t2 (ms) t3 (ms) Mean time (ms)

ELK 2806 2611 2729 2715

CB 31292 31261 33988 32180

Pellet 40519 40801 41009 40776

HermiT 61461 62855 62677 62331

Reasoning times (milliseconds) for the three OWL automated reasoners used to classify the GOAL ontology.
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classes and asked for all subclasses that are gene products. The following code

appeared in the DL query box of the GOAL browser:

’intracellular membrane–bounded organelle gene product’

and ’inflammatory response gene product’

and ’ion binding gene product’

and ’abnormal cytokine secretion gene product’

and ’immune system disease gene product’

Running this query returned one gene, Mefυ (MGI:1859396). The Mefv gene (Medi-

terranean fever gene) is known to play a role in the inflammation response and in

fighting infection [33].

Although this is a relatively simple query, some reasoning is required in order for it

to return the correct answer. To understand what reasoning took place to answer

this query, we used the explanation facility offered by Protégé. We asked the reasoner

for an explanation for the Mefv gene’s being a subclass of our ImmuneSystemDisea-

seGeneProduct class. Explanations provide the minimal set of axioms asserted in the

ontology that are required for this subclass entailment to hold [34]. Figure 3 shows

the explanation, in terms of the asserted axioms, for this entailment as it is shown in

Protégé. We see from this explanation that the assertions on Mefv involved classes

that are deep within the GOAL ontology’s hierarchy. The query class has restrictions

on more general terms that the ones used to describe Mefv and it is only by infer-

ence up the hierarchy that the query can be answered. This example shows both how

the reasoner can be used to answer questions about gene products, and how explana-

tion technology can be used to provide details of how a particular query is being

answered.

We can continue to construct such queries and thus begin to explore relationships

between GO annotation, observed phenotypes and diseases. The ability to exploit the

ontological hierarchies enables us to ask generalized queries, such as all metabolic dis-

ease genes and then start filtering down to genes with an abnormal cholesterol level

phenotype, and finally down to genes that are involved in a particular biological

Figure 2 Reasoner classification times chart . Bar chart showing reasoner classification times in
milliseconds.
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process in the cell such as regulation of cholesterol storage. The OWL representation

and reasoning make such querying and exploration trivial and there are currently no

tools available that can facilitate such querying and reasoning over these sets of anno-

tations. The results from the ELK reasoner in particular demonstrate that such interac-

tive querying, supported through automated reasoning, is supportable for ontologies of

this size that are expressed in the OWL 2 EL profile.

There are a host of example queries for users to browse via the GOAL web interface.

The GOAL interface provides a mechanism to explore these annotations and develop

new queries. Its current functionality demonstrates how OWL and reasoning technol-

ogy can be used to deliver novel search capabilities to biomedical applications.

Through GOAL, users can browse the gene product hierarchy generated for each class

from the imported ontologies. Selecting a class shows the full OWL description ren-

dered in Manchester OWL syntax. Any selected class can be added to the DL query

box to create an intersecting query of named classes. Each query returns all subclasses

that are gene products and links through to the gene accession page at the MGI. Users

are also free to type in any arbitrary DL query using the Manchester OWL syntax.

Conclusions
Although the queries demonstrated here are relatively simple, they serve to illustrate

the potential of a pure OWL approach to querying GOA, MPO and HDO annotations.

By combining the five ontologies in one place, we can make queries that connect gene

products with basic functional attributes, their disease and phenotype. It is easy to ima-

gine adding further ontologies such as cell type, gross anatomical location and so on,

to provide even richer queries. We can already see queries that are not possible in

other popular browsing based tools.

By keeping to the OWL 2 EL profile, we can keep the query responsiveness to rea-

sonable limits that enable real-time automated reasoning and access to reasoning

through a web interface. Moving outside this profile makes querying based on

Figure 3 Mefv explanations. Explanation for the Mefv gene product being a subclass of the query class
ImmuneSystemDiseaseGeneProduct described above. The explanation was generated using the
explanation facility in Protégé 4.1.
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automated reasoning significantly slower, to the extent of making it currently unfeasi-

ble to use in real-time applications that rely on user interactions.

The key, on top of these features, is to provide a user interface to this querying facil-

ity. The GOAL user interface, built using GWT, on top of the OWL API means that

we can offer access to the GOAL ontology and its query facilities without resorting to

clumsy syntax. We have provided a straight-forward means of building reasonably

complex queries over a range of ontologies. We have done this by providing what we

have called “singleton” defined classes underneath our gene product classes for each of

the supporting ontologies. We then do subsumption querying by making anonymous

classes of conjunctions of these singleton defined classes. The classifier places these

query classes in the GOAL hierarchy, providing results consisting of the primitive

classes that represent the actual gene products. We see this mechanism as a reasonably

straightforward means of providing sophisticated queries to users.

Using similar patterns, we can also begin to imagine more complex class descriptions

that utilise additional expressivity in OWL, such as the use of complement classes to

query for genes that is_capable_of_function some (not ReceptorActivity) and is_capa-

ble_of_process some SignalTransduction, which would find those genes that have a

function other than receptor activity and are involved in signal transduction. (Note

that the semantics of OWL implies that such genes can have a receptor activity, but

must have some activity that is proven to be disjoint from any receptor activity.) We

can also forsee queries that involve disjunctions—’show all gene products that partici-

pate in either Sensory perception of sound or Sensory perception of smell or both’.

Such expressivity falls outside the OWL 2 EL profile that we have used and the perfor-

mance of automated reasoning would be significantly worse when these constructs are

used: the GOAL ontologies classifies, but response times in the user interface are cur-

rently slow enough to detract from usability (data not shown).

Adding further semantics into the ontology will afford further opportunities; adding

disjointness axioms to GO may help us uncover mis-annotations and we have yet to

fully exploit property characteristics such as transitivity and functionality. We can also

explore ways of flexibly incorporating annotations with differing degrees of confidence

through use of the GO evidence codes and programmatically generating the defined

classes that form the polyhierarchy of genes.

The announcement of the GO cross-products extension to the GO [35,36] will pro-

vide rich formal definitions for some GO classes. These definitions will enable more

expressive OWL queries over the GO annotations and the potential to infer more

annotations on existing GOA genes [37,38]. These types of extension should also

address the issue of coupling functions, processes and locations together in the GO

annotations—something that will improve the computational aspects, including query-

ing, of these annotations. While more precision in the formal representation of the

ontology will generally lead to the possibility for more powerful queries, this precision

and expressiveness must be balanced with the computational performance of the

resulting representation; to do practical work, compromises on representation must be

made when appropriate.

In this work, we have made a straight-forward use of OWL and automated reasoning

to deliver a flexible way to query all aspects of GO annotations. The polyhierarchy

formed also provides similarly rich navigation in a gene product orientated setting.
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Finally, we provide a flexible framework for exploring and manipulating GO and other

valuable annotations developed by the community. By taking care with the OWL pro-

file used and the means of issuing queries, we have shown it is possible to deliver real-

time query systems for ontologies via the direct use of automated reasoners.

Materials and methods
An overview of our method is:

1. Decide upon the GOAL representation;

2. Download GO, HDO and MPO and convert to OWL;

3. Download annotations of mouse gene products from the MGI database [10] and

convert to the GOAL representation;

4. Create defined classes for each concept in the GO, MPO and HDO that links the

notion of gene product to each of these attributes;

5. Create the GOAL ontology by importing all the bits into one master ontology;

6. Apply an automated reasoner to the GOAL ontology;

7. Offer the GOAL ontology for subsumption querying through the construction of

simple subclass queries based on the pre-built defined classes.

The GOAL representation

We take the five ontologies that describe aspects of gene products as they exist; we

make no alterations to their form except to convert them into OWL and to add a ‘con-

venient’ root class to HDO and MPO (these two ontologies do not have a single root

class, so disease gene product was created for the HDO and phenotype gene product

was created for the MPO). We do this using the version of the OBO to OWL conver-

ter made available in the OWL API [39] version 3.2 downloaded from the OWL API

website (http://owlapi.sourceforge.net/).

As there is no explicit representation of gene product in these ontologies, we created

our own ontology to link gene products to the various aspects represented by the five

ontologies. We chose the class Gene product as the top-level of our ontology as we

can potentially describe both RNA and protein gene products.

Based on these considerations, the representation in OWL is fairly straight forward; for

each kind of gene product, we generate an OWL class that has these gene products as

instances, and we use the identifier of the kind of gene product as the class’ identifier and

the gene product’s name as the class’ label. We then assert this class as a subclass of Gene

product.

We use the following properties to create restrictions on Gene product classes with

classes from each of the following ontologies:

Property: is_capable_of_process

Property range: GO:’biological process’

Definition: A relation between a material entity (such as a gene product) and a pro-

cess. This property is asserted as a sub property of the OBO Relation Ontology

capable_of in our GOAL ontology.

Property: is_capable_of_function
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Property range: GO:’molecular function’

Definition: A relation between a material entity (such as a gene product) and a

function. This property is asserted as a sub property of the OBO Relation Ontology

capable_of in our GOAL ontology.

Property: is_located_in

Property range: GO:’cellular component’

Definition: See OBO_REL:located_in http://obofoundry.org/ro/#OBO_REL:

located_in.

Property: is_associated_with_phenotype

Property range: MPO:’phenotype’

Definition: A relationship that associates members of the gene product class to at

least one instance of a phenotype.

Property: is_associated_with_disease

Property range: HDO:’disease’

Definition: A relationship that associates members of the gene product class to at

least one instance of a disease.

Using these properties, we generate the following Gene product class:

Class: ’Gene product’

SubClassOf: is_capable_of_function some GO: ’molecular function’,

is_located_in some GO: ’cellular component’,

is_capable_of_process some GO: ’biological process’,

is_associated_with_phenotype some MPO: ’phenotype’,

is_associated_with_disease some HDO: ’disease’

All restrictions upon the Gene product class are made with existential quantification;

we ‘know’ that these relationships exist, but we do not ‘know’ that these are all the

relationships that exist to these various aspects, so universal quantification cannot be

used legitimately.

Gathering ontologies and gene product annotations

The GO annotations for 25,111 mouse genes were downloaded from the MGI website

(http://informatics.jax.org/) in October 2011. We filtered these genes to exclude the

RIKEN cDNA genes, and also discarded annotations to root GO terms from each of

the biological process, molecular function and cellular component branches.

For MPO annotations, we utilized the MGI_Geno_Disease.rpt file available from the

MGI ftp site (ftp://ftp.informatics.jax.org/pub/reports/index.html). The file includes

identifiers for loss-of-function mutant mouse models together with the identifier of the
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gene that has been targeted. We extracted the gene identifier and associated it with the

observed phenotypes using the is_associated_with_phenotype relation.

From the same file (MGI_Geno_Disease.rpt), we extracted the OMIM annotations of

mouse models of human disease. These annotations were manually created by curators

after review of the scientific literature. The HDO provides mappings to OMIM dis-

eases, i.e., it contains pairs of HDO classes and their equivalent OMIM diseases. We

used these mappings to generate HDO-based annotations of mouse models, and asso-

ciated these with the diseases in HDO using the is_associated_with_disease relation.

Generating the OWL axioms

Instead of generating the axioms by hand, a Java program was written using the OWL

API [39] to specify and instantiate the pattern for generating the class descriptions

described in the introduction. For each class in the GO, MPO and HDO a new defined

class was created that represented a gene product. The pattern we use is:

Class: ’?x gene product’

EquivalentTo: ’gene product’

that ?property some ?x

Where ?x is the class within GO, MPO or HDO, and ?property is substituted with

the appropriate property described above. For example, for the mitochondrion class in

GO we create a new class called mitochondrial gene product as follows:

Class: ’mitochondrion gene product’

EquivalentTo: ’gene product’

that is_located_in some ’mitochondrion’

Our strategy in creating such defined classes for each of the classes in GO, MPO and

HDO was two-fold: It creates hierarchies of gene products over the actual classes of

mouse gene products (as shown in Figure 1); This afforded a reasonably straight-for-

ward mechanism to create more complex queries for the gene products. Our aim was

to query through combining features from GO, MPO and HDO in any arbitrary com-

bination. This will be complex if we ask users to write these subsumption queries

according to the pattern for ’?x gene product’ described above. We can, however, make

such queries easier by allowing simple intersecting classes to be made through the

array of defined classes we generate. For instance, to ask for gene products that have a

receptor activity, are participants in signal transduction and appear in the synaptic

membrane, we will formulate the following query and ask the reasoner for it’s

subclasses:

’signal transduction gene product’

and ’receptor activity gene product’

and ’synaptic membrane gene product’

This query is both a short form for, and logically equivalent to asking for subclasses of:

is_capable_of_process some GO: ’signal transduction’

and is_capable_of_function some GO: ’receptor activity’

and is_located_in some GO: ’syntactic membrane’
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This form of querying makes it easier to develop a user interface for querying:

classes are simply chosen and added to a list of classes over which to generate a

defined class in the same pattern. Creating one defined class, a ‘singleton class’, for

each class in GO, HDO and MPO gives sufficient building blocks for any query,

whereas creating all possible combinations from the supporting ontologies is not pos-

sible and even a limited number will make for a cluttered and difficult user interface.

We can still leave open the possibility of more complex queries using another OWL

expressivity. These queries may utilize constructs such as disjunction. However, the

disadvantages are that such queries require a more complex syntax and therefore a

more complex user interface support, and raise the complexity of automated

reasoning.

It is possible in this query mechanism to make queries that are biologically ‘non-

sense’. The GO annotations, for instance, do not record explicitly the cellular loca-

tions in which different annotations for functions and activities take place. For

example, gene products that participate in microtubule based locomotion do so only

in the microtubule cellular component. Such genes may participate in other pro-

cesses outside of that location, but such information is lost in the GO annotation.

Therefore, it is possible to issue a query that combines function, biological process

and location that recall gene products that do not hold that combination of attri-

butes at the same time. This has long been recognised [6,40], with fixes proposed

such as simple statistical co-occurance [6,40] and adding information from text-

mining to incorporate this information. This is an important issue, but these

approaches are only really patches for the problem. The GO, however, are releasing

extensions to the GO that link between the various GO aspects [35,36,41]. For

example, the occurs_in property is used to relate processes to the cellular compo-

nent location at which they occur. We have used these GO extensions within GOAL

and with increasing coverage of these relations, the accuracy of the enabled queries

will increase.

Classifying the GOAL ontology

All portions of the GOAL ontology have been automatically generated. In order to

browse and query the ontology we needed to classify the ontology. We kept the ontol-

ogy in the OWL 2 EL profile [42], as automated reasoning for the OWL 2 EL profile is

tractable [43,44] and therefore enables fast querying. We explored which classifier was

most rapid by using the following set of automated reasoners:

• Pellet version 2.2.0 [45];

• HermiT version 1.3.5 [46];

• CB r.12 [47];

• ELK 0.2.0 [48].

We classified the whole GOAL ontology 3 times and calculated the mean time in

milliseconds for each classification. We utilised the Java ThreadMXBean library to

compute thread CPU time for each classification. As the reasoners behave differently

with respect to the way they load and pre-process the ontologies, we measured the

time from when the reasoner is instantiated by the OWL API to the point at which

the reasoner returned the answer to a query for all subclasses of OWL:Thing.
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The GOAL user interface

We created a user interface using the Google Web Toolkit (GWT) [49]. The GOAL

interface has the following design principles:

• Allow elements of a simple intersecting query of named classes to be picked via

browsing;

• Allow more complex queries to be issued using Manchester OWL Syntax;

• Show the subclasses that are also gene products for the generated query;

• Each gene product is shown in the results table along with its OWL description

expressed in Manchester OWL syntax.

to query interactively we do not need to classify for each query. The GOAL user

interface is built on top of the OWL API, so we can classify once at deploy time; then

each query is constructed behind the scenes and sent to the chosen reasoner through

the OWL API. The results returned are then tabulated and displayed.
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