
PROCEEDINGS Open Access

OntoCheck: verifying ontology naming conventions
and metadata completeness in Protégé 4
Daniel Schober1*, Ilinca Tudose1, Vojtech Svatek2, Martin Boeker1

From Ontologies in Biomedicine and Life Sciences (OBML 2011)
Berlin, Germany. 6-7 October 2011

* Correspondence: schober@imbi.
uni-freiburg.de
1Institute of Medical Biometry and
Medical Informatics (IMBI),
University Medical Center, 79104
Freiburg, Germany

Abstract

Background: Although policy providers have outlined minimal metadata guidelines
and naming conventions, ontologies of today still display inter- and intra-ontology
heterogeneities in class labelling schemes and metadata completeness. This fact is at
least partially due to missing or inappropriate tools. Software support can ease this
situation and contribute to overall ontology consistency and quality by helping to
enforce such conventions.

Objective: We provide a plugin for the Protégé Ontology editor to allow for easy
checks on compliance towards ontology naming conventions and metadata
completeness, as well as curation in case of found violations.

Implementation: In a requirement analysis, derived from a prior standardization
approach carried out within the OBO Foundry, we investigate the needed
capabilities for software tools to check, curate and maintain class naming
conventions. A Protégé tab plugin was implemented accordingly using the Protégé
4.1 libraries. The plugin was tested on six different ontologies. Based on these test
results, the plugin could be refined, also by the integration of new functionalities.

Results: The new Protégé plugin, OntoCheck, allows for ontology tests to be carried
out on OWL ontologies. In particular the OntoCheck plugin helps to clean up an
ontology with regard to lexical heterogeneity, i.e. enforcing naming conventions and
metadata completeness, meeting most of the requirements outlined for such a tool.
Found test violations can be corrected to foster consistency in entity naming and
meta-annotation within an artefact. Once specified, check constraints like name
patterns can be stored and exchanged for later re-use. Here we describe a first
version of the software, illustrate its capabilities and use within running ontology
development efforts and briefly outline improvements resulting from its application.
Further, we discuss OntoChecks capabilities in the context of related tools and
highlight potential future expansions.

Conclusions: The OntoCheck plugin facilitates labelling error detection and curation,
contributing to lexical quality assurance in OWL ontologies. Ultimately, we hope this
Protégé extension will ease ontology alignments as well as lexical post-processing of
annotated data and hence can increase overall secondary data usage by humans
and computers.

Schober et al. Journal of Biomedical Semantics 2012, 3(Suppl 2):S4
http://www.jbiomedsem.com/content/3/S2/S4 JOURNAL OF

BIOMEDICAL SEMANTICS

© 2012 Schober et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:schober@imbi.uni-freiburg.de
mailto:schober@imbi.uni-freiburg.de
http://creativecommons.org/licenses/by/2.0


Background
With the advent of the semantic web and RDF-based knowledge representation techni-

ques off-the-shelf ontology editors like Protégé 4 [1] gain widespread use. Although its

functionality is sufficient for daily ontology editing tasks, some pre-release clean-up

checks on the ontology, especially in the area of class naming conventions and meta-

data availability, can complement Protégé 4 in a useful way. It was shown that incon-

sistencies in naming conventions can impair readability and navigability of ontology

class hierarchies, and even hinder their alignment and integration [2]. An initial specifi-

cation for typographic, syntactic and semantic naming conventions for life science

ontologies [3] has been introduced by the OBO Foundry [4]. It was shown that clear

naming conventions for editor-preferred class names (e.g. stored in the rdfs:label or

rdf:ID/OWLClassName) provide guidance to ontology creators and help developers

avoid flaws and lexical inaccuracies [2] when editing, but especially when interlinking

ontologies. By increasing the robustness and exportability of ontology class labels,

adherence to explicit class naming conventions can foster communication when ontol-

ogy engineers need to collaborate with external groups to align their ontologies and

facilitate the import and usage of classes from external ontologies or imported ontol-

ogy modules. Naming conventions increase the robustness of context-based text

mining for automatic term recognition and text annotation and they ease the manual

and automated integration of terminological artifacts, i.e. comparison, orthogonality-

checking, alignment and mapping. Robust labeling generally eases the access to ontolo-

gies through meta-tools such as provided by the NCBO BioPortal [5], i.e. by reducing

the diversity with which these tools have to deal, thus reducing the burden on tool and

ontology developers alike. Ultimately, following clear labeling guidelines can facilitate

ontology re-use and reduce redundant development.

Another area that can profit from tool support is metadata enrichment: Although

‘expensive’ to add, metadata stored along a class in self-defined annotation properties

or standardized elements provided by metadata policy providers like Dublin Core [6]

will ease the human understanding of the editorial, administrative and semantic nature

of ontologic entities. Before a new ontology version is released for public use, it should

be checked if all metadata elements that are mandatory within a particular design prin-

ciple documentation, e.g. annotation properties like natural language definitions or

class labels, are present in the ontology and the ontology is hence assumed to be suffi-

ciently described for the human user.

Based on own previous experience, we think the actual status of metadata complete-

ness and labelling consistency can be improved, especially where lack of compliance is

due to missing software capabilities. This need for tool support is also exemplified by

pre-release tests implemented independently within different groups to check on meta-

data availability and labelling consistency, e.g. as seen in the OBI project [7] and in the

Disease Ontology project [8] respectively.

To assist ontology editors in complying with metadata requirements and naming

conventions outlined in their style guides and design principle documentations, we

here introduce a Protégé plugin that checks an OWL ontology loaded into Protégé

against naming conventions and metadata completeness specified by the user. Specifi-

cally, our plugin intends to contribute to lexical harmonization by validating class

names according to specified checks. We here present the OntoCheck plugin, which

Schober et al. Journal of Biomedical Semantics 2012, 3(Suppl 2):S4
http://www.jbiomedsem.com/content/3/S2/S4

Page 2 of 10



intends to ensure naming consistency by testing for defined label patterns and allows

for amendments in the area of metadata analysis.

Implementation
The OntoCheck plugin was implemented as a plugin for the Protégé 4.1 ontology edi-

tor using the Protégé OWL API (version 3.2.2) and Java version 1.6.0_22. An informal

requirement analysis was conducted on the basis of the OBO Foundry naming conven-

tions [3] and on-going editing work in the different ontology engineering projects the

authors were involved in. To test and to quantify OntoChecks capabilities, as well as

gather further requirements, we applied the plugin within different projects and inves-

tigated the following six ontologies: Biotop [9], DCO [10], NTDO [11], GoodRelations

[12], Vehicle Sales Ontology [13], and @neurist ontology [14]. For each, we created,

stored and applied a different set of checks.

Results
The OntoCheck plugin is available for download at our website (http://www.imbi.uni-

freiburg.de/ontology/OntoCheck/).

The list of identified high level software requirements, together with an indication on

fulfillment and implementation by the plugin is presented in Table 1.

OntoCheck functionalities

Testing for cardinalities and metadata completeness

In the Check panel (Figure 1) a user can select any entity provided in an active open

ontology as default, imported or self-defined annotation metadata. Lexical examples

are rdfs:label (default), dc:comment (imported), and definition (self-defined). All enti-

ties can be checked for presence of values, e.g. the user can specify that all classes

should have at least a label or a natural language definition. Classes lacking the speci-

fied metadata are displayed and can be amended accordingly.

Testing for lexical patterns in names with regular expressions

The ability to correlate an entity with standard Java regular expression as listed for

java.util.regex.Pattern [15] can be used to check names for the presence or absence of

specific lexical prefix, infix or postfix patterns. E.g. a regular expression of the form .

*ValueRegion|.*Region can be used to test for explicitness in labels, .i.e. all ‘ValueRe-

gion’ subclass names should contain either the explicit postfix ‘ValueRegion’ or

‘Region’. This function also allows to detect ’metalevel’ postfixes like ‘_class’, ‘_type’,

‘_concept’, or ‘_relation’. Also stop-words like ‘A’ and ‘the’, as well as Boolean opera-

tors (’and’, ‘or’), and lexical indications for negations (’non’, ‘anti ‘or ‘dis’) can be

detected and abolished from names.

Checks for minimum and maximum character and word count can identify poten-

tially unclear names, e.g. being shorter than 4 characters or unreadable names longer

than e.g. 50 characters or 10 words. Checks for punctuation, e.g. if dots are present,

allow for the detection of abbreviations, while all-upper-case-checks can detect acro-

nyms. Checks for cardinality indicators within names could be used in a semantic

analysis guiding expressivity selection, e.g. words indicating cardinality requirements,

such as ‘minimal’, ‘maximal’ might hint for the selected OWL EL profile not to be

sufficient.

Schober et al. Journal of Biomedical Semantics 2012, 3(Suppl 2):S4
http://www.jbiomedsem.com/content/3/S2/S4

Page 3 of 10

http://www.imbi.uni-freiburg.de/ontology/OntoCheck/
http://www.imbi.uni-freiburg.de/ontology/OntoCheck/


Testing for typographic naming conventions

The Check panel allows verifying whether a particular naming convention is fulfilled

for a chosen entity, e.g. if all values for the rdf:ID/OWLClassName in a selected sub-

tree comply to an ‘all-lower-case-underscore-separator’ convention. We here list the

typographic and syntactic checks possible:

Word Separator: An entity can be checked for none, space, hyphen, underscore and

dot separator conventions.

Word Case: An entity can be checked for all lower case, ALL UPPER CASE, Upper

case start, camel Hump and Camel Case conventions.

Digits: An entity can be checked for numbers in labels, e.g. to look for cardinality

and order indicators.

Comparing values between specified entities

The Compare panel (Figure 2) allows comparing the values of annotation properties

and metadata within a class or between different classes. For example for each

Table 1 Requirements for a naming convention and metadata verification tool

Requirement Aspects met and Implementation OntoCheck
Panel

Easy installation, usage and intuitive navigation. Protégé plugin, structured into 3 self-explaining
tabs. Tooltips providing on-the-spot guidance.

All

Generation and display of numeric counts for
selectable ontology metrices.

Making use of the Protégé and Java API,
diverse metrices are available, amending the
already present ‘Ontology Metrics’.

All

Selection of an ‘entry class node’ from where
on - leaf-wards - a check should be done.

Allows to test for a certain postfix e.g.
‘_Disposition’ only within a selected
‘Disposition’ entry node sub-tree. Allows
checking for metadata availability in selectable
subtrees.

All

Display of classes failing a specified test and
export as list.

Found classes can be sorted according to
different criteria and exported for later curation.

All

Display of quantitative results on detected
issues in terms of absolute and percentage
counts in a given subtree.

A statistical data pane verbalizes the numerical
results in a copyable natural language
sentence.

All

Storage and reload capabilities for created
checks allowing for later re-use and
propagation.

An xml file is generated storing all checks in a
reproducible way.

All

Detection for ‘presence’ and ‘required
cardinality’ of labels and metadata.

Checks are available on OWL elements
capturing lexical information, i.e. rdf:ID, rdfs:
label, own annotation properties and standard
annotation properties e.g. from Dublin Core or
SKOS.

Check

Check for syntactical and typographical
patterns and label length i.e. to discover too
short or too long names within string values of
selectable entities.

Allows checking naming conventions via
simple string matches and full regular
expressions. Checks the length of labels. A
significant fraction of the OBO Foundry naming
conventions can be checked, i.e. case, separator
but also morphemic conventions.

Check

Detection and counts of redundant class
labels.

Label repetition can be checked for via the
ComparePanel.

Compare

Comparison of values between pairs of entities
to detect similarities and avoid redundancies.

Operators like equals, contains or starts with
can be used to compare selectable entities.

Compare

Quantification of ontology measures useful for
ontology evaluation, progress monitoring and
complexity analysis.

Displays the percentage or absolute number of
entities having ‘exactly’, ‘at least’ or ‘at most’ a
certain number of annotation properties, direct
sub-/superclasses, or ‘usages’, i.e. indicating
‘hub nodes’.

Count

The high level requirements are listed in the first column followed by their specific implementations, indicating the
extend of requirement fulfilment in our tool. The last column indicates in which tab the function is implemented.

Schober et al. Journal of Biomedical Semantics 2012, 3(Suppl 2):S4
http://www.jbiomedsem.com/content/3/S2/S4

Page 4 of 10



class in a subtree it can be checked if the rdf:ID matches the rdfs:label of the same

class using the equals, contains or starts with operator. Case and separator and

language awareness can be adjusted. As a result, classes with different values for the

specified entity are listed, and can now be rectified, i.e. for the mentioned case, avoid-

ing divergence in meanings between labels. Furthermore, a check for label redun-

dancy and naming clashes in equal (synonymous) fields for different classes helps

avoiding hidden redundancies, e.g. alerting on classes with the same name in a differ-

ent namespaces.

Quantifying ontology measures for ontology evaluation

The Count panel (Figure 3) detects and quantifies ontology measures for ontology

progress monitoring, evaluation and complexity analysis. Specifically, it displays the

percentage and absolute number of nodes having exactly, at least or at most a certain

number of selectable metadata elements, parents and children, direct super- and sub-

classes, as well as class usages. For example, counting the annotation properties per class

allows to detect classes having >= 1 assignments for one and the same label type, e.g.

definition, versionInfo or term ID, which should not be allowed. Counting direct sub-/

superclasses can be used as proxy measure for ‘how much is known’ (for the asserted

case) and ‘how much can be inferred’ (for the post-reasoned case). Too many immediate

subclasses may indicate overly flat structures. Counting descendants/ancestors indicates

the ‘ontological depth’ or ‘relative specificity/granularity’ in terms of ‘root-distance’

respectively.

Counting the ‘usages’ of a class, e.g. listing all classes with no ‘usages’ in restrictions

other than subclassing named classes allows detecting ‘ontological isolates’ that have

no dependencies. As such orphans are ignored by other logical definitions; they could

potentially be removed or hidden in a simplified view of an ontology, focusing on the

Figure 1 The Check panel. The Check panel displays the specification (left) of a test for an ‘all lower case,
space separator’ naming convention on rdfs:label for the active ontology. The ‘statistical data’ view (middle)
lists a history of launched checks and quantifies their results in terms of absolute amount of classes failing
a test. Percentages are given with respect to the overall number of entry node descendants. One of the
result classes, ‘BuildingPart’, is activated to show the found violation in the label, which is MixedCase as
seen in the metadata pane below. Clicking on a class in the result pane (right) will activate it in the class
hierarchy pane (left) opening a metadata edit pane to allow for corrections (below). The lower right corner
shows how a file name and location can be selected to export the result list.

Schober et al. Journal of Biomedical Semantics 2012, 3(Suppl 2):S4
http://www.jbiomedsem.com/content/3/S2/S4

Page 5 of 10



ontologies’ defined and embedded classes linked via object properties. Analyzing the

amount of richly axiomatized classes, - so-called ‘hub nodes’ - helps to determine how

much work was put into an ontologies computer accessible semantics. Listing hub

nodes that have many in- and outgoing relations also provides a proxy for the core

domain described in the ontology, as these are likely to represent the more important

classes in a formalized domain. As an application is likely to focus on these ‘key

classes’, particular care must be taken to ensure that domain coverage is of sufficient

granularity here.

The OntoCheck user interface

The OntoCheck plugin provides a new editing tab within Protégé and is organized into

the three subpanels Check, Compare and Count (see Figures 1, 2, 3), being largely

self-explainable and easy to understand and use. Tooltips are displayed for most

Figure 2 The OntoCheck Compare panel. The Compare panel displaying a check that verifies whether
the rather dynamic rdfs:label still matches a previously given static semantic ID (OWLClassName), given
word separators are ignored. A considerable amount of classes is found, i.e. the detected class
‘Nitroimidazole’ (marked), which have deviant labels, i.e. here ‘Nitromidazole’ (without “i” after “Nitro”, see
annotation metadata below).

Figure 3 The OntoCheck Count panel. A count for ‘hub-node’ classes is carried out over the whole
Biotop ontology (entry node is Thing). A list of 23 classes used more than 10 times is displayed in the
Result classes’ pane.

Schober et al. Journal of Biomedical Semantics 2012, 3(Suppl 2):S4
http://www.jbiomedsem.com/content/3/S2/S4

Page 6 of 10



items upon ‘mouse-over object’ actions. Each tab shows the class hierarchy pane to let

a user select an entry node and the annotations pane in order to make the amend-

ments as required by the test results. Each pane allows specifying the check pattern in

the left half and provides the test results in the right half of the pane.

All specified check constraints are stored in a ‘history list’ and can also be

stored in an autogenerated external XML file, as an editor is likely to do the

same check on an ontology repeatedly, i.e. as pre-release check. The stored check-

specification file can also be exchanged and shared among a group of developers.

All result classes can be sorted alphabetically or according to hierarchy position.

Result lists can subsequently be enriched with the lacking metadata; either directly

or they can be exported as txt file and distributed among curators for later or

concurrent curation.

The main tab for curating naming issues is the first panel opened per default, the

Check panel. The Compare panel allows comparing the values for specified entities

and the Count panel allows measuring how often a class is used in formal definitions.

Additional screenshots can be found on the OntoCheck website.

Testing the OntoCheck tool

To detect software errors and test the tool against its requirements, six ontologies were

checked with the tool. Each author tested two ontologies from different engineering

efforts, covering a wide thematic scope, from the biomedical domain over the educa-

tional domain, up to the business domain. Overall over sixty single checks have been

carried out, half of the checks tackling naming conventions, the other half metadata

completeness and metrics counts. For only three checks a specific entry class was

selected as target node (checked subtree): In order to check for standard affixes to

keep the label explicit, the subtrees Role, ValueRegion and Disposition were selected.

Table 2 illustrates where the selected ontologies could be improved by applying Onto-

Check and quantifies the found violations. For a more detailed study we refer to the

upcoming ICBO 2012 conference proceedings [16].

Discussion
The usefulness of ontology design principles in general, and naming conventions in

particular, increases considerably when supported by ontology editing tools. This had

been shown earlier, e.g. for the Kismeta Validator [17], which was developed under a

related paradigm, but focused on XML schemata and DB labels.

Looking at the practical application scenarios with examples outlined in the result

section, we see that the OntoCheck plugin meets most of the desired specifications. It

helped in discovering and alleviating labeling errors, fostered metadata enrichment and

allowed to investigate an ontologies formal expressivity. Specifically, the plugin allows

for word case and delimiter checks, regular expression matching (affix checks), cardin-

ality and entity comparison checks.

Of the sixteen OBO Foundry naming conventions [3] six could be checked with our

plugin (nearly 40%) [16]. The remaining conventions, that OntoCheck was not able to

check for, would rely on a thorough lexical analysis requiring a lexicon, which is not

yet implemented in this version of the plugin. However this could be amended by inte-

grating the LiLa framework for ‘linguistic analysis of entity labels in ontologies’ [18],

Schober et al. Journal of Biomedical Semantics 2012, 3(Suppl 2):S4
http://www.jbiomedsem.com/content/3/S2/S4

Page 7 of 10



providing an interface to various natural language processing tools and resources for

deeper terminological analysis.

Rendering labels in ontologies more consistent will pave the way for tools that use

lexical information in class names for ontology integration, formalization and inconsis-

tency detection, e.g. like OBOL [19], which recommends logical definitions for new

classes and cross-products by exploiting lexical information from labels. Discussions

have started in the OBO domain, where OORT, the OBO Ontology Release Tool is

currently being developed [20] to include such label checks into their release tool.

OntoCheck would make a useful addition to this tool, given its functionality would be

delivered as a standalone Java library using solely the OWL API, rather than using the

Protégé API.

Lexical ontology alignment tools such as the PROMPT tool suite [21] will be served

with more robust information making automatic alignment and integration easier and

more reliable. Recently, ontology alignment and transformation techniques have been

designed that explicitly rely on naming structures over the ontology graph [22], and

thus will particularly benefit from a prior clean-up.

As long as accepted recommendations for certain combinations of single naming

conventions are not available, we can only enable checks on a per-convention basis,

rather than allowing multiple checks simultaneously, e.g. defined in overall naming

convention sets, e.g. the Foundry vs. Manchester vs. Stanford style convention sets. If

naming conventions were accessible in a standardized repository, one could envision

checks and enforcements of whole naming schemes to be drawn from such libraries.

In this regard, we have joined forces with the ontology design pattern community [23]

Table 2 Exemplary OntoCheck tests with quantification of detected violations

Ontology Entry Node Entity Panel Check Classes
[abs, %]

BioTop root <rdfs:label> Check Upper case start 12 (4)

BioTop root <owl:Class rdf:about> Check CamelCase 34 (8)

DCO root <ru-meta:definition> Check Min card.=1 37 (8)

DCO ’Disease’ <SNOMED_ID> Check Min card.=1 2 (2)

DCO root <ru-meta:synonym> Count Min card.>2 238 (40)

DCO root <ru-meta:shortLabel> Check Max Char Count < 20 3 (.5)

DCO root n/a Count CountClsHavingAtLeast15Subclasses 15 (1)

DCO root n/a Count CountClsUsedAtLeast15times 48 (3.3)

NTDO root <rdfs:label> Check Doesn’tContain’Class’or’class’ 3 (1)

Good
Relations

root <rdfs:label> Check Min card.=1 6 (15)

Vertical
Sales
Ontology

root <rdfs:label> Check Length regex.{4,50}+ 1 (1.5)

Vertical
Sales
Ontology

root <rdf:ID> Check Doesn’tContain’Or’ 7 (10)

Vertical
Sales
Ontology

root n/a Count ClsUsedOnlyOnce 13 (20)

@neurist root n/a Count CountClsHavingExactlyOneSubclass 150 (5.3)

’Entry Node’ refers to the selected class in the hierarchy for which all descendants are tested. The entity selected to be
checked is described via its OWL syntax element. The last column indicates the amount of found classes violating
(Check panel) or fulfilling (Count panel) a specified pattern. For the naming checks ‘abs’ refers to the absolute count of
entities of the specified type failing the test. ‘%’ refers to the ratio of abs to the amount of all entry node descendants.

Schober et al. Journal of Biomedical Semantics 2012, 3(Suppl 2):S4
http://www.jbiomedsem.com/content/3/S2/S4

Page 8 of 10



to transform naming conventions into formal reusable Naming ODPs. We also investi-

gate the reimplementation of parts of OntoCheck as a webservice in order to foster

integration into Semantic Web portals like Watson [24], which would ease reuse for

portal and library providers, as semantic metrics can be updated continuously and

used for ontology comparison, evaluation, ranking, e.g. helping to select compatible

artefacts with similar design principles to be aligned or merged easily.

At the moment the user has to amend violating labels manually, but for many cases

names violating tests could be corrected (semi-)automatically in an ‘OntoCure-mode’

in the future. For an extensive and updated list of desired and upcoming features,

please visit the OntoCheck webpages.

Conclusions
Although in an early development stage, the OntoCheck plugin proved already useful

in carrying out pre-release checks for ontologies in different projects [9-14]. It has

helped alerting developers on labelling violations and contributed in keeping these

ontologies clean from naming errors. It also rendered the ontologies more complete by

curing the lack of metadata. Carried out as pre-release check, the OntoCheck tests

contributed to quality assurance [25] in the mentioned projects. Ultimately, we hope

this Protégé extension will contribute to secondary data usage by rendering class

names more robust and consistent, hence easing lexical post-processing of annotated

data.

Availability and requirements
Project name: The OntoCheck Plugin

Project home page: http://www.imbi.uni-freiburg.de/ontology/OntoCheck/

Operating system: Platform independent

Programming language: Java

Other requirements: Java 1.5.1 or higher, Protégé 4.1 or higher

License: GNU GPL

Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft (DFG) open access publication fund, DFG grant
JA 1904/2-1, SCHU 2515/1-1 GoodOD (Good Ontology Design). Vojtěch Svátek is supported by the CSF under P202/
10/1825 (PatOMat).
This article has been published as part of Journal of Biomedical Semantics Volume 3 Supplement 2, 2012: Proceedings
of Ontologies in Biomedicine and Life Sciences (OBML 2011). The full contents of the supplement are available online
at http://www.jbiomedsem.com/supplements/3/S2.

Author details
1Institute of Medical Biometry and Medical Informatics (IMBI), University Medical Center, 79104 Freiburg, Germany.
2University of Economics, Prague, Nám. W. Churchilla 4, 130 67 Praha 3, Czech Republic.

Authors’ contributions
DS initiated and supervised the project and wrote the initial paper draft. IT implemented the OntoCheck plugin and
contributed ideas. VS revised the manuscript and contributed ideas. MB gave additional comments and revised the
manuscript. DS, MB and VS were involved in testing the tool and commit software error reports to IT.

Competing interests
The authors declare that they have no competing interests.

Published: 21 September 2012

References
1. The Protégé Ontology Editor and Knowledge Acquisition System. [http://protege.stanford.edu/], last accessed Feb. 9,

2012.

Schober et al. Journal of Biomedical Semantics 2012, 3(Suppl 2):S4
http://www.jbiomedsem.com/content/3/S2/S4

Page 9 of 10

http://www.jbiomedsem.com/supplements/3/S2
http://protege.stanford.edu/


2. Tuason O, Chen L, Liu H, Blake JA, Friedman C: Biological nomenclatures: a source of lexical knowledge and
ambiguity. Pac Symp Biocomput 2004, 238-249.

3. Schober D, Smith B, Lewis SE, et al: Survey-based naming conventions for use in OBO Foundry ontology
development. BMC Bioinformatics 2009, 10:125.

4. Smith B, Ashburner M, Rosse C, et al: The OBO Foundry: coordinated evolution of ontologies to support biomedical
data integration. Nat Biotechnol 2007, 25(11):1251-1255.

5. The NCBO Bioportal. [http://bioportal.bioontology.org/], last accessed Feb. 9, 2012.
6. Dublin Core Metadata Element Set, Version 1.1. [http://dublincore.org/documents/dces/], last accessed Feb. 9, 2012.
7. Ontology for Biomedical Investigations (OBI):, http://obi.sourceforge.net/, here see http://sourceforge.net/tracker/?

func=detail&aid=3258610&group_id=177891&atid=886178, last accessed Feb. 9, 2012.
8. Main Page Disease Ontology WIKI, http://do-wiki.nubic.northwestern.edu/index.php/Main_Page, here see http://do-

wiki.nubic.northwestern.edu/index.php/Style_Guide, last accessed Feb. 9, 2012.
9. Beißwanger E, Schulz S, Stenzhorn H, and Hahn U: BioTop: An Upper Domain Ontology for the Life Sciences. Applied

Ontology 2008, 3(4):205-212.
10. Schober D, Boeker M, Bullenkamp J et al: The DebugIT core ontology: semantic integration of antibiotics resistance

patterns. Stud Health Technol Inform 2010, 160(Pt 2):1060-4.
11. NTDO - Neglected Tropical Disease Ontology, http://www.cin.ufpe.br/~ntdo/, last accessed 20.01.2012.
12. Hepp M: GoodRelations: An Ontology for Describing Products and Services Offers on the Web. EKAW ‘08,

Proceedings of the 16th international conference on Knowledge Engineering: Practice and Patterns Springer, LNCS 5268;
2008, 329-346.

13. Vehicle Sales Ontology, http://www.heppnetz.de/ontologies/vso/ns, last accessed 20.01.2012.
14. Boeker M, Stenzhorn H, Kumpf K, ijlenga P, Schulz S, and Hanser S: The @neurIST Ontology of Intracranial Aneurysms:

Providing Terminological Services for an Integrated IT Infrastructure. AMIA Annual Symposium Proceedings 2007,
56-60.

15. Pattern Class Java API documentation (Java 2 Plattform SE v1.4.2), http://docs.oracle.com/javase/1.4.2/docs/api/java/
util/regex/Pattern.html, last accessed 20.01.2012.

16. Schober D, Svátek V, Boeker M: Checking Class Labels against Naming Conventions: First experience with the
OntoCheck Protégé plugin. Proceedings of the International Conference on Biomedical Ontology, ICBO 2012 2012,
accepted paper, Graz, Austria.

17. Kismeta Validator v1.1b, Enterprise Data Standards Validation and Enforcement, http://www.kismeta.com/Validtr.
html, last accessed 20.01.2012.

18. LiLA (Linguistic Label Analysis) framework for the linguistic analysis of phrases that can occur as class or property
labels in ontologies, http://code.google.com/p/lila-project/, last accessed 20.01.2012.

19. Mungall CM, et al: Obol: Integrating Language and Meaning in Bio-Ontologies. Comparative and Functional Genomics
2004, 5:509-520.

20. Introduction to the Obo Ontology Release Tool. , http://code.google.com/p/owltools/wiki/OortIntro, last accessed
20.01.2012.

21. Noy NF, Musen MA: Anchor-PROMPT: Using Non-Local Context for Semantic Matching. Proceedings of the Workshop
on Ontologies and Information Sharing, 2001, Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-
2001), Seattle, WA, SMI technical report SMI-2001-0889 .

22. Šváb-Zamazal O, Svátek V, Iannone L: Pattern-Based Ontology Transformation Service Exploiting OPPL and OWL-API.
EKAW 2010 - 17th International Conference on Knowledge Engineering and Knowledge Management Lisbon, Portugal.
Springer LNCS 6317;105-119.

23. Ontology Design (ODP). [http://Patterns.org], http://ontologydesignpatterns.org/wiki/Main_Page, last accessed
20.01.2012.

24. d’Aquin M, Gridinoc L, Angeletou S, Sabou M, Motta E: Characterizing Knowledge on the Semantic Web with
Watson. EON’07 Workshop at ISWC’07 2007 [http://watson.kmi.open.ac.uk/editor_plugins.html].

25. Rogers JE: Quality assurance of medical ontologies. Methods Inf Med 2006, 45:267-274.

doi:10.1186/2041-1480-3-S2-S4
Cite this article as: Schober et al.: OntoCheck: verifying ontology naming conventions and metadata completeness
in Protégé 4. Journal of Biomedical Semantics 2012 3(Suppl 2):S4.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Schober et al. Journal of Biomedical Semantics 2012, 3(Suppl 2):S4
http://www.jbiomedsem.com/content/3/S2/S4

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/14992507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14992507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19397794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19397794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17989687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17989687?dopt=Abstract
http://bioportal.bioontology.org/
http://dublincore.org/documents/dces/
http://www.ncbi.nlm.nih.gov/pubmed/20841846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20841846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18693797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18693797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18629143?dopt=Abstract
http://Patterns.org
http://www.ncbi.nlm.nih.gov/pubmed/22886610?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22886610?dopt=Abstract
http://watson.kmi.open.ac.uk/editor_plugins.html
http://www.ncbi.nlm.nih.gov/pubmed/16685334?dopt=Abstract

	Abstract
	Background
	Objective
	Implementation
	Results
	Conclusions

	Background
	Implementation
	Results
	OntoCheck functionalities
	Testing for cardinalities and metadata completeness
	Testing for lexical patterns in names with regular expressions
	Testing for typographic naming conventions
	Comparing values between specified entities
	Quantifying ontology measures for ontology evaluation

	The OntoCheck user interface
	Testing the OntoCheck tool

	Discussion
	Conclusions
	Availability and requirements
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

