
JOURNAL OF
BIOMEDICAL SEMANTICS

Machado et al. Journal of Biomedical Semantics 2013, 4:21
http://www.jbiomedsem.com/content/4/1/21

RESEARCH Open Access

Enrichment analysis applied to disease
prognosis
Catia M Machado1,2*, Ana T Freitas2 and Francisco M Couto1

*Correspondence:
cmachado@xldb.di.fc.ul.pt
1LaSIGE, Departamento de
Informática, Faculdade de Ciências,
Universidade de Lisboa, Lisboa,
Portugal
2Instituto de Engenharia de
Sistemas e Computadores/Instituto
Superior Técnico, Lisboa, Portugal

Abstract

Enrichment analysis is well established in the field of transcriptomics, where it is used
to identify relevant biological features that characterize a set of genes obtained in an
experiment.
This article proposes the application of enrichment analysis as a first step in a disease
prognosis methodology, in particular of diseases with a strong genetic component.
With this analysis the objective is to identify clinical and biological features that
characterize groups of patients with a common disease, and that can be used to
distinguish between groups of patients associated with disease-related events. Data
mining methodologies can then be used to exploit those features, and assist medical
doctors in the evaluation of the patients in respect to their predisposition for a specific
event.
In this work the disease hypertrophic cardiomyopathy (HCM) is used as a case-study, as
a first test to assess the feasibility of the application of an enrichment analysis to disease
prognosis. To perform this assessment, two groups of patients have been considered:
patients that have suffered a sudden cardiac death episode and patients that have not.
The results presented were obtained with genetic data and the Gene Ontology, in two
enrichment analyses: an enrichment profiling aiming at characterizing a group of
patients (e.g. that suffered a disease-related event) based on their mutations; and a
differential enrichment aiming at identifying differentiating features between a
sub-group of patients and all the patients with the disease. These analyses correspond
to an adaptation of the standard enrichment analysis, since multiple sets of genes are
being considered, one for each patient.
The preliminary results are promising, as the sets of terms obtained reflect the current
knowledge about the gene functions commonly altered in HCM patients, thus
allowing their characterization. Nevertheless, some factors need to be taken into
consideration before the full potential of the enrichment analysis in the prognosis
methodology can be evaluated. One of such factors is the need to test the enrichment
analysis with clinical data, in addition to genetic data, since both types of data are
expected to be necessary for prognosis purposes.

Background
Enrichment analysis is extensively used for the functional analysis of large lists of genes
identified with high-throughput technologies, such as expression microarrays. It exploits
the use of statistical methods over ontological gene annotations to identify biological fea-
tures that are represented in a gene set under analysis more than would be expected by
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chance. Such biological features are said to be enriched, or overrepresented, in the study
set and are then used to formulate a biological interpretation about it.
The ontology most commonly used in these analyses is the Gene Ontology [1-3],

although other resources such asMeSH and KEGG have also been explored [4]. Strategies
based on multiple vocabularies have also been developed, namely in pharmacoge-
nomics considering theHumanDiseaseOntology and the Pharmacogenomics Knowledge
Base [5]. LePendu et al. [6] proposed a method to generate annotations when using
medical vocabularies, testing its feasibility with the Human Disease Ontology.
Enrichment analyses are normally divided in three categories: Singular Enrichment

Analysis (SEA), Gene Set Enrichment Analysis (GSEA) andModular Enrichment Analysis
(MEA). SEA works with a user-selected gene set and iteratively tests the enrichment of
each individual ontology concept in a linear mode. GSEA also evaluates the enrichment
of ontology concepts individually, but considering all the genes in the experiment and not
just a user-selected gene set. MEA works with a user-selected gene set, but incorporates
into the analysis the relationships between concepts represented in the ontologies, thus
evolving from a term-centric approach to a biological module-centric approach [7]. Sev-
eral tools have been developed that implement one or more of these approaches, such as
Ontologizer [8,9], Onto-express [10] and GSEA [11].
This article proposes the application of enrichment analysis for disease prognosis, as the

first component of a prognosis methodology that will assist in the evaluation of patients
in respect to the likelihood of suffering a disease-related event (see Figure 1). By per-
forming an enrichment analysis on the patients’ data based on controlled vocabularies,
we expect to identify sets of characterizing features that will be used as profiles for the
patients. These profiles will then be explored to evaluate the predisposition of the patients
for the specific event. This evaluation is the second component of the prognosis method-
ology, and can be performed by following a classification or a similarity approach. In
the classification approach, the terms composing the profiles will be added as features to
the patients’ dataset and analyzed with classification algorithms such as random forests
[12] and Bayesian networks [13]. In the similarity approach, semantic similarity measures
will be used to compute the similarity between patients, based on their profiles. Differ-
ent semantic similarity measures [14] and a relatedness measure [15] can be explored to
compare the patients’ profiles.

Classification

Ontology

Patient
Data

Similarity

Enrichment
Analysis

Profile Prognosis

Figure 1 Schematic representation of the prognosis methodology. The methodology is composed by
two units: the first (left-side) receives as input data from patients mapped to biomedical ontologies/
controlled vocabularies. It performs an enrichment analysis to identify a list of ontology terms considered to
be enriched, which will be used to create profiles for individual patients. These profiles will then be subjected
to an evaluation step (the second unit, on the right-side) that will result in the evaluation of the prognosis for
the patients. For the implementation of the second unit, both a classification and a similarity approach will be
explored.
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The purpose of the prognosis methodology is to assist medical doctors in the definition
of the appropriate treatments and preventive actions for individual patients. Conse-
quently, the datasets to be used with this methodology are collected by biomedical experts
in the context of medical practice. Such datasets are frequently characterized by a small
number of clinical features and a high number of missing values, which difficults their
use for knowledge extraction purposes.We propose that the application of an enrichment
analysis to this type of dataset can result in the extraction of relevant knowledge from
controlled vocabularies to improve the quality of the dataset and, therefore, improve the
quality of the predictions made with it.
The present work focuses in diseases which diagnosis and prognosis are dependent both

on clinical and genetic data. An example of such a disease is hypertrophic cardiomyopa-
thy (HCM), which is used in this work as a case-study. HCM is an autosomal dominant
genetic disease, characterized by a variable clinical presentation and onset, with approxi-
mately 900mutations in more than 30 genes currently known to be associated with it [16].
It has been observed that the presence of a given mutation can correspond to a benign
manifestation in one individual and can result in sudden cardiac death (SCD) in another
[17,18]. This disease is, in fact, the most frequent cause of SCD in apparently healthy
young people and athletes [17,18]. Given the severity of this manifestation of the disease,
SCD is the event evaluated with our prognosis methodology.
This methodology is under development, and in the present article we present the pre-

liminary results obtained when applying the enrichment analysis to the genetic data of
patients with HCM. While standard applications of enrichment analysis analyze a single
set of genes per experiment, the application here proposed analyzes several sets of genes,
one from each patient. Our implementation of the enrichment analysis had thus to be
adapted to accommodate multiple sets of genes.
The Gene Ontology (GO) was the ontology chosen to perform the analysis instead of

other genetic vocabularies since it is themost well studied application of enrichment anal-
ysis. It allows the annotation of biological products with terms describing the molecular
functions they perform, the biological processes in which they are involved, and the cel-
lular components where they are located or of which they are a component. Additionally,
the GO was chosen instead of a clinical vocabulary since it has been extensively used
for annotation purposes, and thus possesses a background set of annotations that can be
promptly used, which is not normally the case for clinical vocabularies.
The following sections present and discuss the results obtainedwith the adapted enrich-

ment analysis, considering the genetic data of the HCM patients and the GO; delineate
the conclusions extracted from the results, as well as how the work will evolve; and explain
in detail the methods followed to obtain the results presented.

Results and discussion
Since all the patients share the same genome, it is through their individual mutations that
we can find differentiating features. However, information regarding a patient’s muta-
tions, when available, exists only for a few genes. In the case of the HCM patients, the
genetic data used in this analysis is precisely the presence/absence of the mutations in the
genes associated with the disease.
An oversimplified way to define the study set when analyzing, for example, the SCD

patients, would be to consider the list of genes mutated in at least one of these patients.
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However, this would only be accurate if all the SCD patients had a mutation in those
genes, which might not be the truth. In order to maximize our use of the available
genetic information, the best option is to consider the set of mutations each patient has,
individually.
Following this approach, we performed two enrichment analyses: a profiling analysis,

where the total number of genesmutated in each group of patients (with SCD andwithout
SCD) was compared with all (protein-coding) genes in the same group of patients; and a
differential analysis, where the total number of genes mutated in each group of patients
(with SCD and without SCD) was compared with the total number of genes mutated in
all the HCM patients.

Enrichment profiling

Terms identified as enriched by the profiling analysis can be used to characterize the
genotype of patients with and without SCD (SCD and no-SCD, respectively), since they
correspond to specific functional aspects that are mutated in the patients. These func-
tional aspects, in turn, correspond to phenotypical traits expected to be altered. While
terms identified as enriched both in SCD and no-SCD patients can be interpreted as
associated with the disease, terms enriched differently can be interpreted as associated
with the occurrence of SCD. This profiling analysis is more directly comparable with
the application of enrichment analysis to gene expression data, where a set of genes (e.g.
overexpressed) can be analyzed against the whole genome.
In the enrichment approach followed in this work, i.e. Single Enrichment Analysis, the

set of genes selected by the user to be evaluated for the existence of enriched ontology
terms is called the study set, and these genes can be the ones overexpressed in a microar-
ray. The reference set of genes is called the population set, and can be the whole set of
genes analyzed in the microarray. In the context of the patients’ profiling analysis, we can
theorize the existence of a study set and a population set for each individual patient. The
study set contains the genes mutated in the patient, whereas the population set contains
all genes in the patient, either mutated or not. In the HCM dataset we only have muta-
tion information for the genes associated with the disease, and consequently the study set
is exclusively composed by these genes. The genes associated with HCM but not tested
(see the Methods section for an explanation of how the genotyping is performed) have
to be treated as genes without mutations just as happens with the genes not associated
with HCM, and are included in the population set. The enrichment analysis is then per-
formed considering in the study set all the genes mutated in all the patients of a given
group (e.g. with SCD). In turn, the population set includes all the genes in the genome of
all the patients in the same group (see Figure 2 for a representation of how the two sets of
genes are obtained).
For SCD patients, the study set contains 16 mutated genes (total for the 14 SCD

patients) and the population set contains 18,759× 14 genes (the number of GO annotated
protein-coding Human genes multiplied by the number of SCD patients). For no-SCD
patients, the study set contains 100 mutated genes (total for the 69 no-SCD patients) and
the population set contains 18,759 × 69 genes (see Table 1 for a compilation of the num-
ber of genes analyzed in both enrichment analyses). It is important to note that the SCD
patients have mutations in only 4 distinct genes, and the no-SCD in 7 distinct genes that
include the previous 4.
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Figure 2 Representation of the population and study sets in the enrichment profiling analysis. The
two sets of dots represent the genome of two patients, from the same group (e.g. with SCD). The smaller,
yellow set of dots, corresponds to the genes mutated in the patient; the larger, white set of dots, corresponds
to the entire genome of the patient: genes not mutated (outside the yellow set) and genes mutated. In these
sets of genes, blue dots represent genes annotated with a term of interest (t); gray dots represent genes not
annotated with t. In the profiling analysis, the study set is the union of the genes mutated in all the patients;
the population set is the union of the genome of all the patients. The annotation frequency is then calculated
by counting the total number of genes annotated with the term in the study set (study frequency) and in the
population set (population frequency).

As shown in Table 2 (in the column Total), the enrichment profiling analysis identified
the following number of enriched terms (p-value < 0.1): 53 for SCD and 70 for no-SCD,
without multiple-testing correction; 40 for SCD and 62 for no-SCD, with Bonferroni
correction.
Tables 3, 4 and 5 show, respectively, the top 10 enriched biological process (BP), molec-

ular function (MF) and cellular component (CC) terms for the SCD patients. The top 10
enriched terms identified for the no-SCD patients are not shown since they are nearly
identical to those of SCD. The full set of results for SCD and no-SCD is available in the
Additional files 1 and 2, respectively.
Analyzing the enriched terms in detail, we can confirm their relation with HCM.

According to the BP terms enriched, the patients analyzed suffer from cardiac alter-
ations (e.g. regulation of heart rate, adult heart development), in particular in the ventricle
(ventricular cardiac muscle tissue morphogenesis and ventricular cardiac muscle tissue
development), and some of those alterations affect the contraction of striated muscles, in
which group the cardiac muscle is included (e.g. actin-myosin filament sliding and actin-
mediated cell contraction). HCM is indeed a cardiac disease, in which themain anatomical
manifestation is the thickening of the interventricular septum, and the occurrence of
a sudden cardiac arrest can be a consequence of the malfunctioning of the heart con-
traction. Considering the MF terms, several binding terms are enriched, namely myosin
heavy chain binding, titin binding, troponin C and troponin I binding. All of these terms
refer to proteins that participate in the contraction of the filaments that compose striated
muscles, and thus the HCM patients present alterations in the normal function of this

Table 1 Number of genes considered in the profiling and the differential enrichment
analyses

Enrichment test Study set Population set

Enrichment profiling
SCD 16 18,759 × 14

no-SCD 100 18,759 × 69

Differential enrichment
SCD 16 116

no-SCD 100 116

For each enrichment test performed is indicated the number of genes in the study and the population sets.
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Table 2 Number of enriched terms in each of the analyses performed

Analysis

Number of enriched terms

Bio. Proc. Mol. Func. Cel. Comp. Total

noCorr Bonf noCorr Bonf noCorr Bonf noCorr Bonf

Profiling
SCD 30 19 13 11 10 10 53 40

no-SCD 39 33 21 19 10 10 70 62

Differential
SCD vs no-SCD 0 0 1 0 0 0 1 0

no-SCD vs SCD 2 0 1 0 2 0 5 0

For each enrichment analysis is indicated the number of terms of each GO type (biological process, molecular function and
cellular component), with p-value below 0.1, when considering no multiple-testing correction (noCorr) and with Bonferroni
correction (Bonf).

type of muscle. Finally, the CC terms confirm the previous observations that the alter-
ations in HCM patients occur at the level of striated muscle functioning, namely through
the following terms: striated muscle myosin thick filament, striated muscle thin filament,
troponin complex, A band (a component of the sarcomere) and C zone (a component of
the A band).
The difference between terms enriched for SCD and for no-SCD consists in a set of

18 terms identified in the latter and not in the former (see Table 6). These terms do not
provide biologically meaningful information, since it cannot be interpreted that when
those functions and processes are altered the patients will not suffer a SCD episode. These
differences in the set of enriched terms can be explained by the fact that the number
of no-SCD patients is considerably larger than the number of SCD patients (69 vs. 14)
and consequently there are more distinct genes mutated (7 vs. 4). Thus, the enrichment
profiling analysis did not identify differentiating aspects between the two groups that can
be used to prognosticate SCD solely based on genetic data.

Differential enrichment

With the differential enrichment analysis, our purpose was to identify the differences
between SCD and no-SCD, and thus compare each, in turn, with the complete set of HCM
patients. Since this set is divided in SCD and no-SCD patients, we are basically comparing
one group with the other. As happened in the enrichment profiling, the study set contains

Table 3 Top 10 enriched biological process terms in the profiling analysis of SCD patients

Acc Name p-value p-Bonf SFreq PFreq

GO:0030049 Muscle filament sliding 7.7E-40 4.1E-38 94% 0.21%

GO:0033275 Actin-myosin filament sliding 7.7E-40 4.1E-38 94% 0.21%

GO:0055010 Ventricular cardiac muscle tissue morphogenesis 7.7E-40 4.1E-38 94% 0.21%

GO:0003229 Ventricular cardiac muscle tissue development 2.4E-39 1.3E-37 94% 0.22%

GO:0070252 Actin-mediated cell contraction 6.8E-39 3.6E-37 94% 0.24%

GO:0002027 Regulation of heart rate 1.3E-31 6.9E-30 81% 0.26%

GO:0007512 Adult heart development 6.8E-25 3.6E-23 56% 0.07%

GO:0032781 Positive regulation of ATPase activity 2.9E-15 1.5E-13 38% 0.09%

GO:0043462 Regulation of ATPase activity 2.6E-14 1.4E-12 38% 0.12%

GO:0032971 Regulation of muscle filament sliding 1.0E-12 5.4E-11 25% 0.02%

The terms shown are the 10 biological process terms with the lowest p-value, obtained in the profiling of SCD patients. For
each term is indicated: GO accession number (Acc), term name, p-value without multiple-testing correction, p-value with
Bonferroni correction (p-Bonf), annotation frequency in the study set (SFreq) and annotation frequency in the population
set (PFreq).
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Table 4 Top 10 enrichedmolecular function terms in the profiling analysis of SCD patients

Acc Name p-value p-Bonf SFreq PFreq

GO:0008307 Structural constituent of muscle 2.9E-35 1.6E-33 88% 0.25%

GO:0030898 Actin-dependent ATPase activity 1.1E-26 6.1E-25 56% 0.05%

GO:0000146 Microfilament motor activity 1.8E-23 9.4E-22 56% 0.11%

GO:0032036 Myosin heavy chain binding 3.3E-11 1.8E-09 25% 0.04%

GO:0001671 ATPase activator activity 9.1E-11 4.8E-09 25% 0.05%

GO:0031432 Titin binding 2.1E-10 1.1E-08 25% 0.06%

GO:0060590 ATPase regulator activity 4.0E-10 2.1E-08 25% 0.07%

GO:0017022 Myosin binding 7.6E-09 4.0E-07 25% 0.14%

GO:0030172 Troponin C binding 5.3E-06 2.8E-04 13% 0.02%

GO:0031013 Troponin I binding 8.4E-06 4.4E-04 13% 0.03%

The terms shown are the 10 molecular function terms with the lowest p-value, obtained in the profiling of SCD patients. For
each term is indicated: GO accession number (Acc), term name, p-value without multiple-testing correction, p-value with
Bonferroni correction (p-Bonf), annotation frequency in the study set (SFreq) and annotation frequency in the population
set (PFreq).

16 and 100 genes mutated for SCD and no-SCD, respectively. As for the population set,
in this case it contains 116 mutated genes (the sum of the genes mutated in SCD and in
no-SCD). Given the design of the analysis, terms found enriched correspond to functional
aspects that are mutated more frequently in one group of patients than in the other.
A total of one term for SCD and five terms for no-SCD were identified as enriched

(p-value < 0.1, not considering multiple-testing correction). The SCD term is the
MF structural constituent of muscle (p-value = 0.08). The no-SCD terms are: negative
regulation of ATPase activity (p-value = 0.08) and regulation of ATPase activity
(p-value = 0.09; both BP); striated muscle thin filament (p-value = 0.08) and troponin
complex (p-value = 0.08; both CC); and troponin C binding (p-value = 0.08; MF) (the
complete information regarding these terms is available in the Additional file 3).
For the purpose of prognosis, the most interesting terms are evidently those identified

as enriched in SCD. Thus, the term structural constituent of musclemay have potential for
prognosis, given that it occurs more frequently in SCD patients than in no-SCD patients.
Nevertheless, the fact that the corrected p-value is above the significance level and that

Table 5 Top 10 enriched cellular component terms in the profiling analysis of SCD patients

Acc Name p-value p-Bonf SFreq PFreq

GO:0005859 Muscle myosin complex 2.4E-37 1.3E-35 81% 0.10%

GO:0032982 Myosin filament 2.4E-37 1.3E-35 81% 0.10%

GO:0016460 Myosin II complex 1.1E-35 5.8E-34 81% 0.13%

GO:0001725 Stress fiber 4.1E-20 2.2E-18 56% 0.25%

GO:0032432 Actin filament bundle 7.3E-20 3.8E-18 56% 0.27%

GO:0014705 C zone 9.2E-15 4.9E-13 25% 0.01%

GO:0005863 Striated muscle myosin thick filament 1.0E-12 5.4E-11 25% 0.02%

GO:0031672 A band 4.7E-09 2.5E-07 25% 0.13%

GO:0005861 Troponin complex 2.2E-05 1.1E-03 13% 0.04%

GO:0005865 Striated muscle thin filament 6.6E-05 3.5E-03 13% 0.07%

The terms shown are the 10 cellular component terms with the lowest p-value, obtained in the profiling of SCD patients. For
each term is indicated: GO accession number (Acc), term name, p-value without multiple-testing correction, p-value with
Bonferroni correction (p-Bonf), annotation frequency in the study set (SFreq) and annotation frequency in the population
set (PFreq).
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Table 6 Enriched terms in the profiling analysis of no-SCD patients, not identified in the
SCD patients

Acc Name p-value p-Bonf SFreq PFreq

Biological process

GO:0001980 Regulation of systemic arterial blood 6.0E-41 4.4E-39 13% 0.00
pressure by ischemic conditions

GO:0001976 Neurological system process involved in regulation 3.4E-25 2.5E-23 13% 0.00
of systemic arterial blood pressure

GO:0006940 Regulation of smooth muscle contraction 6.6E-19 4.9E-17 13% 0.00

GO:0007522 Visceral muscle development 5.3E-03 3.9E-01 1% 0.00

GO:0042694 Muscle cell fate specification 5.3E-03 3.9E-01 1% 0.00

GO:0055009 Atrial cardiac muscle tissue morphogenesis 2.6E-02 1.9E+00 1% 0.00

GO:0003228 Atrial cardiac muscle tissue development 2.6E-02 1.9E+00 1% 0.00

GO:0048739 Cardiac muscle fiber development 4.2E-02 3.1E+00 1% 0.00

GO:0042693 Muscle cell fate commitment 5.7E-02 4.2E+00 1% 0.00

Molecular function

GO:0031014 Troponin T binding 9.9E-33 7.3E-31 13% 0.00

GO:0019855 Calcium channel inhibitor activity 1.9E-31 1.4E-29 13% 0.00

GO:0008200 Ion channel inhibitor activity 1.4E-23 1.0E-21 13% 0.00

GO:0016248 Channel inhibitor activity 1.4E-23 1.0E-21 13% 0.00

GO:0005246 Calcium channel regulator activity 4.9E-23 3.6E-21 13% 0.00

GO:0048306 Calcium-dependent protein binding 1.1E-19 8.1E-18 13% 0.00

GO:0042805 Actinin binding 5.6E-06 4.2E-04 4% 0.00

GO:0030899 Calcium-dependent ATPase activity 1.6E-02 1 1% 0.00

GO:0003785 Actin monomer binding 7.2E-02 1 1% 0.00

The terms shown are the biological process and molecular function terms identified as enriched in the profiling analysis of
no-SCD patients that were not identified in the profiling of SCD patients. For each term is indicated: GO accession number
(Acc), term name, p-value without multiple-testing correction, p-value with Bonferroni correction (p-Bonf), annotation
frequency in the study set (SFreq) and annotation frequency in the population set (PFreq).

the term is not particularly informative in respect to HCM, limits the confidence with
which this term can be used for that purpose.

Study limitations and future work

The results obtained can be explained by the following factors: a) the genetic data can be
insufficient to prognosticate the occurrence of SCD; b) the genetic data may not be fully
explored; and c) the dataset used may not be the most appropriate to test the method-
ology. The first two factors are related to the HCM case-study. Firstly, and as already
referred, the occurrence of SCD is currently not predictable solely based on genetic data,
and thus an enrichment analysis has to be performed considering the clinical data and
clinical controlled vocabularies before a final evaluation of the methodology can be made.
This analysis will be very important to understand if the inclusion of clinical data is really
imperative. Since the HCM dataset is already mapped to clinical vocabularies (NCIt and
SNOMED-CT), these vocabularies will be tested next. Secondly, in this initial test we only
considered the existence or absence of mutations in the genes, but the type and number of
mutations can also be a useful source of information. For example, it is known that some
mutations are associated with a benign outcome (i.e. no occurrence of SCD) whereas oth-
ers with a malignant outcome. It has also been reported that the occurrence of mutations
in some genes is associated with a higher incidence of SCD than in others [19]. All of these
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aspects can be taken into consideration when calculating the frequencies of annotation or
even be added as features to the dataset. It is important to notice, however, that we are not
concerned with pleiotropic effects. It is known that some HCM mutations have different
phenotypic manifestations in different patients, and different manifestations should also
be expected if a patient has multiple mutations. Nevertheless, the goal of this analysis is to
obtain profiles that provide a global characterization of the patients in respect to an event,
and not to perform a precise evaluation of each patient in terms of his mutations. Regard-
ing the genetic enrichment analysis, that global characterization should be in terms of the
functions and processes most frequently affected in the event-positive patients. Finally,
it cannot be overlooked the possibility that to evaluate the true potential of the progno-
sis methodology we might need to test it with other datasets. This is due to the reduced
number of patients in the dataset tested, in particular of SCD patients.
In respect to the methodology itself, there is also one factor that needs to be taken into

account when interpreting the results, that is how the missing values were dealt with. In
terms of the genetic features, missing values are mutations associated with HCM that
were not tested. Due to the sparseness of the dataset, it was not feasible to simply elim-
inate the mutations not tested or the patients with mutations not tested. Consequently,
we considered these mutations as having a negative value, i.e. that they were not present
in the patient. This approach allows us to exploit all the available data and to obtain an
informative characterization of the patients. It is important to stress out that an evalua-
tion of all the patients for all the mutations is almost never done. On the one hand, more
mutations tested might result in an increase in the number of genes analyzed, possibly
leading to an increment in the number of terms tested and, consequently, in the terms
found enriched. On the other hand, it might result in an increase in the frequency of
annotation of the terms in the study set of the enrichment profiling analysis, and in both
the study and the population sets in the differential enrichment analysis. In the profiling
analysis, this increase would result in the strengthening of the confidence in the results
since we would increase the difference of annotation frequency between the study set and
the population set. In the differential analysis, the results might be more strongly altered,
since both sets of annotation frequencies would have to be recalculated.
Another relevant factor in the methodology is that a Singular Enrichment Analysis

does not take into account the existence of relations between the genes. Since a Modular
Enrichment Analysis addresses this issue, we will also test this approach.
By applying a methodology that relies in controlled vocabularies we may have to work

with incomplete annotations, as well as with a set of ontology terms that might not
provide the level of detail necessary to fully characterize the patients. In respect to the
possibility of incomplete annotations, we tried to deal with it by considering all types of
annotation, including inferred from electronic annotation, even with the risk of introduc-
ing some annotation errors. In respect to the possibility of an insufficient level of detail,
it can be overcome by considering more than one vocabulary for the same domain of
knowledge, which we will do when analyzing the clinical features.
The enrichment analysis with the clinical data was not yet performed due to the dif-

ficulty of defining a population set annotated with terms from clinical vocabularies, as
discussed by LePendu et al. [6]. In our analysis, this problem presents itself when con-
sidering the implementation of the equivalent of the profiling analysis, in which a group
of patients would be characterized in terms of their phenotype, based on their clinical
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information. Considering the approach suggested by the same authors, and that we are
currently implementing, the problem can be overcome by exploiting the identification of
gene-clinical vocabulary annotations in the PubMed articles that originated the gene-GO
annotations. Although the equivalent of the differential enrichment analysis can be more
readily implemented, its application with the clinical data presents one of the same lim-
itations found with the genetic data, i.e the existence of a great overlap of annotations
between the SCD and no-SCD patients.

Conclusions
In this article we presented the application of enrichment analysis in a prognosis method-
ology. The goal of the enrichment analysis was to identify a set of features that might
assist in the differentiation of patients for whom a disease-specific event occurred from
the patients for whom it did not.
The application of the enrichment analysis was tested with genetic data from patients

with the disease hypertrophic cardiomyopathy (HCM), and using the GeneOntology. The
event under analysis was the occurrence of sudden cardiac death (SCD), which is themost
severe manifestation of HCM.
The implementation of the analysis was adapted to the fact that we were not studying a

single set of genes, but rather several, one from each patient. This adaptation was tested in
two enrichment analysis: an enrichment profiling comparing the genes mutated in SCD
(or no-SCD) patients with all protein-coding genes in the same group of patients; and a
differential enrichment comparing the genes mutated in SCD (or no-SCD) patients with
the genes mutated in all HCM patients.
Overall, the results obtained indicate that the enrichment profiling analysis is useful

for the characterization of patients, as it allowed the identification of meaningful terms
associated with HCM. Notwithstanding, a full evaluation of its potential for prognosis
purposes requires that some aspects are taken into consideration. One of such aspects
is the fact that in this first implementation, only genetic data was analyzed for enrich-
ment. However, the disease used as case-study cannot be prognosticated solely based on
this data, and thus the enrichment analysis has to be performed in both the genetic and
the clinical domains. Another aspect is that more information might be extracted from
the genetic data in addition to the number of genes mutated, namely the type of muta-
tions (i.e. if they are benign or malignant in respect to the event analyzed) or even the
number of mutations per gene. Finally, the methodology itself might need to be tested in
other datasets, due to the characteristics of the one used, such as the reduced number of
patients and the high number of missing values.

Methods
Singular enrichment analysis

The enrichment analysis approach most commonly used is the Singular Enrichment
Analysis (SEA). The statistic test underlying this approach is normally the Fisher’s exact
test, and the distribution considered when working with small datasets is the hyper-
geometric distribution. This distribution is applied to situations of sampling without
replacement from a finite population when considering that the population elements are
in one of two possible states. Translating this to the enrichment analysis, the goal is to
evaluate if the genes in the population set are annotated with a term t, which means that
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the two possible states for a gene are: being annotated with the term, and not being anno-
tated with the term. When drawing a sample of genes from the population (thus forming
the study set), the objective is then to evaluate if the probability of annotation with term
t is higher in this sample than would be expected by chance. The expected frequency of
annotation is given by the knowledge of the population set, and if the frequency of anno-
tation in the sample is higher than in the population, then term tmight be used to explain
the study set. In this type of analysis, what is being calculated is the probability of observ-
ing at least n genes in the study set annotated with term t, given the knowledge of: the size
of the study set, the size of the population set, and the number of genes in the population
set annotated with t [2]. For a term to be considered enriched in the study set, the p-value
obtained from the Fisher’s test has to be lower than a significance level, which is normally
considered to be 0.05 or 0.1.
The terms tested in this manner are not only those that directly annotate the genes, but

also their ancestors. Given the high number of tests that are performed with resources
such as the Gene Ontology (with more than 38,000 terms on January, 2013), a multiple-
testing correction is necessary to reduce the possibility of false-positive results. The most
conservative multiple-testing correction is the Bonferroni correction, which is obtained
simply by multiplying the calculated p-value by the number of tests performed.

Enrichment analysis: from genes to patients

The purpose of the methods here described is to analyze patients suffering from a given
disease in respect to their predisposition to suffer a disease-related event. The disease
and the event are characterizable with clinical and genetic data, and this data is analyzed
in terms of ontology terms enrichment. The clinical data includes features such as symp-
toms and measurements, whereas the genetic data refers to the presence or absence of
mutations.
The methods with which we perform the enrichment analysis with the genetic data

have been adapted from the standard implementation used in existing enrichment anal-
ysis tools. The following two are the main differences between the standard enrichment
analysis and the one described here. In the standard analysis:

• Only one set of genes is analyzed, such as the genome of an organism. In our analysis,
several sets of genes are taken into consideration, exactly one for each patient.

• The frequency of annotation of a term is given by the number of genes annotated
with that term. In our analysis, the frequency of annotation is given by the number of
mutated genes annotated with the term.

Enrichment profiling

The purpose of this analysis is to characterize the genotype of a group of patients (e.g. the
patients positive for a disease-related event), based on the set of mutations the patients
have. Since the knowledge of these mutations is normally not available for the complete
genome of a patient but only for a set of genes associated with the disease under analysis,
the characterization is performed by comparing the information of the genes mutated in
the patients with the complete set of genes in the genome.
Given a group of patients, for each of which is known his/her set of mutations, and

the set of Human protein-coding genes, the enrichment profiling analysis is performed as
follows:
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1. Define the population set as the union of the genes in the genome of all the patients.
2. Define the study set as the union of the genes mutated in all the patients.
3. Find all GO terms annotating at least one gene mutated in the patients.
4. Calculate the population set frequency of annotation (PFreq) of term t as follows:

PFreq(t) =
n∑

1
count(gene(t))

where n is the total number of patients, and gene(t) is a gene annotated with t (see
Figure 2).

5. Calculate the study set frequency of annotation (SFreq) of term t as follows:

SFreq(t) =
n∑

1
count(mut_gene(t))

where mut_gene(t) is a mutated gene annotated with t.
6. Apply Fisher’s exact test to calculate the probability of enrichment of term t.
7. Perform a multiple-testing correction (e.g. Bonferroni) over the p-values obtained.
8. Consider term t as enriched in the study set if p-value(t) < α (e.g. 0.05 or 0.1).

Differential enrichment

The purpose of this analysis is to identify differentiating features between a group of
patients with a particular characteristic, for example being positive for a disease-related
event, and all the patients with the disease. This analysis is also based in the set of muta-
tions the patients have, considering the mutations in the study group vs. the mutations in
all the patients.
The implementation of this analysis is very similar to that of the enrichment profiling,

with the differences presented below.
Given a group of patients with a disease, a sub-group of those patients with a study

characteristic, and the set of mutations in each group:

1. Define the population set as the union of the genes mutated in the group of
patients with the disease.

2. Define the study set as the union of the genes mutated in the sub-group of patients
with the study characteristic.

3. Find all GO terms annotating at least one genemutated in the sub-group of patients.
4. Calculate the population set frequency of annotation (PFreq) of term t as follows:

PFreq(t) =
n∑

1
count(mut_gene(t))

where n is the total number of patients with the disease, and mut_gene(t) is a
mutated gene annotated with t.

5. Calculate the study set frequency of annotation (SFreq) of term t as follows:

SFreq(t) =
n∑

1
count(mut_gene(t))

where n is the number of patients in the sub-group with the study characteristic.
6. to 8. Do as in the enrichment profiling.
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Genetic enrichment analysis applied to HCM

HCM dataset

The HCM dataset is composed by clinical and genetic features characterizing 83 patients,
which was previously collected from Portuguese hospitals andmolecular biology research
laboratories. From these 83 patients, 14 are positive for SCD and the remaining 69 are
negative for SCD. Table 7 shows the complete list of clinical features, and Table 8 the
percentage of patients with known values for those features. From the total set of clini-
cal features, the following three were used to define which patients are positive for SCD:
sudden death, resuscitated sudden death, and cardioverter defibrillator. The first two indi-
cate if the patient suffered a sudden cardiac death, either resuscitated or not, whereas the
third indicates if the patient has an implanted cardioverter defibrillator. This device pre-
vents the occurrence of SCD by delivering an electric charge when cardiac arrhythmia is
detected, and it is implanted after a resuscitated sudden death occurred or when there is
a very high risk of SCD occurrence. Patients are then considered positive for SCD if they
are positive for at least one of the three features. Considering the three features instead of
just two resulted in an increase of 4 SCD positive patients.
The genetic features are the mutations associated with the disease, in a total of 569, and

are represented as Boolean variables. From this set of mutations, only 78 were found in

Table 7 Features used for the clinical characterization of the HCM patients

Clinical feature Feature value SCD (%) no-SCD (%)

Sudden death (SD)
True 5 (36) 0

False 9 (64) 69 (100)

Resuscitated SD
True 3 (21) 0

False 8 (57) 69 (100)

Cardioverter defibrillator
True 9 (64) 0

False 2 (14) 69 (100)

Non-sudden death
True 0 0

False 14 (100) 69 (100)

Obstructive HCM
True 4 (29) 8 (12)

False 1 (7) 17 (25)

Non-obstructive HCM
True 1 (7) 17 (25)

False 4 (29) 8 (12)

SD family history
True 3 (21) 1 (1)

False 2 (14) 25 (36)

HCM form
Familial 9 (64) 32 (46)

Sporadic 2 (14) 37 (54)

Blood pressure

Normal 4 (29) 22 (32)

Hypotension 0 1 (1)

Hypertension 0 5 (7)

Gender
Male 6 (43) 41 (59)

Female 5 (36) 25 (36)

Age

[0,20] 0 5 (7)

]20,40] 2 (14) 11 (16)

]40,60] 3 (21) 15 (22)

> 60 3 (21) 10 (14)

For each feature are indicated its possible values, the number of SCD and no-SCD patients that have them, and the
respective percentages. The total number of SCD patients is 14, whereas of no-SCD is 69. (See Table 8 for the percentage of
patients with known values for each of the features).
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Table 8 Percentage of SCD and no-SCD patients that have a known value for each clinical
feature

Clinical feature SCD no-SCD

Sudden death (SD) 100 100

Resuscitated SD 79 100

Cardioverter defibrillator 79 100

Non-sudden death 100 100

Obstructive HCM 36 36

Non-obstructive HCM 36 36

SD family history 36 38

HCM form 79 100

Blood pressure 29 41

Gender 79 96

Age 57 61

the HCM patients. These 78 mutations occur in 7 distinct genes (shown in Table 9), all of
which are mutated in at least one patient without SCD (no-SCD). In the case of the SCD
patients, only 4 of those 7 genes are mutated in at least one of the patients: MYBPC3,
MYH7, CSRP3, and TNNT2. The number of mutations identified per patient ranges from
1 to 5, with an average value of 1.8.
The genotyping of the patients was done in two manners: with a microarray able to

detect 508 mutations associated with HCM, and a technique called high-resolution melt-
ing analysis (HRM) [20] followed by sequencing. The HRM analysis was used to analyze
individual exons to indentify the presence of mutations, whereas the sequencing allows
the identification of the exact mutation. Some of the patients were analyzed with both
techniques, whereas others with only one of the techniques. HRM can be used to test
for mutations not present in the microarray and/or to confirm the results obtained with
the microarray. One of the reasons to use HRM instead of the microarray is that when
patients are tested after a family member was diagnosed, only the mutations found in this
one are searched for. Additionaly, the identification of only one mutation is sufficient for
a positive diagnosis, and the overall process is cheaper.

GO annotations

The set of genes in the Human genome was obtained from the GeneCards Database [21],
the set of terms from the Gene Ontology [1] and the set of GO annotations from the GOA

Table 9 Genes used for the genetic characterization of the HCM patients

Gene SCD no-SCD GO annotations

MYBPC3 4 25 202

MYH7 9 36 192

CSRP3 1 4 138

TNNT2 2 20 178

TNNI3 0 13 173

MYL2 0 1 133

MYH6 0 1 251

For each gene in indicated the number of SCD and no-SCD patients with at least one mutation in it, as well as the number of
Gene Ontology (GO) annotations. The total number of SCD patients is 14, whereas of no-SCD is 69.
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database [22], as of the releases of October 4th, 2012. From the total set of Human protein-
coding genes, only 18,759 were annotated with GO terms. All types of GO annotations
were considered, including inferred from electronic annotation.
The enrichment analysis was performed for the three types of GO terms: biological

process, molecular function, and cellular component. In order to filter out uninformative
GO terms, we considered only terms with information content (IC) above 60%. The IC of
a term t is given by the expression [23]:

IC(t) = − log2
f (t)

f (root)

where f(t) is the annotation frequency of the term (i.e. the number of distinct gene prod-
ucts it annotates) and f(root) is the frequency of annotation of the root term of the GO
(which corresponds to the total number of annotated gene products). In this work, we
used the annotations to Human genes to compute the IC, including annotations with all
evidence codes. In order to obtain a normalized IC, we divided the IC values by the scale
maximum (log2 f (root)).

Enrichment analyses

Four enrichment experiments were performed, two enrichment profiling analysis and
two differential enrichment analysis, as presently described in accordance with the steps
previously indicated for each analysis. Enrichment profiling for the group of SCD patients:

1. Population set: 18,759 genes × 14 patients
2. Study set: 16 mutated genes, corresponding to 4 distinct genes (MYBPC3, MYH7,

CSRP3, and TNNT2)
3. GO terms obtained for the previous 4 genes
4. PFreq: number of genes annotated with t in the 14 patients
5. SFreq: number of mutated genes annotated with t in the 14 patients

Enrichment profiling for the group of no-SCD patients:

1. Population set: 18,759 genes × 69 patients
2. Study set: 100 mutated genes, corresponding to 7 distinct genes (MYBPC3, MYH7,

CSRP3, TNNT2, TNNI3, MYL2 and MYH6)
3. GO terms obtained for the previous 7 genes
4. PFreq: number of genes annotated with t in the 69 patients
5. SFreq: number of mutated genes annotated with t in the 69 patients

Differential enrichment for the HCM patients and the sub-group of SCD patients:

1. Population set: 116 mutated genes, corresponding to the 7 distinct genes mutated
in the 83 patients (MYBPC3, MYH7, CSRP3, TNNT2, TNNI3, MYL2 and MYH6)

2. Study set: 16 mutated genes, corresponding to the 4 distinct genes mutated in the
14 SCD patients (MYBPC3, MYH7, CSRP3, and TNNT2)

3. GO terms obtained for the 7 genes
4. PFreq: number of mutated genes annotated with t in the 83 patients
5. SFreq: number of mutated genes annotated with t in the 14 SCD patients
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Differential enrichment for the HCM patients and the sub-group of no-SCD patients:

1. Population set: 116 mutated genes, corresponding to the 7 distinct genes mutated
in the 83 patients

2. Study set: 100 mutated genes, corresponding to the 7 distinct genes mutated in the
69 no-SCD patients

3. GO terms obtained for the 7 genes
4. PFreq: number of mutated genes annotated with t in the 83 patients
5. SFreq: number of mutated genes annotated with t in the 69 no-SCD patients

In all the analyses a Bonferroni correction was performed, and 0.1 was the confidence
level considered.

Additional files

Additional file 1: Full results of the enrichment profiling for SCD patients. For each term is indicated: GO
accession number (GO acc), term name, p-value without multiple-testing correction (noCorr), p-value with Bonferroni
correction, annotation frequency in the study set, annotation frequency in the population set, and the information
content (IC).

Additional file 2: Full results of the enrichment profiling for no-SCD patients. For each term is indicated: GO
accession number (GO acc), term name, p-value without multiple-testing correction (noCorr), p-value with Bonferroni
correction, annotation frequency in the study set, annotation frequency in the population set, and the information
content (IC).

Additional file 3: Full results of the two differential enrichments: HCM patients and the sub-group of SCD
patients; HCM patients and the sub-group of no-SCD patients. For each term is indicated: GO accession number
(GO acc), term name, p-value without multiple-testing correction (noCorr), p-value with Bonferroni correction,
annotation frequency in the study set, annotation frequency in the population set, and the information content (IC).
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