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Abstract

Background: Clinical Intelligence, as a research and engineering discipline, is dedicated to the development of tools
for data analysis for the purposes of clinical research, surveillance, and effective health care management. Self-service
ad hoc querying of clinical data is one desirable type of functionality. Since most of the data are currently stored in
relational or similar form, ad hoc querying is problematic as it requires specialised technical skills and the knowledge
of particular data schemas.

Results: A possible solution is semantic querying where the user formulates queries in terms of domain ontologies
that are much easier to navigate and comprehend than data schemas. In this article, we are exploring the possibility of
using SADI Semantic Web services for semantic querying of clinical data. We have developed a prototype of a semantic
querying infrastructure for the surveillance of, and research on, hospital-acquired infections.

Conclusions: Our results suggest that SADI can support ad-hoc, self-service, semantic queries of relational data in a
Clinical Intelligence context. The use of SADI compares favourably with approaches based on declarative semantic
mappings from data schemas to ontologies, such as query rewriting and RDFizing by materialisation, because it can
easily cope with situations when (i) some computation is required to turn relational data into RDF or OWL, e.g., to
implement temporal reasoning, or (ii) integration with external data sources is necessary.

Background
Clinical intelligence and ad hoc querying of relational data
Clinical Intelligence (CI) is essentially Business Intelli-
gence applied to clinical data, i.e., it is a business vertical
and a research and engineering field aimed at the devel-
opment of methods and tools for deriving insights from
clinical data, required for research, surveillance and ratio-
nal health caremanagement (see, e.g., [1-5] to get a flavour
of different directions of CI work). A typical example of
CI is the use of patient records for selecting cohorts to
be used in clinical trials of drugs and other treatments.
Researchers could use CI tools on massive amounts of
data to facilitate the discovery of knowledge that can
improve existing treatment methods or help to define new
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treatments. Health care management can use CI to objec-
tively evaluate the performance of hospital units or sepa-
rate professionals and allocate resources more efficiently.
The work of the Roundtable on Value and Science-Driven
Health Care of the US Institute of Medicine, and in par-
ticular their work on the Learning Healthcare System [6]
provides evidence of the need for such work.
One of the most useful modes of using clinical data is

ad hoc querying: in many scenarios, such as clinical trial
cohort selection, it’s very difficult to predict the kind of
queries than need to be answered and preprogram them
(see, e.g., eligibility criteria for various trials from [7]).
Since the data is usually stored in relational or similar
form, we can identify ad hoc querying of relational data as
an important technical problem within CI.

Semantic querying: problem and existing approaches
To be economical and therefore accessible, ad hoc query-
ing has to be self-service, so that non-technical users –

© 2013 Riazanov et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.



Riazanov et al. Journal of Biomedical Semantics 2013, 4:9 Page 2 of 19
http://www.jbiomedsem.com/content/4/1/9

clinical researchers, surveillance practitioners, health care
managers, etc. – can query clinical data directly, with-
out help from database programmers.With the traditional
database methods, this type of querying is problematic
because writing correct queries requires good under-
standing of technical details of data schemas and the
knowledge of query languages like SQL. Non-technical
users almost never have such skills.
A viable solution to the problem, as demostrated, e.g.,

by the case study [4] conducted in Cleveland Clinic, is
semantic querying (SQ) based on automatic application
of domain knowledge written in the form of ontologi-
cal axioms and, possibly, rules. Existing approaches to
SQ (see, e.g., [8-11]) typically allow database program-
mers to define mappings between data schemas and
domain knowledge bases, in the form of logical axioms
or similar declarative constructs. The axioms map con-
crete data into virtual models usually based on RDF
and OWL, so that the databases can be queried as RDF
graphs or OWLABoxes. End users formulate their queries
in the terminology of their domain, without any knowl-
edge of how the underlying data is structured. Seman-
tic querying systems then use the semantic mappings
to translate the semantic queries into queries directly
executable on the data, or to translate the data itself
to RDF.
Note that our assumption that semantic querying may

be self-service is currently just a vision that may or may
not be realised in the future, as commercial production-
quality implementations are very scarce yet (a notable
exception is the Cyc Analytic Environment by Cycorp
Inc, used in [4]). As several other research projects, e.g.,
[4,8,12], our work aims to help to realise this vision.
The most basic form of semantic querying is query-

ing semantic data, e.g., RDF, with languages like SPARQL,
and our work is focused on this core problem. However,
SPARQL querying is, by itself, not sufficient to fully realise
the vision of self-service querying because it is difficult to
expect that many non-technical users will be able to write
SPARQL queries. More friendly graphical or keyword-
based query interfaces, as in [4,12], have to be used on
top of SPARQL. However, this problem is outside the
scope of this article. Likewise, we do not discuss technical
problems that have to be solved before semantic query-
ing software can be deployed in clinical settings, such as
security or profiled data access.

When declarative mappings are not enough
Hypothetically, when the database design and the corre-
sponding formalised domain terminologies reasonably fit
together, the use of declarative semantic mappings may be
both sufficient for many types of queries and cost effec-
tive, because declarative mappings are relatively easy to
write, examine and edit. In most realistic clinical settings,

however, declarative mappings cannot cope with all user
requirements, specifically because certain things cannot
be done declaratively and require programming.
One example of such a requirement, which is also highly

relevant to our work, is the necessity of temporal reason-
ing. Many interesting queries to clinical data impose tem-
poral constraints specifying how certain events, activities,
or procedures of interest are temporally situated or tem-
porally related to each other. For example, the user may
be interested in retrieving only medical tests performed
prior to some diagnoses of interest, within a limited time
period.
Query engines processing such queries need to invoke

some code doing essentially temporal arithmetics, i.e.,
comparison of concrete temporal values, or only slightly
more complex temporal reasoning. This cannot be easily
done by just extending the virtual RDF graphs represent-
ing the data if only declarative semantic mapping means
are used – some computation has to happen dynamically
during the query processing time.
We would like to emphasise that temporal reasoning

is only one, although very important, example of a chal-
lenge for declarative mappings. In general, all data in the
virtual RDF graph generated by a declarative mapping
is constructed by simple transformations of data present
in the database. Very often this data is not enough. A
typical example is when some queries may require Body
Mass Index (BMI) of patients, which are not necessar-
ily directly stored in the database, but can be computed
on the fly from patients’ weight and height, or various
cardiovascular risk scores that can be computed on vari-
ous patient attributes. Another typical problem related to
Clinical Intelligence is the large amount of useful clinical
information stored in free text form in various abstracts
and reports. This kind of information can only be accessed
via specialised text mining algorithms. However, in this
article we focus our attention on the temporal reasoning
problem as it seems to be required in a larger number of
use cases and also demonstrated the capabilities of SADI
well.
Another significant challenge for declarative approaches

is integrating relational data with data from heteroge-
neous non-relational data sources using representations
ranging from various ad hoc text file-based formats,
popular with public biomedical database providers,
to HTML content that has to be scraped. Querying
such sources is inherently algorithmic and is beyond
reach of current declarative mapping languages and
implementations.
Note also that the axiomatic semantic mappings for

real-life databases are often very complex, given that most
non-trivial concepts expressed in the semantic schema
need to be deduced or inferred from many data elements.
This adds difficulty to their practical use.
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SADI and SHARE
The SADI framework [13] is a set of conventions for
creating HTTP-based Semantic Web services that can
be automatically discovered and orchestrated. SADI ser-
vices consume RDF documents as input and produce RDF
documents as output, which solves the syntactic interop-
erability problem as all services “speak” one language. This
is also convenient for client programs that can leverage
existing APIs for RDF to represent the data onwhich SADI
services operate.
In brief, SADI services operate by attaching new proper-

ties to input URIs described in the input RDF document,
and the most important feature of SADI is that these
properties are fixed for each service. A declaration of
these predicates, available online, constitutes a seman-
tic description of the service. For example, if a service is
declared with the predicate is_performed_for described in
an ontology as a predicate linking diagnoses to patients,
the client software knows that it can call the service to
retrieve the patient for whom a given diagnosis was made.
The SADI framework uses the OWL class syntax to

specify conditions on the input nodes a service con-
sumes, and declare the predicates the service attaches.
Such declarations of inputs and outputs of services enable
completely automatic discovery and composition of SADI
services (see, e.g., [13]). Practically, it means that one can
have a query engine for SPARQL or a similar language
that can answer queries by automatically discovering nec-
essary SADI services and calling them. SHARE [14] is a
proof-of-concept implementation of this approach. From
the user point of view, it is a SPARQL engine that com-
putes queries by picking and calling suitable SADI services
from some registry. In a typical scenario, the user first
looks up predicates he needs for his query, in the list of
predicates declared as provided by SADI services in a reg-
istry, and also related classes and property predicates in
the referenced ontologies. Then he uses the available con-
cepts to form a regular SPARQL query, and sends it to a
SHARE endpoint for execution.
For more technical details on SADI and SHARE,

the reader is referred to [13], and Bioinformatics- and
Chemoinformatics-related case studies can be found in
[15-18].

Article outline
These limitations of the declarative mapping-based
approaches motivate us to look for other possibilities. In
this article we explore an approach to semantic querying
based on the use of Semantic Web services that can be
automatically discovered, composed and invoked. More
specifically, we are looking at the SADI [13] services as
a possible medium for semantic querying of clinical data
in relational form. We describe a prototype based on the
SADI technology, we created to experiment with semantic

querying, and report the results of a case study performed
for several scenarios related to the surveillance of, and
research on hospital-acquired infections, using an extract
from a hospital datawarehouse.

Methods
The hydra query engine
We used SHARE in our early experiments on HAI-
related semantic querying for Clinical Intelligence pur-
poses, reported in [19]. At some point we reached the
limits of SHARE performance – some of our queries were
taking hours to complete, although the general amount of
processed RDF data and the numbers of SADI service calls
were moderate. Another feature of SHARE that hinders
experimentation is the fact that the user has to wait until
absolutely all answers to the query are computed before
he can see any answers at all. Together with the low query
execution speed, this makes query debugging very time
consuming. For these reasons, we have opted to use both
SHARE and Hydra [20] in our experiments.
Hydra mirrors SHARE, in terms of functionality, in

that it executes queries over collections of SADI services.
One notable extension is the ability of Hydra to draw
data from multiple arbitrary SPARQL endpoints, giving
end users the ability to use existing online data as input
data. Unlike SHARE, which is Open Source, Hydra is a
commercial prototype, based on a complex but scalable
architecture and is being developed by IPSNP Computing
Inc to address the lack of commercial quality clients for
SADI. Despite being an early proof-of-architecture proto-
type, the system shows acceptable performance even on
relatively complex queries in our use cases, and sets of ser-
vices. A notable feature is that Hydra often returns first
answers in quasi-real time, in minutes or even seconds,
which facilitates experimentation with different forms of
queries. In contrast SHARE returns answers in batch form
when all possible services have responded. This can lead
to lengthy delays or query timeouts. Two of the four exper-
iments reported in this article were done exclusively with
Hydra.

Semantic querying of relational data with SADI
The SADI framework primarily facilitates the feder-
ated querying of multiple heterogeneous, distributed and
autonomous data sources, such as online databases and
algorithmic resources, as illustrated by several case stud-
ies [15-18]. The work presented here, however, explores a
different avenue – using SADI services as a medium for
semantic querying of single relational databases. If suc-
cessful, our effort will add a new approach to the pool of
existing practical methods for semantic querying of RDB,
at least in the Clinical Intelligence context.
The general approach is to write a set of SADI ser-

vices over a relational database that users would like to
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query semantically, and leverage the services collectively
to answer ad hoc SPARQL queries, drawing the necessary
data from the database. In this article we report on pre-
liminary progress in implementing this idea on a clinical
datawarehouse.

Experiment settings: querying The Ottawa Hospital DW
We are testing our approach in a Clinical Intelligence
scenario dedicated to the surveillance for, and research
on Hospital-Acquired Infections (HAI). To this end,
we are prototyping a SADI-based infrastructure for
semantic querying of a relational database used by The
Ottawa Hospital (TOH) and containing an extract from
the large TOH datawarehouse accumulating data from
the most important IT systems of the hospital (see,
e.g., [21,22]). Our infrastructure consists of an ontology
defining concepts suitable for reasoning about Hospital-
Acquired Infections, and a number of SADI services
drawing data from the DB, as well as several gen-
eral purpose services dealing with information about
drugs, diseases and infectious agents. In our experi-
ments, we use SHARE and Hydra to run test queries
over this network of SADI services. By using queries
that HAI surveillance specialists or researchers may be
interested in, we are trying to demonstrate the via-
bility of our approach for real-life Clinical Intelligence
tasks.

Application: hospital-acquired infections
Infections acquired by patients in health care institutions
are a serious practical problem as they result in thousands
of deaths and hundreds of millions of dollars in addi-
tional expenses each year in Canada alone: at least one in
twenty patients admitted to a Canadian hospital acquires
an infection. Surveillance for, and research on HAI are
essential to develop prevention methods, evaluate them
and control their deployment. Currently, HAI surveillance
based on clinical data is mostly manual and, as a conse-
quence, is limited in scope and costly. Therefore, the use of
adequate Clinical Intelligence tools promises to increase
the effectiveness of HAI surveillance and research efforts
and bring the cost down, which, in particular, justifies our
effort to enable agile querying of HAI-related data with
SADI.

Data
Our experimental efforts are focused on querying the
TOH datawarehouse extract containing potentially HAI-
related data from several clinical data sources, such
as microbiology and clinical chemistry test results,
information on drug prescriptions and surgical proce-
dures, operating room information, and patient demo-
graphics and movement information. Our datawarehouse
extract, referred to as DW throughout the rest of the

article, contains information for 715 cardiac surgery
patients, 6132 encounters, 12275 diagnoses and 6029
procedures, and has been previously used in a Clini-
cal Intelligence effort [22] dedicated to cardiac surgical
site infections. The data we used were selected from a
cohort of all clean cardiac surgeries performed at the
University of Ottawa Heart Institute in 2004-2007. In
terms of design, the datawarehouse is a single Relational
DB with tables representing patients, encounters, proce-
dures and drug prescriptions, etc (the schema is available
at [23]).

Target query types
From the perspective of HAI surveillance and research, we
would like to be able to use the available data to answer
HAI case identification and enumeration requests, ques-
tions aimed at identification or evaluation of HAI risk
factors or causative factors, and questions aimed at identi-
fication or evaluation of diagnostic factors. Our target set
of questions at this stage is as follows:

(1) Which patients diagnosed with surgical site
infections (SSI) had older age as a risk factor?
Questions of this type allow surveillance practitioners
to estimate the prevalence of particular risk factors.

(2) Howmany patients were infected with
methicillin-resistant Staphylococcus aureus
(MRSA) in Quarter 1 of 2007? Questions of this
type allow health care managers to evaluate anti-HAI
measures.

(3) What patients received a diagnosis of sepsis
within 30 days of being diagnosed with SSI?
Researchers may use such questions to develop
methods for predicting complications of HAI.

(4) Howmany SSI were diagnosed during quarter 1
of 2011 for patients who had undergone heart
bypass surgery within 30 days prior to the SSI
diagnoses? Questions of this type allow to estimate
the incidence of HAI for particular categories of
patients.

(5) Howmany Catheter Associated Urinary Tract
Infection (CAUTI) incidents in January 2011
were diagnosed within 30 days following
procedures involving Foley catheters?
Surveillance personnel can ask such questions to
evaluate the risks associated with new types of
equipment.

(6) Which patients were diagnosed with SSI while
they were taking corticosteroids systemically?
Questions of this type make it possible to identify
patient risk groups based on the types of medications
they take.

(7) Howmany cases of hypoxia (decreased oxygen
supply) were not accompanied by
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hypoalbuminemia (reduced serum albumin
concentration) and SSI diagnoses? Researchers
can ask questions of this type allow to discover
interactions between various risk factors.

(8) Howmany CAUTI diagnoses were made within 7
days from the time a test indicated the patients’
serum glucose level was between 7.0 and 7.5
mmol/L? Questions of this type allow to identify
’dose-response’ relationships between numerical
findings of medical tests and the risk of HAI.

(9) Howmany diabetic patients were diagnosed with
SSI? In general, such questions are aimed at
identifying comorbidity factors for HAI.

(10) Elevation of which proteins was indicated by
blood test results within 7 days prior to the
patients being diagnosed with HAI? Questions of
this type help to discover new diagnostic factors for
HAI.

(11) Which patients using drugs with
anti-inflammatory side effects, had an operation
and were diagnosed post-operatic abscess
formation not detected preciously by a
tomography? Questions of this type allow to
identify weaknesses of existing diagnostic methods.

These sample questions illustrate the ad hoc nature of
the queries we would like to compute over our dataware-
house and, in general, over similar sources of clini-
cal data. Although such questions can be implemented
with SQL queries, this approach is uneconomical as it
requires involvement of database programmers. Ideally,
we would like to enable non-technical users, such as
surveillance practitioners and researchers, to write ad
hoc queries by themselves. The solution we are advocat-
ing is semantic querying where users formulate queries
in terms of domain ontologies that are much easier
to navigate and comprehend than relational database
schemas.
Other kinds of requirements associated with our use

cases are either trivial, e.g., it’s clear that extreme querying
speed is not necessary, or can only be identified through
experimental deployment of some software prototypes,
for which our research is still in too early a stage.

Ethical consent
The work reported in this paper was carried out, in part,
using data from a secondary source previously made avail-
able, citation [22], and no additional patient consent or
ethical approval was necessary.
The HAIKU project was reviewed and approved by the

Institutional Review Boards at the OHRI and at McGill
University. Since we are using individual patient records
(even if personally identifying information is removed),
IRB approval was required and was obtained.

Results
Outline of the infrastructure
HAI Ontology
In general, semantic querying implies the use of for-
malised terminologies as sources of query primitives.
For this reason, we are developing the HAI Ontology
(HAIO) [24,25] that defines a number of HAI-specific
concepts, such as Surgical_site_infection and Hospital-
acquired_tuberculosis, adds a small hierarchy of general
health care-related concepts, such as Disease and Medi-
cal_test, and aligns the resulting ontology with a number
of third party ontologies, both general and specialised.
The ontology design is fairly straightforward. Its core

is a hierarchy of classes formalising concepts from the
HAI domain and a flat hierarchy of object properties rep-
resenting relations of interest between entities, such as
goes_through to link patients to the operative procedures
they undergo, and is_performed_for to link diagnoses to
the patients they were made for.
We are using the Semanticscience Integrated Ontol-

ogy (SIO) [26] as the upper ontology to provide access
to our classes and properties via more general classes
and properties. Currently, HAIO is undergoing the align-
ment to SIO and eventually most of our primitives will
be mapped to appropriate places in the SIO hierarchy.
We are also removing datatype properties to follow the
SIO convention that the only datatype property is ’has
value’ (SIO_000300) and all data-valued attributes are
represented as individuals.
Apart from SIO, we use several other separate ontolo-

gies most of which are large biomedical nomenclatures.
For example, to be able to use the Canadian version of the
ICD-10 [27] nomenclature of diseases, we have created
an OWL version [28] of the ICD-10 hierarchy. Also, to
be able to reason about drugs, we created OWL versions
[28] of the Anatomical Therapeutic Chemical (ATC) clas-
sification that provides a hierarchy of active ingredients,
and of the Canadian Drug Identification Number (DIN)
nomenclature. We also developed the Extra Simple Time
Ontology (ESTO) [29], to be able to specify temporal coor-
dinates of activities and events and compare them, which
will be discussed in more detail in SectionMain difficulty:
temporal reasoning.
To give the reader some flavour of the kind of mod-

elling that HAIO supports, we provide an RDF example
in Figure 1. This RDF graph is a description of the patient
identified as :patient. The node :diagnosis and the sub-
graph around it represents a diagnosis linked to :patient
with the predicate haio:is_performed_for. The diagnosed
disease is identified as :incident. Since the disease is a sur-
gical site infection, it must be a consequence of an oper-
ative procedure. In our example, the procedure :surgery
is an instance of haio:Coronary_artery_bypass_graft. The
rest of the example describes a blood culture test :test



Riazanov et al. Journal of Biomedical Semantics 2013, 4:9 Page 6 of 19
http://www.jbiomedsem.com/content/4/1/9

Figure 1 Figure 1 HAI Ontology modelling fragment. This RDF graph illustrates how HAI Ontology concepts can be used to semantically model
data from the datawarehouse in particular, and from the HAI domain in general.

that revealed the presence of Serratia proteamaculans in
the patient’s blood, and a prescription of a drug (DIN
00888222) to the patient.

Mapping the DW schema to HAIO
A key ingredient of any implementation of semantic
querying over a relational database is the semantic map-
ping of the database schema to the corresponding ontolo-
gies, specifying, in one form or another, how the database
contents are modelled semantically, e.g., as a virtual RDF
graph. We are mapping the relevant parts of the Ottawa
Hospital DW schema [23] to the HAI Ontology. This is
done by specifying how classes and properties fromHAIO
are populated, based on the contents of relevant tables in
the DW. In all cases we have encountered so far, the pop-
ulation of the RDF graph representing an ABox for HAIO,
can be done by running one or more SQL queries over the
DW and converting the results of the SQL queries into

RDF by creating necessary resource URIs and data literals,
and asserting RDF triples on them.We illustrate this by the
following examples.

Example 1. populating haio:Patient. Populating the
class haio:Patient with instances amounts to identifying all
patients in our DW and assigning URIs to them. Note that
the patient URI generation from the DW keys for patients
must be invertible, so that SADI services that accept
patient URIs as input are able to identify the relevant DW
records. This consideration applies to all URI generation
schemes in our experiments.
The datawarehouse schema has table Npatient con-

taining basic information about all patients, such as
names, dates of birth, medical record numbers, etc. The
table’s primary key consists of one integer-valued attribute
patWID which is used throughout the datawarehouse to
identify patients. We simply map these integer patient IDs
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to URIs as follows. Suppose, the patWID value is 123. The
correspondingURI ishaiku:Patient_by_patWID?-
wid=123, where the namespace haiku corresponds to
http://cbakerlab.unbsj.ca:8080/haiku/.
In general, we simply attach the patWID as a query

parameter in the URI, so that the URI can be viewed as a
function of the patWID. The function is easily invertible
since the patWID value can be extracted as the value of the
wid parameter of a given patient URI.We use this primary
key-to-URI mapping scheme for most entities that have to
be identified with URIs in the virtual HAIO ABox, such as
diagnoses, diseases, medical tests, drug prescriptions, etc.

Example 2. populating haio:is_performed_for and
haio:identifies. Our goal now is to specify how patients
are linked to their diagnoses and disease incidents, based
on the DW contents. The DW has a table NhrDiagno-
sis with information about diagnoses, but its records do
not directly specify the patients. However, NhrDiagnosis
uses foreign key hdgHraEncWID to table Nencounter rep-
resenting encounters, where the attribute encPatWID is
the foreign key to Npatient. The attribute NhrDiagno-
sis.hdgCd also specifies the ICD-10 [27] code of the disease.
The following SQL query can be used to enumerate triples
containing patient and diagnosis IDs and disease codes:

SELECT Nencounter.encPatWID as patientID,

NhrDiagnosis.hdgWID as diagnosisID,

NhrDiagnosis.hdgCd as diseaseCode

FROM Nencounter, NhrDiagnosis

WHERE Nencounter.encWID =

NhrDiagnosis.hdgHraEncWID

The corresponding part of the virtual RDF graph can be
formed by asserting

Diagnosis_by_hdgWID(diagnosisID)

a haio:Diagnosis;

haio:is_performed_for Patient_by_patWID

(patientID);

haio:identifies Disease_by_diagnosis

(diagnosisID).

Disease_by_diagnosis(diagnosisID)

a haio:Disease ;

a disease_class_by_ICD10(diseaseCode) .

for each triple (patientID,diagnosisID,diseaseCode). Note
that in this pseudo-RDF Diagnosis_by_hdgWID,
Patient_by_patWID, and Disease_by_diagnosis are func-
tions constructing URIs from numeric and string-
valued parameters similarly to how it was done for
patient URIs in the previous example. The function
disease_class_by_ICD10 represents a slightly differ-
ent case as it constructs disease class URIs according

to our OWL version of the ICD-10 nomenclature
(Canadian edition). For example, diseaseCode=A40
(“Streptococcal septicaemia”) is mapped to the URI
ont:icd10ca.owl#A40, where the namespace ont is
defined as http://cbakerlab.unbsj.ca:8080/
ontologies/.
It is important to clarify that, although we have pre-

sented an SQL query, we do not actually execute it and
construct explicit RDF from the results. The SQL and
the pseudo-RDF are only written to document our under-
standing of how the data is mapped. Our SADI services
implementing the mapping use slightly different SQL
queries because a service always has some piece of data-
e.g., a patient URI or diagnosis URI – given to them
as input.
In fact, we don’t even literally write SQL to docu-

ment our semantic mapping. We use PSOA RuleML
[30] – an expressive rule language – to express the
semantic mapping. For example, the population of
haio:is_performed_for and haio:identifies is captured by
the following PSOA RuleML rule:

1 And (

2 ?diagnosis # haio:Diagnosis

3 haio:is_performed_for(?diagnosis

?patient)

4 haio:identifies(?diagnosis ?disease)

5 ?disease # haio:Disease

6 ?disease # ?diseaseClass )

7 :-

8 And (

9 ?encounterRow # dwt:Nencounter

(dwa:encWID->?encounterID

10 dwa:encPatWID->?patientID)

11 ?diagnosisRow # dwt:NhrDiagnosis

(dwa:hdgWID->?diagnosisID

12 dwa:hdgHraEncWID->?encounterID

13 dwa:hdgCd->?diseaseCode)

14 ?patient = External

(modf:Patient_by_patWID(?patientID))

15 ?diagnosis = External(modf:Diagnosis_

by_hdgWID(?diagnosisID))

16 ?diseaseClass = External(modf:disease_

class_by_ICD10(?diseaseCode))

17 ?incident = External(modf:Disease_

by_diagnosis(?diagnosisID)) )

Lines 9–13 essentially represent the SQL query given
above, and lines 1-6 and 14–17 capture the meaning of
the pseudo-RDF. We provide the rule only as an illustra-
tion, so readers interested in details of PSOA RuleML are
referred to [30].
We would like to avoid making a false impression that

semantic mapping of relational data schemas is simple.

http://cbakerlab.unbsj.ca:8080/haiku/
http://cbakerlab.unbsj.ca:8080/ontologies/
http://cbakerlab.unbsj.ca:8080/ontologies/
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Typical challenges are, e.g., associated with insufficiently
expressive ontologies and the general difficulty of seman-
tic modelling of data. Since this activity deserves a sepa-
rate investigation, in this article we restrict ourselves with
a relatively brief discussion of it.

SADI services
The core part of our semantic querying infrastructure will
be a set of SADI services providing several HAIO predi-
cates according to the semantic mapping discussed above,
by drawing the necessary data from the DW. The general
scheme for the execution of these services is as follows.
The code of a service (i) accepts some input RDF describ-
ing certain entity identified with a URI, (ii) decomposes
the description into a set of values and embeds them
as parameters in one or more predefined service-specific
SQL queries, (iii) runs the SQL queries over the DW, (iv)
converts the result values to a new RDF description of the
input entity and returns the description as its output.
To illustrate this scheme, we anatomise one of the

already written services – getDiagnosisByPatient – that
enumerates all known diagnoses for a specified patient.
It implements a part of the semantic mapping defined in
Example 2 from the previous section. The input class of
the service is just haio:Patient and any URI qualified as an
instance of haio:Patient is legitimate input to the service.
The service only processes URIs of the form described in
Example 1, in a meaningful way. As soon as it receives
such a URI, it extracts the integer DW key for the patient
from the URI. The service then executes the SQL query

SELECT NhrDiagnosis.hdgWID as diagnosisID

FROM Nencounter, NhrDiagnosis

WHERE Nencounter.encPatWID = ?

AND Nencounter.encWID =

NhrDiagnosis.hdgHraEncWID

where the parameter “?” is replaced with the patient key
value. Then, for each value of diagnosisID in the result
relation, the service constructs the corresponding diagno-
sis URI (as Diagnosis_by_hdgWID(diagnosisID)), qualifies
it as an instance of haio:Diagnosis and attaches it as the
value of the property haio:patient_has_diagnosis to the
patient URI. The output class of the service, in Protégé
syntax, is (patient_has_diagnosis some Diagnosis). Note
that, in HAIO, the property haio:patient_has_diagnosis is
defined as the inverse for haio:is_performed_for, so the
service indeed implements a part of the mapping from
Example 2.
To illustrate the composition of SADI services, con-

sider another service getDiagnosisInfo which annotates
a specified diagnosis URI with the disease incident
diagnosed, through the predicate haio:identifies, and
with the time when the diagnosis was made, through

haio:situation_has_time. So the input class of getDiagno-
sisInfo is haio:Diagnosis and the output class is (identi-
fies some Disease) and (situation_has_time some Fully-
DefinedTimeInterval). Because a part of the output from
getDiagnosisByPatient is a URI explicitly qualified as an
instance of haio:Diagnosis, this URI can be directly sub-
mitted as input to getDiagnosisInfo. Practically, if some
client program has an instance :patient of haio:Patient
and “wants” to know disease incidents diagnosed for the
patient, it can first call getDiagnosisByPatient to retrieve
the relevant diagnoses, and then call getDiagnosisInfo on
these diagnosis URIs.
Overall, we currently have fourteen finished services

similar to getDiagnosisByPatient and getDiagnosisInfo,
and this number is likely to double as our infrastructure
matures. In terms of the scope, the services compute,
or will compute, instances of HAIO classes for patients,
diagnoses, procedures, drug prescriptions, medical tests,
etc, and provide information about such entities, such as
patient names, time of procedures, links between patients
and diagnoses and medical tests, etc. In terms of the
complexity, most of the services we already have are sim-
ilar or slightly more complex than getDiagnosisByPatient:
typically, the service execution amounts to instantiation
of a few SQL query templates and a fairly straightfor-
ward transformation of the query results into output RDF.
This type of programming can be easily done by moder-
ately skilled DB administrators or programmers. Finally,
in addition to SADI services working on the DW and
created specifically for HAIKU – our project on ontology-
supported HAI surveillance, we are using a number of
external general purpose SADI services, dealing mostly
with drug and disease information, and a set of services for
temporal reasoning, that will be discussed in the Temporal
Reasoning section.

Querying with Hydra and SHARE
The end users of our infrastructure will access the SADI
services and, through the services, the underlying data in
the DW, by querying our network of SADI services in
the SPARQL language. For our current experiments, we
have been using Hydra and, to some extent, SHARE – two
prototypes that implement such functionality.
To enable service discovery, we register all relevant ser-

vices in a private registry, and the query engines are
configured to query this registry for services provid-
ing particular predicates necessary to resolve SPARQL
queries being executed. Users interact with the DW only
via the semantic front end. They need not know any-
thing about the DW schema or write SQL queries, and
have no direct access to the relational data. To form
queries, users look up concepts of interest in HAIO
and accompanying ontologies, including the ontologies
referred to from the descriptions of non HAIKU-specific
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services in the registry. For browsing convenience, we
have created an umbrella ontology [31] that simply
imports all relevant ontologies, can be browsed with the
help of standard ontology editors such as Protégé, and
works, effectively, as a kind of “semantic schema” for the
DW. The user finds relevant classes and properties in
the ontology, and uses their URIs to manually form a
SPARQL query. Note that this is only a temporary solu-
tion to facilitate early stage experimentation – in the
future we will look for more productive ways to create
queries.
Finally, we would like to mention that, in con-

trast with SPARQL querying of static RDF triplestores,
Hydra, as well as SHARE, can only start calling ser-
vices if it already has some “seed” data. This seed
data comes from RDF files specified with their URLs
in FROM sections of queries. Examples of this will
be given in the evaluation section. Hydra can also get
the seed data from one or more specified SPARQL
endpoints, but we did not need this feature in our
experiments.

Major difficulty: temporal reasoning
Our very first efforts to analyse the problem of seman-
tic querying for the purposes of HAI surveillance and
research revealed that most questions we would like to
answer based on the DW contents, have temporal com-
ponents. A simple example is question (2) from the
section introducing our HAI application: “Howmany inci-
dents of diseases caused by meticillin-resistant Staphy-
lococcus aureus bacteria, were diagnosed in Quarter 1
of 2007?”. The temporal constraint embedded in this
question requires the disease incidents to be diagnosed
between Jan 1 and Mar 31, 2007. A slightly more complex
example is question (6) “Which patients were diagnosed
with SSI while they were taking corticosteroids systemi-
cally?”. In correct answers, the times of surgical site infec-
tion diagnosesmust fall within some administered periods
for corticosteroids for the same patients. To accommo-
date this kind of requirements, we have to solve two
problems.
First, we need a way to define temporal entities, such

as time intervals and instants, and to express relations
between them, i.e., we need a time ontology. We also need
predicates in HAIO to link activity- and event-like enti-
ties, such as diagnoses and procedures, to their temporal
coordinates. These features should enable our SADI ser-
vice to return temporal information for various entities,
as well as enable users to capture temporal constraints in
SPARQL.
Second, we need to be able to resolve temporal con-

straints in queries, which requires temporal reasoning at
least in the form of temporal arithmetics on the temporal
entities that can be defined.

Time ontology
As a solution to the first problem, we have created the
Extra Simple Time Ontology (ESTO) [29]. We can define
instants by specifying their XSD dateTime value:

:noon a esto:Instant;

esto:hasValue

"2011-10-02T12:00:00"^^xsd:dateTime

We can define proper time intervals by specifying their
ends:

:january2011 a esto:TimeInterval;

esto:timeRegionHasStart:january2011_start;

esto:timeRegionHasEnd:january2011_end .

:january2011_start a esto:Instant;

esto:hasValue

"2011-01-01T00:00:00"^^xsd:dateTime .

:january2011_end a esto:Instant;

esto:hasValue

"2011-01-31T24:00:00"^^xsd:dateTime .

We also have two dedicated URIs denoting infinite
points in the past and future. Time intervals in our model
are defined by specifying their ends as instants. Infinite
time intervals can be specified by using infinities as their
ends. Duration values can be associated with intervals and
instants are treated as intervals of zero duration.
The core of ESTO is a set of properties for comparison

of time intervals. The main properties are just the Allen’s
temporal predicates [32]. For example, we can check in a
query if a time interval is subsumed by another interval by
using Allen’s predicate during:

?DiagnosisTime esto:during

?AdministeredPeriod .

Temporal reasoning
Several of our SADI services supply temporal infor-
mation on various entities. For example, service
getDiagnosisInfo provides, among others, predicate
haio:situation_has_time specifying the instant when the
corresponding diagnosis was made. Likewise, service
getPharmacyServiceInfo attaches a time interval as an
instance of haio:Administered_period via the predicate
haio:has_specification. We can have a query with the
following fragment:

?Diagnosis

haio:situation_has_time ?DiagnosisTime.

?PharmacyService

haio:has_specification?

AdministeredPeriod.

?AdministeredPeriod a haio:
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Administered_period .

?DiagnosisTime esto:during?

AdministeredPeriod.

Assuming that Hydra or SHARE instantiates the vari-
ables ?DiagnosisTime and ?AdministeredPeriod with some
time interval URIs, e.g., by calling getDiagnosisInfo and
getPharmacyserviceInfo, it only needs to test the predicate
esto:during on these values. However, there is no SADI
specification-compliant way to do this because SADI
framework currently only supports services that attach
predicates and supports neither services that would test
specific predicates on specified arguments, nor services
that would accept more than one input parameter and
establish some facts about them. These SADI deficiencies
motivated us to look for a workaround.
One obvious possibility is not to use high-level predi-

cates like haio:during. We could replace our query frag-
ment with another fragment that invokes the built-in
arithmetics on XSD dateTime values via the SPARQL
FILTER construct:

?Diagnosis

haio:situation_has_time ?DiagnosisTime .

?PharmacyService

haio:has_specification ?

AdministeredPeriod .

?AdministeredPeriod a haio:

Administered_period .

?DiagnosisTime

esto:hasValue?DiagnosisTimeValue .

?AdministeredPeriod

esto:timeRegionHasStart

[esto:hasValue?AdministeredPeriodStart].

?AdministeredPeriod

esto:timeRegionHasEnd

[esto:hasValue ?AdministeredPeriodStart].

FILTER(?AdministeredPeriodStart

<= ?DiagnosisTimeValue && ?

DiagnosisTimeValue

<= ?AdministeredPeriodEnd)

The main problem with this solution is that it requires
significant extra work and too much technical knowledge
from the end user, which is exactly what we are trying to
avoid by using semantic querying. Recall that our ultimate
goal is to facilitate self-service querying. We are assuming
that using high-level temporal predicates like esto:during
with obvious semantics would not present any extra diffi-
culty for non-technical users, whereas the FILTER-based
solution would require them to remember the details of
the time period representation and make the query com-
position more error prone. So, we chose to try different
solutions that avoid complicating queries by leveraging

one of the main features of SADI – the ability of SADI
services to do computation behind semantic interfaces.
Before we describe the solutions, wewould like to briefly

discuss possibilities of implementing temporal reasoning
more complex than temporal arithmetics. In one of the
first versions of our infrastructure we experimented with
SADI services that did not require the input intervals to be
fully defined, i.e., specified with their ends given as specific
date-time values. These services could also work on inter-
vals that are only partially defined by by specifying how
they relate to other intervals, by implementing, in a lim-
ited manner, the axiomatic semantics of Allen’s temporal
predicates [32]. We skip the discussion of this possibil-
ity primarily because temporal arithmetics is sufficient for
our goal of illustrating SADI capabilities, but also because
none of our use cases so far required such reasoning.

Query ID-based solution
Our first attempt to embed temporal reasoning into the
DW querying resulted in the creation of a temporal rea-
soner in the form of a set of SADI services, providing
Allen’s predicates from ESTO and working on a shared
cache of time intervals.Wewill explain this by anatomising
two of the services – getTimeIntervalsDuringTimeInterval
and getTimeIntervalsContainingTimeInterval – providing,
respectively, Allen’s predicates contains and during, that
are inverse to each other. Suppose SHARE or Hydra
instantiates the variables ?DiagnosisTime and ?Adminis-
teredPeriod with :diag_time and :adm_period respectively,
and then decides to call getTimeIntervalsContaining-
TimeInterval on the description of :diag_time to identify
all intervals, known to the temporal reasoner, that can
be attached to :diag_time via esto:during. It’s possible that
:adm_period is not yet known to the temporal reasoner,
i.e., it is not yet in the cache, and the call to getTimeInter-
valsContainingTimeInterval will not confirm

:diag_time esto:during :adm_period

which is required to resolve the temporal constraint

?DiagnosisTime esto:during ?

AdministeredPeriod .

in the query. However, the temporal reasoner will now
remember the interval :diag_time and, when the other
service getTimeIntervalsDuringTimeInterval is called on
:adm_period, it will attach esto:contains :diag_time to
:adm_period, which is sufficient to resolve the constraint
because esto:contains is inverse to esto:during.
Obviously, this approach cannot be practical unless

there is a way to segment the time interval cache in
the temporal reasoner into sub-caches corresponding
to different queries because otherwise intervals from
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different queries will be returned by temporal services and
pollute the working memory of the query engine. SADI
does not support any notion of query IDs, so we had to
devise a workaround for this.
To this end, we created a small ontology [33] pro-

viding class cont:Context and property cont:hasContext,
where cont is an abbreviation for the ontology names-
pace. Instances of cont:Context can represent query IDs
and cont:hasContext links various resources to the IDs of
the relevant queries. We assume that all SADI services to
be used for querying over the HAI DW can accept inputs
with attached cont:hasContext and propagate the query
IDs to all URIs in the output. We also require users to
attach a unique query ID to all URIs mentioned in a query
and in seed data. These conventions guarantee that all
time intervals submitted to the temporal reasoner services
carry query IDs with them and the services use this IDs to
segment the cache.

Candidate list-based solution
Although the query ID-based approach solves the prob-
lem in principle, it suffers from two major drawbacks.
First, the requirement to propagate query IDs imposed on
services strongly hinders the use of external SADI services
in queries: the query engine can only use an external ser-
vice without query ID propagation if the data returned
by the service does not have to be submitted as input to
services requiring cont:hasContext. Second, the temporal
reasoning services based on comparing input time inter-
vals with absolutely all known time intervals, including
instances, tend to produce too large outputs. In one of
our experiments involving processing several thousands
of diagnoses from the DW, a batch call to getTimeIn-
tervalsDuringTimeInterval produced 750,000 RDF triples
which took several minutes to transmit from the service
to the query engine over the Internet. These problems
motivated us to look for a more efficient solution.
Hydra experimentally supports the following exten-

sion to the SADI framework. When it realises that
testing some predicate, say esto:contains, on two spe-
cific resources, say t1 and t2, could help to satisfy
the query being executed, it asserts an additional fact
t1 ext:isComparedToObject t2 in its working mem-
ory, where ext:isComparedToObject is a special predicate
introduced specifically for this purpose. This predicate
can be used to implement predicate-testing services as
follows. Suppose, we want a SADI service testing the pred-
icate esto:contains, i.e., somehow given two time interval
descriptions x and y, the service has to compare them and
if the condition x esto:contains y holds, report this.
With the help of ext:isComparedToObject, the pair of val-
ues can be submitted bymaking x themain input node and
adding x ext:isComparedToObject y to its description.
Our service, say getTimeIntervalsDuringTimeInterval,

having received x, looks for all resources yi attached to it
via ext:isComparedToObject and compares x to them by
doing temporal arithmetics, e.g., by extracting specific val-
ues for interval ends and comparing them with appropri-
ate Java methods. For all yj satisfying x esto:contains yj ,
the service adds the triple x esto:contains yj to the out-
put description of x. In other words, the client program
sends a list of candidates yi to the service by attaching
them via ext:isComparedToObject, and the service selects
the output property values from the provide list rather
than computes completely new values.
This output candidate list-based solution is free from

the drawbacks of the query ID-based solution discussed
above. First, only the services that are meant to be
predicate-testing services need to support the predicate
ext:isComparedToObject in the input. No other services
are affected and any external services can be used as
long as they implement compatible data modelling. Sec-
ond, there is no combinatorial explosion in the out-
puts caused by irrelevant comparisons of many temporal
entities to many temporal entities: services supporting
ext:isComparedToObject only perform comparisons that
are relevant to the query and directly requested by the
query engine. The cost of this elegance and corresponding
performance gain is on-compliance with the current SADI
specification: services based on ext:isComparedToObject
will be useless with clients not supporting this spe-
cial predicate. However, once this solution is tested in
more scenarios, the corresponding extension to the SADI
framework will be officially proposed.

Evaluation: pilot use cases
To empirically test the utility of our SADI-based approach
and infrastructure for semantic querying of The Ottawa
Hospital DW, we formulated four SPARQL queries imple-
menting different questions from the list in the Target
query types section above. Two of the queries were exe-
cuted with SHARE, as was reported earlier in [19], albeit
using service implementations modified to only return
a small part of the generated output data in order to
increase SHARE performance. The other two queries
were executed with Hydra with full versions of the ser-
vices. Since our research task is to demonstrate the prin-
ciple possibility of using SADI Semantic Web services for
semantic querying of clinical data, we do not pay much
attention to the query performance yet. We would only
like to briefly mention that the two queries executed with
SHARE took several hours and Hydra took between 20
minutes and 1 hour (on a commodity laptop) to compute
all answers of the two queries it was tested on. Although
the first answers are obtained by Hydra in minutes, this
kind of performance is still unlikely to be sufficient in
practice. However, note that Hydra is in its infancy and
its performance is expected to improve by several orders
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of magnitude when it matures into a commercial quality
system.
Let us now discuss the implemented queries.

Use case 1
Our first query intended to implement Question (9) How
many diabetic patients were diagnosed with surgical site
infections (SSI)?, is as follows:

1 SELECT DISTINCT ?Patient ?Incident

?Surgery

2 FROM <http://cbakerlab.unbsj.ca:

8080/haiku/query1_as_context.rdf>

3 FROM <http://cbakerlab.unbsj.ca:

8080/haiku/operative_procedure.rdf>

4 WHERE {

5 haio:Operative_procedure haio:

procedure_type_has_instance ?Surgery .

6 # Select surgeries that cause SSI:

7 ?Surgery haio:has_consequence

[haio:disease_has_type haio:SSI] .

8 # Retrieve patients:

9 ?Surgery haio:is_done_on ?Patient .

10 # Retrieve diabetes diagnoses for

the patient:

11 ?Patient haio:patient_has_diagnosis ?

DiabetesDiagnosis .

12 ?DiabetesDiagnosis haio:identifies

13 [haio:disease_has_type haio:

Diabetes_mellitus] .

14 # Check that the surgery was performed

15 # after the diabetes diagnosis:

16 ?DiabetesDiagnosis haio:

situation_has_time ?DiagTime .

17 ?Surgery haio:situation_has_time ?

SurgeryTime .

18 ?SurgeryTime esto:after ?DiagTime .

19 # Check that the surgery was

performed within

20 # 1 week after the diabetes diagnosis:

21 ?DiagTime esto:meets ?IntervalBetween .

22 ?IntervalBetween esto:meets ?

SurgeryTime .

23 ?IntervalBetween esto:

timeIntervalHasDuration

[esto:hasValue ?Duration] .

24 FILTER(?Duration <= "P7D"^^xsd:

duration) }

Consider the FROM clauses first. File query1_as_
context.rdf contains a description of a query ID
URI as an instance of cont:Context and operative_
procedure.rdf attaches the query ID to the URI
haio:Operative_procedure to make it comply with the

conventions described in the Temporal Reasoning section.
This is not necessary when the query is executed with
Hydra and predicate-testing versions of the temporal
reasoning services.
Let us now discuss the ontological primitives that

form the query. In line 5, we use haio:Operative_
procedure to specify the class of all surgeries, and
haio:procedure_type_has_instance to link it to its
instances. We use haio:has_consequence to link surgeries
to their complications and haio:disease_has_type, a spe-
cialisation of rdf:type, to test if a complication is an SSI.
Predicate haio:is_done_on is sufficient to retrieve the
patients who undergo the corresponding surgeries. Predi-
cates haio:patient_has_diagnosis and haio:identifies serve
to retrieve diagnoses and diseases being diagnosed, and
haio:disease_has_type checks if the disease is of the type
haio:Diabetes_mellitus. In lines 16–18, we retrieve the
times of the surgery and diabetes diagnosis, and compare
them. In lines 21–24, we identify the interval between
those times and test its duration.
The query execution starts with a call to the service

getProcedureByClass that enumerates URIs of all proce-
dures in the DW whose CCI [34] codes indicate that they
are of the specified procedure class. Line 7 in the query
is resolved with a call to getSSIBySurgery that retrieves
incidents of infections that are suspected complication of
the specified operative procedure. For this purpose, the
current service prototype extracts from the DW all diag-
noses made for the same patient within 30 days from
the operation, and selects only incidents with ICD-10
codes indicating complications of surgeries. Service get-
PatientByProcedure instantiates ?Patient in line 9, then
getDiagnosisByPatient instantiates ?DiabetesIncident with
all diseases the patient was diagnosed with. These ser-
vices use fairly obvious SQL queries to the DW. Testing
that ?DiabetesIncident is a diabetes mellitus (lines 12–13)
is done by calling getDiseaseClass that will assign sub-
classes of haio:Disease based on the ICD-10 codes from
the DW table for diagnoses, although the current pro-
totype can only deal with haio:Diabetes_mellitus. Alter-
natively, to improve performance, we could implement
it as a predicate-testing service supporting the predicate
ext:isComparedToObject. Lines 16-17 are resolved with
getDiagnosisInfo and getProcedureInfo that retrieve the
necessary times from the records of encounters referred
to from the DW tables for diagnoses and procedures.
Lines 18–23 are resolved with several calls to temporal
reasoning services.
Finally, to illustrate the benefits of semantic querying,

we provide a simplified SQL query equivalent to our
SPARQL query:

SELECT proc_enc.encPatWID, hprcWID,

diab_diag.hdgWID
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-- patient ID, procedure ID and diagnosis

ID

FROM NhrProcedure, Nencounter proc_enc,

NhrDiagnosis diab_diag,

Nencounter diab_diag_enc, NhrDiagnosis

ssi_diag,

Nencounter ssi_diag_enc

WHERE hprcCd LIKE ’1

AND proc_enc.encWID=NhrProcedure.

hprcHraEncWID

AND proc_enc.encPatWID = diab_diag_enc.

encPatWID

AND diab_diag_enc.encWID=diab_diag.

hdgHraEncWID

-- prefixes for coded for diabetes

mellitus:

AND (diab_diag.hdgCd LIKE ’E10

diab_diag.hdgCd LIKE ’E12

diab_diag.hdgCd LIKE ’E14

AND proc_enc.encPatWID = ssi_diag_enc.

encPatWID

AND NhrProcedure.hprcHraEncWID = proc_enc.

encWID

AND ssi_diag_enc.encWID = ssi_diag.

hdgHraEncWID

-- SSI must be diagnosed in this time

interval:

AND (ssi_diag_enc.encStartDtm -

NhrProcedure.hprcDtm) >=(INTERVAL ’3’ DAY)

AND (ssi_diag_enc.encStartDtm -

NhrProcedure.hprcDtm) <(INTERVAL ’30’ DAY)

-- SSI codes prefixes:

AND (ssi_diag.hdgCd LIKE ’T802

ssi_diag.hdgCd LIKE ’T826

ssi_diag.hdgCd LIKE ’T835

ssi_diag.hdgCd LIKE ’T845

ssi_diag.hdgCd LIKE ’T847

ssi_diag.hdgCd LIKE ’T874

-- diabetis must be diagnosed within

a week before the surgery

AND (diab_diag_enc.encStartDtm -

NhrProcedure.hprcDtm) <= (INTERVAL ’7’ DAY)

It is clear that the user composing such an SQL query
would have to know some SQL and, more importantly, be
able to navigate the complex DW schema and learn to use
rather non-mnemonic table and attribute identifiers. The
query composition process is also quite error prone, e.g.,
the user would have to be very accurate not to omit some
of the diabetes or SSI-related code prefixes. In contrtast,
the SPARQL query hides all such technicalities behind
a relatively simple and mnemonic notation. In seman-
tic querying, the burden of sorting out the technicalities
lies on the engineers implementing it and, although it

may require a considerable effort, the results can be later
reused by multiple users in multiple scenarios.

Use case 2
Our second query, implementing Question (6) What
patients were diagnosed with SSI while they were taking
corticosteroids systemically?, is as follows:

1 SELECT DISTINCT ?Patient

2 FROM <http://cbakerlab.unbsj.ca:

8080/haiku/query1_as_context.rdf>

3 FROM <http://cbakerlab.unbsj.ca:

8080/haiku/corticosteroids.rdf>

4 WHERE

5 { # corticosteroids for systemic use

6 <http://cbakerlab.unbsj.ca:

8080/ontologies/atc.owl#H02>

7 atcso:hasSubClass ?DrugClass .

8 # ’is referred to by’

9 ?DrugClass sio:SIO_000212 ?

DIN_Record .

10 # ’has attribute’

11 ?DIN_Record a lsrn:DIN_Record; sio:

SIO_000008 ?DIN_Identifier .

12 # ’has value’

13 ?DIN_Identifier a lsrn:DIN_Identifier;

sio:SIO_000300 ?DIN .

14 # ’is about’

15 ?DIN_Record sio:SIO_000332 ?DrugProduct.

16 ?PharmService haio:manages ?DrugProduct;

haio:is_service_for ?Patient .

17 # Select patients with SSI:

18 ?Patient haio:patient_has_diagnosis ?

Diagnosis .

19 ?Diagnosis haio:identifies

[haio:disease_has_type haio:SSI] .

20 # Temporal check:

21 ?PharmService haio:has_specification ?

AdminPeriod .

22 ?AdminPeriod a haio:Administered_period.

23 ?Diagnosis haio:situation_has_time[esto:

during ?AdminPeriod] . }

The file corticosteroids.rdf simply attaches a query ID
to the URI for the class ’corticosteroids for systemic use’
from the ATC ontology. The line with hasSubClass is
resolved with a call to http://cbakerlab.unbsj.ca:8080/
atc-sadi/getSubclassByATCDrugClass, which is an exter-
nal, i.e., non DW-specific service. Note, however, that
we had to modify the service code for our experiments
with SHARE, to make it propagate query IDs if they are
provided in the input. This is not necessary for tempo-
ral reasoning with Hydra, as explained in the section on
temporal reasoning.

http://cbakerlab.unbsj.ca:8080/atc-sadi/getSubclassByATCDrugClass
http://cbakerlab.unbsj.ca:8080/atc-sadi/getSubclassByATCDrugClass
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In lines 9–15, we use SIO primitives and LSRN [35]
identifiers to leverage the SIO modeling for database
records. In our situation, an ATC drug class is “referred
to by” a DIN record which has a DIN ID as an attribute
and whose subject is a drug product, identified with
a URI. Lines 9–13 are resolved with another general
purpose service http://cbakerlab.unbsj.ca:8080/din-sadi/
getDINByATCDrugClass, also conforming to the context
propagation convention.
In the first half of line 16, we link pharmacy services to

the drug product via haio:manages. It is resolved, together
with line 15, by a call to service getPharmacyServiceBy-
DIN, which obtains the necessary data from table Nph-
mIngredient in the DW containing DINs of prescribed
drugs as a separate attribute.
The predicate haio:is_service_for links services to the

corresponding patients and is provided by getPatient-
ByPharmacyService, trivially implemented as a join of
appropriate DW tables. Primitives from the remaining
lines, and the services implementing them, have already
been discussed.

Use case 3
The following query implements Question (2) How many
patients were infected with methicillin-resistant Staphylo-
coccus aureus (MRSA) in Quarter 1 of 2007?:

1 SELECT ?incident ?kegg_org_rec ?

kegg_disease_rec ?icd10_id

2 FROM <http://cbakerlab.unbsj.ca:

8080/haiku/quarter1_2007.rdf>

3 FROM <http://cbakerlab.unbsj.ca:

8080/haiku/staphylococcus_aureus.rdf>

4 WHERE

5 {

6 # ’name’

7 ?bacteria_name_attr a sio:SIO_000116.

8 # ’has value’

9 ?bacteria_name_attr sio:SIO_000300 "

Staphylococcus aureus N315 (MRSA/VSSA)".

10 # KEGG Organism record for the bacteria:

11 # ’has value’

12 #?bacteria_name_attr sio:SIO_000300 ?

kegg_org_name;

13 # ’is attribute of’

14 sio:SIO_000011 ?bacteria_type.

15 # ’organism’ ’is subject of’

16 ?bacteria_type rdfs:subClassOf sio:

SIO_010000; sio:SIO_000629?kegg_org_rec.

17 # ’has attribute’

18 ?kegg_org_rec a lsrn:KEGG_Organism_

Record;sio:SIO_000008 ?kegg_org_id_attr.

19 # ’has value’

20 ?kegg_org_id_attr a lsrn:KEGG_Organism_

Identifier; sio:SIO_000300 ?kegg_org_id.

21 # KEGG DISEASE corresponding to the

bacteria:

22 ?bacteria_type keggso:pathogen_causes_

disease_incident [a ?kegg_disease_type].

23 # ’is subject of’

24 ?kegg_disease_type sio:SIO_000629 ?

kegg_disease_rec .

24 ?kegg_disease_rec a lsrn:KEGG_DISEASE_

Record;

25 # ’has attribute’

26 sio:SIO_000008 ?kegg_disease_id_attr .

27 ?kegg_disease_id_attr a lsrn:KEGG_

DISEASE_Identifier;

28 # ’has value’

29 sio:SIO_000300 ?kegg_disease_id .

30 # Corresponding ICD-10 class and ID:

31 ?common_incident a ?kegg_disease_type;

a ?icd10_disease_type .

32 # ’is subject of’

33 ?icd10_disease_type sio:SIO_000629 ?

icd10_rec .

34 # ’has attribute’ ’has value’

35 ?icd10_rec a lsrn:ICD10CA_Record; sio:

SIO_000008 [sio:SIO_000300 ?icd10_id] .

36 # Known incidents:

37 ?icd10_disease_type haio:

disease_type_has_instance ?incident .

38 ?incident a haio:Disease; haio:

identified_through ?diagnosis .

39 ?diagnosis a haio:Diagnosis .

40 # Temporal check:

41 ?diagnosis haio:situation_has_time

[esto:during esto:quarter1_2007] . }

The files in the FROM clauses contain RDF descrip-
tions of the time interval esto:quarter1_2007 represent-
ing Quarter 1 of 2007, and a resource representing
a name with the value “Staphylococcus aureus N315
(MRSA/VSSA)”.
The main feature distinguishing this query from the

two previous queries is the extensive use of external
SADI services: all conditions in Lines 12–35 require
calls to such services. The external (not based on our
DW) services used by Hydra provide the following func-
tionality: (a) finding a KEGG Organism record and
ID by the bacteria name (Lines 12–20), (b) retrieving
KEGG DISEASE records and IDs for conditions caused
by organisms specified with their KEGG Organism IDs
(Lines 22–29), and (c) ICD-10 disease classes correspond-
ing to diseases specified with their KEGG DISEASE IDs
(Lines 31–35).

http://cbakerlab.unbsj.ca:8080/din-sadi/getDINByATCDrugClass
http://cbakerlab.unbsj.ca:8080/din-sadi/getDINByATCDrugClass
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Note that by using the external services we go far
beyond what is possible with SQL querying of the DW.
This use case demonstrated that the data integration
aspect of SADI is an important advantage. However, we
refrain from a more thorough discussion of this because
data integration with SADI has been studied in several
specialised projects (see, e.g., [15-18]).

Use case 4
The following query implements Question (3) What
patients received a diagnosis of sepsis within 30 days of
being diagnosed with SSI?:

1 SELECT ?sepsis_incident ?icd10_id ?

ssi_incident ?duration

2 FROM <http://cbakerlab.unbsj.ca:

8080/haiku/sepsis.rdf>

3 WHERE

4 {

5 # ICD-10 disease classes related to

sepsis:

6 ?sepsis_keyword sio:SIO_000300

"sepsis" .

7 # ’is similar to’

8 ?sepsis_keyword sio:SIO_000283 ?

disease_superclass_name_attr .

9 # ’name’

10 ?disease_superclass_name_attr a sio:

SIO_000116;

11 # ’has value’

12 sio:SIO_000300 ?disease_superclass_

name;

13 # ’is attribute of’

14 sio:SIO_000011 ?disease_superclass .

15 # ’disease’

16 ?disease_superclass rdfs:subClassOf sio:

SIO_010299 .

17 ?disease_class rdfs:subClassOf ?

disease_superclass;

18 # ’is subject of’

19 sio:SIO_000629 ?icd10_record .

20 # ’has attribute’

21 ?icd10_record a lsrn:ICD10CA_Record;

sio: SIO_000008 ?icd10_id_attr .

22 # ’has value’

23 ?icd10_id_attr a lsrn:ICD10CA_

Identifier; sio:SIO_000300 ?icd10_id .

24 # Patients with sepsis diagnoses:

25 ?disease_class haio:disease_type_has_

instance ?sepsis_incident .

26 ?sepsis_incident a haio:Disease; haio:

identified_through ?sepsis_diagnosis .

27 ?sepsis_diagnosis a haio:Diagnosis;

haio: is_performed_for ?patient .

28 # SSI diagnoses for the same patient:

29 ?patient haio:patient_has_diagnosis

[haio:identifies ?ssi_incident] .

30 ?ssi_incident haio:disease_has_type

haio:SSI .

31 # Sepsis was diagnosed shortly after

the SSI?

32 ?sepsis_diagnosis haio:situation_has

_time ? sepsis_diagnosis_time .

33 ?ssi_diagnosis haio:situation_has_time ?

ssi_diagnosis_time .

34 ?sepsis_diagnosis_time esto:after ?

ssi_diagnosis_time .

35 ?ssi_diagnosis_time esto:meets ?

between .

36 ?between esto:meets ?

sepsis_diagnosis_time .

37 ?between esto:timeIntervalHasDuration

[esto:hasValue ?duration] .

38 FILTER(?duration <= "P30D"^^xsd:

duration) }

In the previous query in Use case 3, a specific bacteria
name “Staphylococcus aureus N315 (MRSA/VSSA)” was
used, which assumed that the user somehow knows the
precise name from the KEGG Organism nomenclature.
Sometimes this assumption is too strong and we want
the user to be able to formulate less precise questions as
SPARQL queries. The current use case illustrates this: we
assume that the user is interested in various disease names
mentioning “sepsis”. The work of finding such names is
done by an external SADI service that resolves the con-
ditions in lines 8–16. Other external SADI services used
by Hydra provide the following functionality: (a) finding
URIs of disease classes from our ICD-10 ontology (see
[28]), given precise names of the disease classes, (b) enu-
merating subclasses of a disease class specified with an
ICD-10 URI – this is necessary because potentially a dis-
ease class related to sepsis may have subclasses not having
“sepsis” in their names, and (c) mapping ICD-10 disease
class URIs to ICD-10 records and IDs.

Related work
We are not aware of any work on semantic querying of
relational databases via Semantic Web services. However,
there have been a lot of attempts, since as early as 1993
[36], to implement semantic querying of RDB. We cannot
give a comprehensive overview of all related publications,
so we will focus our discussion on the key concepts and
methods.

Declarative semantic mappings
Practically all existing approaches to semantic querying of
RDB use some sort of declarative mappings from source
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relational data schemas to target semantic schemas.
The most popular state-of-the-art approaches use OWL
ontologies or RDF vocabularies as target schemas (see,
e.g., [8-10,36]), but different approaches have also been
tried – e.g., in [37] the target semantic schema is essen-
tially a regular relational schema with tables correspond-
ing to well-defined concepts with mnemonic names, that
are easier to understand for a non-programmer user than
the source schema.
The purpose of the semantic mappings is to define an

interpretation of data from an RDB in terms of the con-
cepts and relations defined in the target schema. The
implementations then use these mappings to either com-
pletely translate the relational data or by applying them in
query time, which will be discussed below in more detail.
Note that we are also using declarative mappings to doc-
ument the semantic modelling of our data (see Section
Mapping the DW schema to HAIO above).
Declarative mappings are expressed in the form of

axioms postulating how facts (rows) in the source RDB
are related to instances and facts in the target schema.
Typically, the axioms are Horn rules in some specific syn-
tactic form, such as OWL axioms, as in [9], or SPARQL
CONSTRUCT queries, as in SWObjects [38]. However,
there are approaches that support much more expressive
semantic mapping and query languages: e.g., [11,39] can
deal with any first-order logic axioms.
Declarative semantic mappings for RDB are often cre-

ated manually by programmers. D2R [40] and Virtuoso
[41] can also automatically generate a preliminary map-
ping that can be later modified by the user, e.g., in order to
align it with the target schema. The RDB2RDF Working
Group [42] atW3C is taking this approach further by stan-
dartising both the language R2RML for mapping RDB to
RDF, and defining a standard way to map schemas (Direct
Mapping). The virtual direct graph produced by applying
the Direct Mapping to a relational schema can be further
mapped to the target schema by additional axioms, e.g.,
SWObjects implements SPARQL CONSTRUCT for this
purpose.
The declarative nature of axiom-like mappings makes

them relatively easy to create and maintain, at least com-
pared to our approach based on hard-coding mappings in
Java or other programming languages. However, declara-
tive mappings have some limitations that are hard to over-
come practically: certain things are much easier to define
programmatically than axiomatically, due to natural lim-
itations of mapping languages and implementations. For
example, defining Allen’s predicates for temporal com-
parison in a practical fashion, or defining the Body Mass
Index function is likely to be challenging with some of the
existing declarative approaches. Mapping and retrieving
data from non-relational sources is even harder. Over-
all, the SADI-based approach is more flexible – even

very tricky relationships between the source and target
schemas can be captured by programming.

Materialisation
Defining a semantic mapping for an RDB creates a virtual
database instantiating the target semantic schema. Since
most of the state-of-the-art approaches map relational
data to RDF, for simplicity we can speak about virtual RDF
graphs. A straight forward way to use a virtual RDF graph,
e.g., for query answering, is to actually materialise it, i.e.,
to create a triplestore representing it and make it available
for querying or browsing. This approach is implemented
at least in Triplify [43] and Minerva [44].
An obvious advantage of this approach is that even

large RDF graphs materialised in a triplestore can be pro-
cessed very efficiently, due to the availability of mature
highly optimised implementations. One obvious limita-
tion of this approach is its inability to deal with live data:
the data has to be transformed into RDF before it can
be queried. However, most Clinical Intelligence scenar-
ios other than surveillance, don’t require querying live
data.
A more significant practical problem is the limited

scope of the data that can be stored in the triplestore:
there are only so many data sources that can be integrated
into it. This limits the scope of analyses possible with
the data without additional processing layers. Our SADI-
based approach is free from this limitation – thousands
of information sources may be wrapped as SADI services
and immediately available for ad hoc analyses.

Query rewriting
An alternative to materialisation is query rewriting, when
queries in terms of the target semantic schema are
converted to equivalent queries in terms of the source
relational schema. This approach is very popular and
is implemented at least in [9,11,37,40,41,45]. It allows
querying live data and requires lighter infrastructure that
materialisation: there is no need to set up and maintain a
triplestore and data translation utilities. However, it suf-
fers from the same drawback as materialisation, since, by
itself, it does not support data integration.

Relation to data integration
We would like to mention that some of the prior exper-
imental efforts on semantic querying of RDB specifically
targeted the data integration task rather than self-service
ad hoc querying of isolated RDB. For example, SIMS [36]
and TAMBIS [8] – early and well-cited semantic querying
projects – were focused on data integration. The integra-
tion aspect of semantic querying is especially important
in the Clinical Intelligence context because many analyses
of clinical data require drawing data from external sources
of information about diseases, drugs, infectious agents,
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medical equipment, etc, as exemplified by the last three of
our four use cases.
Currently, publishing relational data as Linked Data

seems to be the most popular approach to semantic inte-
gration of relational data (see, e.g., [40,41]). For example,
the Virtuoso SPARQL engine can crawl theWeb by resolv-
ing the URIs of RDF resources and using the obtained
data together with the underlying relational data to answer
SPARQL queries. However, although its Web-like nature
makes Linked Data easy to surf, efficient implementa-
tion of querying of Linked Data is still a major technical
challenge.
Another possibility is federated querying of multiple

distributed SPARQL endpoints each representing a sep-
arate RDB or data source of a different type. This pos-
sibility is currently almost hypothetical because efficient
federated querying is difficult: the optimisation methods
(mostly inherited from relational databases) that work
well on triplestores, do not transfer well to the case of
distributed endpoints.
Since SADI is originally designed with the data federa-

tion task in mind, it’s not surprising that our SADI-based
approach copes well with the integration challenge. Our
experiments with Use cases 3-4 suggest that if the external
data sources are available via SADI services, the integra-
tion is automatic and transparent to the user.

Temporal reasoning
Although we discuss temporal reasoning in this article
primarily to illustrate the capabilities of SADI, in par-
ticular the extensibility of our approach, because of the
practical importance of the temporal reasoning task, we
would like to briefly discuss existing work in this direc-
tion. All publications related to SPARQL querying with
temporal constraints we have found address the prob-
lem of defining mechanisms for specifying validity time of
assertions in RDF, and study algorithms that can answer
queries extended accordingly. For example, [46], which is
also a good source of references on the topic, proposes
extensions to RDF and SPARQL, that allow to specify
the validity time of RDF facts and formulate queries that
may require testing or retrieval of temporal coordinates
of facts. The article also defines a decision procedure
for temporal entailments by reducing them to their non-
temporal counterparts, and an algorithm for answering
extended SPARQL queries. Similar earlier efforts were
presented in [47-49].
Our approach is much more lightweight because we

do not aim at processing validity time of arbitrary state-
ments: our SADI services can process any time region
descriptions modulo a simple temporal ontology and
there are no constraints on the origin of these tem-
poral values or on the way they are attached to the
entities they characterise (situations, processes, events).

Consequently, our approach does not require any changes
to RDF or SPARQL, and requires only minor extensions
to the SPARQL implementation. On the other hand, our
approach is specific to SADI andmay not transfer to other
SPARQL implementations.
Temporal arithmetics or more complex temporal rea-

soning are useful primarily in the context of relatively
expressive querying. However, many scenarios related to
clinical data analysis do not require much flexibility for
making data selections but can benefit from more inter-
activity and visual analysis facilities. One paradigm that
caters for such needs is visualisation of temporal cat-
egorical data (see, e.g., [50]). The idea is to identify a
limited number of key events associated with a patient,
such as procedures of certain types and qualitative find-
ings of medical tests of certain types, and put the events
on a timeline. Such timelines can be depicted and visually
manipulated by users to obtain insights into the patient
data based on relative temporal positions of the events
and their frequency. This approach is implemented in
the Lifelines2 system [50]. Note that visualisation is quite
orthogonal to data selection and the possibility of combin-
ing semantic querying with timelines-based visualisation,
so that the former is used as a flexible means of extract-
ing input data for the latter, poses an interesting research
question.

Conclusions and future work
The main conclusion from our work on semantic query-
ing for Hospital-Acquired Infections surveillance and
research so far is that the use of SADI services via a
SPARQL interface is a viable general direction in search
for a comprehensive solution, although a lot of experimen-
tal work remains to be done on the project. In particular,
the flexibility of the SADI-based approach stemming from
the possibility of using arbitrarily complex programming
inside services, makes it sufficiently powerful to cope
with problems that seem challenging for approaches using
declarative data-to-ontology mappings. We have used
temporal reasoning as an example of a problem where the
SADI approach excels.
In our future work, when our SADI-based infrastruc-

ture is sufficiently mature for comparative studies, we are
planning to also try several declarative approaches as a
means to semantically query the datawarehouse, such as
D2R [40] and query rewriting [9,11].
The downside of the SADI approach’s reliance on pro-

gramming is the relatively high cost compared to declar-
ative approaches: reasonably well designed declarative
mappings are easier to create, examine and modify than
Java or Perl code of SADI services. In our future work
we will look for ways to reduce the cost. A promising
direction is to reuse the PSOA RuleML rules, that we cur-
rently write only to document the semantic data mapping,
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for automatic generation of services. The core idea is to
use Incremental Query Rewriting [11] to automatically
“compile” semantic descriptions of SADI services to SQL
queries to the HAI datawarehouse, using the semantic
mapping rules. This seems feasible at least for simple
services. For example, consider the description of getDi-
agnosisByPatient. We assert input class membership for a
skolem constant (URI), say :my_input :

:my_input a haio:Patient

The output class gives rise to the following query
(expressed in PSOA RuleML syntax):

:answer(?diagnosis) :-

haio:patient_has_diagnosis

(:my_input ?diagnosis)

We load the input class assertion and the query together
with the rule base encoding the DW semantic mapping
and all the referenced ontologies, into a query rewriting
reasoner, e.g., the prototype from [11], which should be
able to trivially derive the following schematic answer for
the query, expressed as a PSOA RuleML rule:

1 :answer(?diagnosis)

2 :-

3 And

4 (

5 ?encounterRow #

6 dwt:Nencounter(dwa:encWID->?encounterID

7 dwa:encPatWID->?patientID)

8 ?diagnosisRow #

9 dwt:NhrDiagnosis(dwa:hdgWID->?diagnosisID

10 dwa:hdgHraEncWID->?encounterID

11 dwa:hdgCd->?diseaseCode)

12 :my_input =

13 External(modf:Patient_by_patWID

(?patientID))

14 ?diagnosis =

15 External(modf:Diagnosis_by_hdgWID

(?diagnosisID))

16 )

The two conditions in lines 5–11 can be represented as
the following (parameterised) SQL query:

SELECT NhrDiagnosis.hdgWID as diagnosisID

FROM Nencounter, NhrDiagnosis

WHERE Nencounter.encPatWID = ?

AND Nencounter.encWID =

NhrDiagnosis.hdgHraEncWID

Assuming that patWID_by_Patient denotes the
inverse function for Patient_by_patWID, the generated

service code will replace the parameter “?” with
patWID_by_Patient(input), where input is the actual
input patient URI, before executing the query on the
DW. This is justified by lines 12–13 in the schematic
answer. Lines 14-15 tell the service code generator what
the service should do with the results of the SQL query:
the values of diagnosisID needs to be converted to URIs
with the help of Diagnosis_by_hdgWID before they
are attached to the input URI via the property
haio:patient_has_diagnosis.
We are going to develop these ideas in a forthcoming

project. In the longer term, we will also evaluate the trans-
ferability of our results to other HAI-related settings, e.g.,
other HAI-related databases, and other applications of
Clinical Intelligence, such as adverse drug event monitor-
ing and clinical trial cohort selection.
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