
JOURNAL OF
BIOMEDICAL SEMANTICS

Kuhn et al. Journal of Biomedical Semantics 2014, 5:10
http://www.jbiomedsem.com/content/5/1/10

RESEARCH Open Access

Mining images in biomedical publications:
Detection and analysis of gel diagrams
Tobias Kuhn1*, Mate Levente Nagy3, ThaiBinh Luong2 and Michael Krauthammer2,3

Abstract

Authors of biomedical publications use gel images to report experimental results such as protein-protein interactions
or protein expressions under different conditions. Gel images offer a concise way to communicate such findings, not
all of which need to be explicitly discussed in the article text. This fact together with the abundance of gel images and
their shared common patterns makes them prime candidates for automated image mining and parsing. We introduce
an approach for the detection of gel images, and present a workflow to analyze them. We are able to detect gel
segments and panels at high accuracy, and present preliminary results for the identification of gene names in these
images. While we cannot provide a complete solution at this point, we present evidence that this kind of image
mining is feasible.

Introduction
A recent trend in the area of literature mining is the
inclusion of images in the form of figures from biomed-
ical publications [1-3]. This development benefits from
the fact that an increasing number of scientific articles
are published as open access publications. This means
that not just the abstracts but the complete texts includ-
ing images are available for data analysis. Among other
things, this enabled the development of query engines
for biomedical images like the Yale Image Finder [4] and
the BioText Search Engine [5]. Below, we present our
approach to detect and access gel diagrams. This is an
extended version of a previous workshop paper [6].
As a preparatory evaluation to decide which image type

to focus on, we built a corpus of 3 000 figures that allows
us to reliably estimate the numbers and types of images in
biomedical articles. These figures were drawn randomly
from the open access subset of PubMed Central and then
manually annotated. They were split into subfigures when
the figure consisted of several components. Figure 1 shows
the resulting categories and subcategories. This classifi-
cation scheme is based on five basic image categories:
Experimental/Microscopy, Graph, Diagram, Clinical and
Picture, each divided into multiple subcategories. It shows
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that bar graphs (12.4%), black-on-white gels (12.0%), fluo-
rescencemicroscopy images (9.4%), and line graphs (8.1%)
are the most frequent subfigure types (all percentages are
relative to the entire set of images).
We targeted different kinds of graphs (i.e., diagrams

with axes) in previous work [7], and we decided to focus
this work on the second most common type of images:
gel diagrams. They are the result of gel electrophore-
sis, which is a common method to analyze DNA, RNA
and proteins. Southern, Western and Northern blotting
[8-10] are among the most common applications of gel
electrophoresis. The resulting experimental artifacts are
often shown in biomedical publications in the form of
gel images as evidence for the discussed findings such as
protein-protein interactions or protein expressions under
different conditions. Often, not all details of the results
shown in these images are explicitly stated in the caption
or the article text. For these reasons, it would be of high
value to be able to reliably mine the relations encoded in
these images.
A closer look at gel images reveals that they follow reg-

ular patterns to encode their semantic relations. Figure 2
shows two typical examples of gel images together with
a table representation of the involved relations. The ulti-
mate objective of our approach (for which we can only
present a partial solution here) is to automatically extract
at least some of these relations from the respective images,
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Figure 1 Categorization of images from open access articles of PubMed Central.

possibly in conjunction with classical text mining tech-
niques. The first example shows aWestern blot for detect-
ing two proteins (14-3-3σ and β-actin as a control) in four
different cell lines (MDA-MB-231, NHEM, C8161.9, and
LOX, the first of which is used as a control). There are
two rectangular gel segments arranged in a way to form a
2 × 4 grid for the individual eight measurements combin-
ing each protein with each cell line. A gel diagram can be
considered a kind of matrix with pictures of experimen-
tal artifacts as content. The tables to the right illustrate
the semantic relations encoded in the gel diagrams. Each
relation instance consists of a condition, a measurement
and a result. The proteins are the entities being measured
under the conditions of the different cell lines. The result
is a certain degree of expression indicated by the darkness
of the spots (or brightness in the case of white-on-black
gels). The second example is a slightly more complex one.
Several proteins are tested against each other in a way that
involves more than two dimensions. In this case, the use
of “+” and “–” labels is a frequent technique to denote the
different possible combinations of a number of conditions.

Apart from that, the principles are the same. In this case,
however, the number of relations is much larger. Only the
first eight of a total of 32 relation instances are shown in
the table to the right. In such cases, the text rarely men-
tions all these relations in an explicit way, and the image is
therefore the only accessible source.

Background
In principle, image mining involves the same processes
as classical literature mining [11]: document categoriza-
tion, named entity tagging, fact extraction, and collection-
wide analysis. However, there are some subtle differences.
Document categorization corresponds to image catego-
rization, which is different in the sense that it has to
deal with features based on the two-dimensional space
of pixels, but otherwise the same principles of automatic
categorization apply. Named entity tagging is different in
two ways: pinpointing the mention of an entity is more
difficult with images (a large number of pixels versus a
couple of characters), and OCR errors have to be consid-
ered. Fact extraction in classical literature mining involves
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Figure 2 Two examples of gel images from biomedical publications (PMID 19473536 and 15125785) with tables showing the relations
that could be extracted from them.

the analysis of the syntactic structure of the sentences.
In images, in contrast, there are rarely complete sen-
tences, but the semantics is rather encoded by graphical
means. Thus, instead of parsing sentences, one has to ana-
lyze graphical elements and their relation to each other.
The last process, collection-wide analysis, is a higher-level
problem, and therefore no fundamental differences can be
expected. Thus, image mining builds upon the same gen-
eral stages as classical text mining, but with some subtle
yet important differences.
Image mining on biomedical publications is not a new

idea. It has been applied for the extraction of subcellu-
lar location information [12], the detection of panels of
fluorescence microscopy images [13], the extraction of
pathway information from diagrams [14], and the detec-
tion of axis diagrams [7]. Also, there is a large amount
of existing work on how to process gel images [15-19]
and databases have been proposed to store the results
of gel analyses [20]. These techniques, however, take as
input plain gel images, which are not readily accessible
from biomedical papers, because they make up just parts
of the figures. Furthermore, these tools are designed for
researchers who want to analyze their gel images and not
to read gel diagrams that have already been analyzed and
annotated by a researcher. Therefore, these approaches do
not tackle the problem of recognizing and analyzing the
labels of gel images. Some attempts to classify biomedical
images include gel figures [21], which is, however, just the
first step in locating them and analyzing their labels and
their structure. To our knowledge, nobody has yet tried to
perform image mining on gel diagrams.

Approach andmethods
Figure 3 shows the procedure of our approach to image
mining from gel diagrams. It consists of seven steps: figure

extraction, segmentation, text recognition, gel detection,
gel panel detection, named entity recognition and relation
extraction.a
Using structured article representations, the first step is

trivial. For steps two and three, we rely on existing work.
Themain focus of this paper lies on steps four and five: the
detection of gels and gel panels. In the discussion section,
we present some preliminary results on step six of recog-
nizing named entities, and sketch how step seven could
be implemented, for which we cannot provide a concrete
solution at this point.
To practically evaluate our approach, we ran our

pipeline on the entire open access subset of PubMed Cen-
tral (though not all figures made it through the whole
pipeline due to technical difficulties).

Figure extraction
A large portion of the articles of the open access subset
of the PubMed Central database are available as struc-
tured XML files with additional image files for the figures.
We only use these articles so far, which makes the figure
extraction task very easy. It would be more difficult,
though definitely feasible, to extract the figures from PDF
files or even bitmaps of scanned articles (see [22] and
http://pdfjailbreak.com for approaches on extracting the
structure of articles in PDF format).

Segmentation and text recognition
For the next two steps — segment detection and sub-
sequent text recognition —, we rely on our previous
work [23,24]. This method includes the detection of lay-
out elements, edge detection, and text recognition with
a novel pivoting approach. For optical character recogni-
tion (OCR), the Microsoft Document Imaging package is
used, which is available as part of Microsoft Office 2003.

http://pdfjailbreak.com
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Figure 3 The procedure of our approach: (1) figure extraction, (2) segmentation, (3) text recognition, (4) gel detection, (5) gel panel
detection, (6) named entity recognition, and (7) relation extraction.

Overall, this approach has been shown to perform bet-
ter than other existing approaches for the images found in
biomedical publications [23].We do not go into the details
here, as this paper focuses on the subsequent steps.
Due to some limitations of the segmentation algorithm

when it comes to rectangles with low internal contrast
(like gels), we applied a complementary very simple rect-
angle detection algorithm.

Gel segment detection
Based on the results of the above-mentioned steps, we try
to identify gel segments. Such gel segments typically have
rectangular shapes with darker spots on a light gray back-
ground, or — less commonly — white spots on a dark
background. We decided to use machine learning tech-
niques to generate classifiers to detect such gel segments.
To do so, we defined 39 numerical features for image
segments: the coordinates of the relative position (within
the image), the relative and absolute width and height,
16 grayscale histogram features, three color features (for
red, green and blue), 13 texture features (coarseness, pres-
ence of ripples, etc.) based on [25], and the number of
recognized characters.
To train the classifiers, we took a random sample of

500 figures, for which we manually annotated the gel
segments. In the same way, we obtained a second sam-
ple of another 500 figures for testing the classifiers.b We
used the Weka toolkit and opted for random forest classi-
fiers based on 75 random trees. Using different thresholds
to adjust the trade-off between precision and recall, we
generated a classifier with good precision and another
one with good recall. Both of them are used in the next
step. We tried other types of classifiers including naive
Bayes, Bayesian networks [26], PART decision lists [27],

and convolutional networks [28], but we achieved the best
results with random forests.

Gel panel detection
A gel panel typically consists of several gel segments and
comes with labels describing the involved genes, proteins,
and conditions. For our goal, it is not sufficient to just
detect the figures that contain gel panels, but we also have
to extract their positions within the figures and to access
their labels. This is not a simple classification task, and
therefore machine learning techniques do not apply that
easily. For that reason, we used a detection procedure
based on hand-coded rules.
In a first step, we group gel segments to find con-

tiguous gel regions that form the center part of gel
panels. To do so, we start with looking for segments
that our high-precision classifier detects as gel segments.
Then, we repeatedly look for adjacent gel segments, this
time applying the high-recall classifier, and merge them.
Two segments are considered neighbors if they are at
most 50 pixels apartc and do not have any text segment
between them. Thus, segments which could be gel seg-
ments according to the high-recall classifier make it into
a gel panel only if there is at least one high-precision seg-
ment in their group. The goal is to detect panels with high
precision, but also to detect the complete panels and not
just parts of them.We focus here on precision because low
recall can be leveraged by the large number of available gel
images. Furthermore, as the open access part of PubMed
Central only makes up a small subset of all biomedical
publications, recall in a more general sense is anyway
limited by the proportion of open access publications.
As a next step, we collect the labels in the form of text

segments located around the detected gel regions. For a
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text segment to be attributed to a certain gel panel, its
nearest edge must be at most 30 pixels away from the bor-
der of the gel region and its farthest edge must not be
more than 150 pixels away. We end up with a representa-
tion of a gel panel consisting of two parts: a center region
containing a number of gel segments and a set of labels
in the form of text segments located around the center
region.
To evaluate this algorithm, we collected yet another

sample of 500 figures, in which 106 gel panels in 61 differ-
ent figures were revealed by manual annotation.d Based
on this sample, we manually checked whether our algo-
rithm is able to detect the presence and the (approximate)
position of the gel panels.

Results
The top part of Table 1 shows the result of the gel
detection classifier. We generated three different classi-
fiers from the training data, one for each of the threshold
values 0.15, 0.3 and 0.6. Lower threshold values lead to
higher recall at the cost of precision, and vice versa. In
the balanced case, we achieved an F-score of 75%. To get
classifiers with precision or recall over 90%, F-score goes
down significantly, but stays in a sensible range. These
two classifiers (thresholds 0.15 and 0.6) are used in the
next step. To interpret these values, one has to consider
that gel segments are greatly outnumbered by non-gel
segments. Concretely, only about 3% are gel segments.
More sophisticated accuracy measures for classifier per-
formance, such as the area under the ROC curve [29], take
this into account. For the presented classifiers, the area
under the ROC curve is 98.0% (on a scale from 50% for a
trivial, worthless classifier to 100% for a perfect one).
The results of the gel panel detection algorithm are

shown in the bottom part of Table 1. The precision is 95%
at a recall of 37%, leading to an F-score of 53%. The com-
paratively low recall is mainly due to the general problem
of pipeline-based approaches that the various errors from
the earlier steps accumulate and are hard to correct at a
later stage in the pipeline.

Table 2 shows the results of running the pipeline on
PubMed Central. We started with about 410 000 articles,
the entire open access subset of PubMed Central at the
time we downloaded them (February 2012). We success-
fully parsed the XML files of 94% of these articles (for
the remaining articles, the XML file was missing or not
well-formed, or other unexpected errors occurred). The
successful articles contained around 1 100 000 figures, for
some of which our segment detection step encountered
image formatting errors or other internal errors, or was
just not able to detect any segments. We ended up with
more than 880 000 figures, in which we detected about
86 000 gel panels, i.e. roughly ten out of 100 figures. For
each of them, we found on average 3.6 labels with recog-
nized text. After tokenization, we identified about 76 000
gene names in these gel labels, which corresponds to 6.8%
of the tokens. Considering all text segments (including but
not restricted to gel labels), only 3.3% of the tokens are
detected as gene names.e

Discussion
The presented results show that we are able to detect gel
segments with high accuracy, which allows us to subse-
quently detect whole gel panels at a high precision. The
recall of the panel detection step is relatively low, but with
about 37% still in a reasonable range. Asmentioned above,
we can leverage the high number of available figures,
which makes precision more important than recall. Run-
ning our pipeline on the whole set of open access articles
from PubMed Central, we were able to retrieve 85 942
potential gel panels (around 95% of which we can expect
to be correctly detected).
The next step would be to recognize the named entities

mentioned in the gel labels. To this aim, we did a prelimi-
nary study to investigate whether we are able to extract the
names of genes and proteins from gel diagrams. To do so,
we tokenized the label texts and looked for entries in the
Entrez Gene database to match the tokens. This look-up
was done in a case-sensitive way, because many names in
gel labels are acronyms, where the specific capitalization

Table 1 The results of the gel segment detection classifiers (top) and the gel panel detection algorithm (bottom)

Method Threshold Precision Recall F-score ROC area

Segments

Random forests

0.15 0.439 0.909 0.592 ⎫⎬
⎭ 0.9800.30 0.765 0.739 0.752

0.60 0.926 0.301 0.455

Naive Bayes 0.172 0.739 0.279 0.883

Bayesian network 0.394 0.531 0.452 0.914

PART decision list 0.631 0.496 0.555 0.777

Convolutional networks 0.142 0.949 0.248

Panels Hand-coded rules 0.951 0.368 0.530
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Table 2 The results of running the pipeline on the open
access subset of PubMed Central

Total articles 410 950

Processed articles 386 428

Total figures from processed articles 1 110 643

Processed figures 884 152

Detected gel panels 85 942

Detected gel panels per figure 0.097

Detected gel labels 309 340

Detected gel labels per panel 3.599

Detected gene tokens 1 854 609

Detected gene tokens in gel labels 75 610

Gene token ratio 0.033

Gene token ratio in gel labels 0.068

pattern can be critical to identify the respective entity.
We excluded tokens that have less than three characters,
are numbers (Arabic or Latin), or correspond to com-
mon short words (retrieved from a list of the 100 most
frequent words in biomedical articles). In addition, we
extended this exclusion list with 22 general words that
are frequently used in the context of gel diagrams, some
of which coincide with gene names according to Entrez.f
Since gel electrophoresis is a method to analyze genes and
proteins, we would expect to find more such mentions in
gel labels than in other text segments of a figure. By mea-
suring this, we get an idea of whether the approach works
out or not. In addition, we manually checked the gene and
protein names extracted from gel labels after running our
pipeline on 2 000 random figures. In 124 of these figures,
at least one gel panel was detected. Table 3 shows the
results of this preliminary evaluation. Almost two-thirds
of the detected gene/protein tokens (65.3%) were correctly
identified. 9% thereof were correct but could be more spe-
cific, e.g. when only “actin” was recognized for “β-actin”
(which is not incorrect but of course much harder to map
to a meaningful identifier). The incorrect cases (34.6%)
can be split into two classes of roughly the same size: some
recognized tokens were actually not mentioned in the
figure but emerged from OCR errors; other tokens were
correctly recognized but incorrectly classified as gene or
protein references.
Although there is certainly much room for improve-

ment, this simple gene detection step seems to perform
reasonably well.
For the last step, relation extraction, we cannot present

any concrete results at this point. After recognizing the
named entities, we would have to disambiguate them,
identify their semantic roles (condition, measurement or
something else), align the gel images with the labels, and
ultimately quantify the degree of expression. To improve

Table 3 Numbers of recognized gene/protein tokens in
2 000 random figures

Absolute Relative

Total 156 100.0%

Incorrect 54 34.6%

– Not mentioned (OCR errors) 28 17.9%

– Not references to genes or proteins 26 16.7%

Correct 102 65.3%

– Partially correct (could be more specific) 14 9.0%

– Fully correct 88 56.4%

the quality of the results, combinations with classical text
mining techniques should be considered. This is all future
work. We expect to be able to profit to a large extent from
existing work to disambiguate protein and gene names
[30,31] and to detect and analyze gel spots (see the existing
work mentioned above).
It seems reasonable to assume that these results can

be combined with existing techniques of term disam-
biguation and gel spot detection at a satisfactory level of
accuracy. We plan to investigate this in future work.
As mentioned above, we have started to investigate how

the gel segment detection step could be improved by the
use of the image recognition technique of convolutional
networks (ConvNet) [28]. We started with a simplified
approach to the one presented in [32]. In this approach,
images are tiled into small quadratic pieces. We used a
single network (and not several parallel networks), based
on 48 × 48 input tile images with three layers of convo-
lutions. The first layer takes eight 5 × 5 convolutions and
is followed by a 2 × 2 sub-sampling. The second layer
takes twenty four 5 × 5 convolutions and is followed by
a 3 × 3 sub-sampling. The last layer takes seventy two
6 × 6 convolutions, which leads to a fully connected layer.
We trained our ConvNet on the 500 images of the train-
ing set, where we manually annotated the tiles as gel and
non-gel. With the use of EBLearn [33], this trained Conv-
Net classified the tiles of the 500 images of our testing
set. The classified tiles can then be reconstructed into a
mask image, as shown in Figure 4. A manual check of the
clusters of recognized gel tiles led to the results shown in
Table 1. Recall is very good (95%) but precision is very
poor (14%), leading to an F-score of 25%. This is much
worse than the results we got with our random forest
approach, which is why ConvNet is currently not part
of our pipeline. We hope, however, that we can further
optimize this ConvNet approach and combine it with ran-
dom forests to exploit their (hopefully) complementary
benefits. Using ConvNet to classify complete images as
gel-image or non-gel-image and adjusting the classification
to account for unbalanced classes, we were able to obtain
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Figure 4 Original andmask image after ConvNet classification for an exemplary image from PMID 14993249. Green means gel; brown
means other; and white means not enough gradient information.

an F-score of 74%, which makes us confident that a com-
bination of the two approaches could lead to a significant
improvement of our gel segment detection step. As an
alternative approach, we will try to run ConvNet on down-
scaled entire panels rather than small tiles, as described
in [34]. Furthermore, we will experiment with parallel
networks instead of single ones to improve accuracy.
The results obtained from our gel recognition pipeline

indicate that it is feasible to extract relations from gel
images, but it is clear that this procedure is far from
perfect. The automatic analysis of bitmap images seems
to be the only efficient way to extract such relations
from existing publications, but other publishing tech-
niques should be considered for the future. The use of
vector graphics instead of bitmaps would already greatly
improve any subsequent attempts of automatic analysis.
A further improvement would be to establish accepted
standards for different types of biomedical diagrams in
the spirit of the Unified Modeling Language, a graphical
language widely applied in software engineering since the
1990s. Ideally, the resulting images could directly include
semantic relations in a formal notation, whichwouldmake
relation mining a trivial procedure. If authors are sup-
ported by good tools to draw diagrams like gel images, this
approach could turn out to be feasible even in the near
future.
Concretely, we would like to take the opportunity to

postulate the following actions, which we think should be
carried out to make the content of images in biomedical
articles more accessible:

• Stop pressing diagrams into bitmaps! Unless the
image only consists of one single photograph,

screenshot, or another kind of picture that only has
bitmap representation, vector graphics should be
used for article figures.

• Let data and metadata travel from the tools that
generate diagrams to the final articles!Whenever
the specific tool that is used to generate the diagram
“knows” that a certain graphical element refers to an
organism, a gene, an interaction, a point in time, or
another kind of entity, then this information should
be stored in the image file, passed on, and finally
published with the article.

• Use RDF vocabularies to embed semantic
annotations in diagrams! Tools for creating
scientific diagrams should use RDF notation and stick
to existing standardized schemas (or define new ones
if required) to annotate the diagram files they create.

• Define standards for scientific diagrams! In the
spirit of the Unified Modeling Language, the
biomedical community should come up with
standards that define the appearance and meaning of
different types of diagrams.

Obviously, different groups of people need to be involved
in these actions, namely article authors, journal editors,
and tool developers. It is relatively inexpensive to fol-
low these postulates (though it might require some time),
which in turn would greatly improve data sharing, image
mining, and scientific communication in general. Stan-
dardized diagrams could be the long sought solution to
the problem of how to let authors publish computer-
processable formal representations for (part of ) their
results. This can build upon the efforts of establishing an
open annotation model [35,36].
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Conclusions
Successful image mining from gel diagrams in biomedi-
cal publications would unlock a large amount of valuable
data. Our results show that gel panels and their labels can
be detected with high accuracy, applying machine learn-
ing techniques and hand-coded rules. We also showed
that genes and proteins can be detected in the gel labels
with satisfactory precision.
Based on these results, we believe that this kind of image

mining is a promising and viable approach to provide
more powerful query interfaces for researchers, to gather
relations such as protein-protein interactions, and to gen-
erally complement existing text mining approaches. At the
same time, we believe that an effort towards standard-
ization of scientific diagrams such as gel images would
greatly improve the efficiency and precision of image
mining at relatively low additional costs at the time of
publication.

Endnotes
aDue to the fact that many figures consist of multiple

panels of different types, we go straight to gel segment
detection without first classifying entire images. Most gel
panels share their figure with other panels, which makes
automated classification difficult at the image level.

bWe double-checked these manual annotations to
check their quality, which revealed only four
misclassified segments in total for the training and test
samples (0.016% of all segments).

cWe are using absolute distance values at this point. A
more refined algorithm could apply some sort of relative
measure. However, the resolution of the images does not
vary that much, which is why absolute values worked out
well so far.

dAgain, these manual annotations were
double-checked to ensure their quality. Five errors were
found and fixed in this process.

eThe low numbers are partially due to the fact that a
considerable part of the tokens are “junk tokens”
produced by the OCR step when trying to recognize
characters in segments that do not contain text.

fThese words are:min, hrs, line, type, protein, DNA,
RNA,mRNA,membrane, gel, fold, fragment, antigen,
enzyme, kinase, cleavage, factor, blot, pro, pre, peptide,
and cell.
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