
JOURNAL OF
BIOMEDICAL SEMANTICS

González et al. Journal of Biomedical Semantics 2014, 5:46
http://www.jbiomedsem.com/content/5/1/46
SOFTWARE Open Access
Automatically exposing OpenLifeData via SADI
semantic Web Services
Alejandro Rodríguez González1, Alison Callahan2, José Cruz-Toledo3, Adrian Garcia1, Mikel Egaña Aranguren4,
Michel Dumontier2 and Mark D Wilkinson1*
Abstract

Background: Two distinct trends are emerging with respect to how data is shared, collected, and analyzed within
the bioinformatics community. First, Linked Data, exposed as SPARQL endpoints, promises to make data easier to
collect and integrate by moving towards the harmonization of data syntax, descriptive vocabularies, and identifiers,
as well as providing a standardized mechanism for data access. Second, Web Services, often linked together into
workflows, normalize data access and create transparent, reproducible scientific methodologies that can, in
principle, be re-used and customized to suit new scientific questions. Constructing queries that traverse
semantically-rich Linked Data requires substantial expertise, yet traditional RESTful or SOAP Web Services cannot
adequately describe the content of a SPARQL endpoint. We propose that content-driven Semantic Web Services
can enable facile discovery of Linked Data, independent of their location.

Results: We use a well-curated Linked Dataset - OpenLifeData - and utilize its descriptive metadata to automatically
configure a series of more than 22,000 Semantic Web Services that expose all of its content via the SADI set of
design principles. The OpenLifeData SADI services are discoverable via queries to the SHARE registry and easy to integrate
into new or existing bioinformatics workflows and analytical pipelines. We demonstrate the utility of this system through
comparison of Web Service-mediated data access with traditional SPARQL, and note that this approach not only simplifies
data retrieval, but simultaneously provides protection against resource-intensive queries.

Conclusions: We show, through a variety of different clients and examples of varying complexity, that data from the
myriad OpenLifeData can be recovered without any need for prior-knowledge of the content or structure of the
SPARQL endpoints. We also demonstrate that, via clients such as SHARE, the complexity of federated SPARQL queries
is dramatically reduced.

Keywords: OpenLifeData, Bio2RDF, SADI, Semantic web services, SPARQL, SHARE, Sentient knowledge explorer, Galaxy
Background
Data integration is an ongoing challenge for biological
informaticians, and is often a study unto itself, with
numerous research groups worldwide approaching the
problem from a variety of perspectives [1]. Integration is
difficult for a variety of reasons, generally broken into
the three core issues of syntax, structure, and semantics
[2]. In addition, assigning and using unique identifiers
for data items and concepts is an essential requirement in
biology and elsewhere, and forms an equally disruptive
barrier to successful integration [3]. Syntactic barriers
* Correspondence: markw@illuminae.com
1Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de
Madrid, Madrid, Spain
Full list of author information is available at the end of the article

© 2014 González et al.; licensee BioMed Centr
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
include issues such as binary or textual format, and
free-text or structured text; structural barriers involve such
things as flat-file formats, and XML Schema; semantic
barriers include inconsistent naming, naming conflicts
(multiple things with the same name, or multiple names for
the same thing) or insufficiently defined names; and
finally identification issues involve non-unique identifiers,
identifiers that can only be interpreted within a particular
scope (e.g. in the context of a given database), non-opaque
identifiers, and unstable or unpredictable identifiers.
The Semantic Web Initiative [4] has recently emerged

with technologies and frameworks aimed at solving at
least some of these problems. In particular, the Resource
Description Framework (RDF [5]) is an entity-relationship
data model that is, in principle, machine-readable and
al Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:markw@illuminae.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


González et al. Journal of Biomedical Semantics 2014, 5:46 Page 2 of 12
http://www.jbiomedsem.com/content/5/1/46
capable of representing any concept or data entity. RDF
also proposes several approved syntaxes, aimed at
maximizing machine-readability. Importantly, a query
language has been developed for RDF - the SPARQL
Protocol and RDF Query Language (SPARQL [6]) - and a
protocol for exploring and retrieving the RDF stored in
“SPARQL endpoints” on the Web is now well-established
and, in our experience, highly consistent from implemen-
tation to implementation.
With RDF as its core, the Linked Data initiative [7]

proposes several best practices that dramatically improve
the discoverability and integration of data on the Web.
First, all data entities and relationships must be identified
by a Uniform Resource Identifier (URI), which guarantees
uniqueness on a global scale. Second, URIs should
resolve to data and metadata using the most common
Web protocol, HTTP. Third, URIs should resolve to
useful/informative information, and resource providers
should offer this information in a variety of syntaxes
that can be selected by HTTP content-negotiation; in
particular, Linked Data resources should provide a means
of retrieving the data in the form of RDF. Finally, this RDF
should contain labeled links between that piece of data,
and other pieces of data also identified by resolvable URIs,
where the links indicate the relationship between the two
data elements and are, themselves, resolvable URIs. With
the ability to retrieve, share, and re-use these relationship
definitions, we begin to move towards the “semantic”
aspect of the Semantic Web.
Attempts to unify semantics have long been a focus of

biomedicine. The medical world has engaged for centuries
in the development of nosologies for naming and
classifying diseases. Within the bioinformatics community,
ontologies have become widely adopted in the past
decade, with the most prominent of these being the Gene
Ontology [8]. While such ontologies generally focus on
consistent and sensible human-readable names, they have
dedicated less attention to the unique identification of the
concept - names in ontologies are not guaranteed to be
globally unique, nor are concepts guaranteed to be
uniquely named, and can appear in multiple ontologies.
However, as these ontologies became encoded using the
rules of Linked Data, aspects of these problems were also
solved. Concepts became globally and uniquely identified
by resolvable URIs, and shared concepts could be referred
to by URI from one ontology to another. Moreover, mod-
ern ontologies’ use of the Web Ontology Language
(OWL) [9] description logic to define the meaning of
the “links” in Linked Data - effectively, the precise
nature of the relationship between one data entity and
another - enabled machines to automatically traverse these
linkages in a meaningful way.
Two key issues remained problematic, however, even with

Linked Data. First there was no widely-used mechanism to
ensure the stability and predictability of URIs representing
data and concepts - for example there was no way to
predict the URI for the Protein Data Bank record of
the Arabidopsis UFO protein, and even if this URI
were determined, it might not be the same from one
day to the next. As a result, individual Linked Data
resources could not reliably link out to other Linked
Data resources, because the URIs were unpredictable
and unstable. Data tended to remain “siloed” even in
the Linked Data world because links generally pointed
inward, rather than outward, as a result of this instability
and unpredictability. Second, the structure of what was
returned when the URI to a piece of data was resolved was
also not sufficiently predictable, and not consistent from
site to site, even for the same type of data. While Linked
Data is a significant improvement over XML Schema with
respect to the predictability of its data structures, there
were still no guidelines for how to arrange the relationships
between pieces of data, or even what those relationships
could/should be. It was these remaining problems
that became the focus of the Bio2RDF project.
Bio2RDF is an open source project that uses Semantic

Web technologies to create a sustainable infrastructure
for publishing biological data in a manner that eases the
task of data integration [10-12]. Bio2RDF scripts convert
heterogeneously formatted data (e.g. flat-files, tab-delimited
files, dataset specific formats, SQL, XML etc.) into RDF.
Bio2RDF follows a set of basic conventions to generate
and provide Linked Data which are guided by Tim
Berners-Lee’s design principles and a set of community-
established guidelines and practices. Specifically, entities,
their attributes and relationships are named using a
simple convention to produce Internationalized Resource
Identifiers (IRIs) that are highly predictable in their
structure, while statements are articulated using the
lightweight semantics of RDF Schema (RDFS) and Dublin
Core. Bio2RDF, however, did not reliably implement all of
the requirements of “well behaved” linked data, such as
HTTP content-negotiation, and had somewhat limited
expressivity in its relationships as a result of using the
semantics of RDF Schema. OpenLifeData provides
customized services over Bio2RDF SPARQL endpoints. Its
goal is to provide alternative user interfaces and application
programming interfaces to Linked Open Data beyond what
Bio2RDF currently does. OpenLifeData enriches Bio2RDF’s
RDFS semantics to OWL expressivity, implements rich
HTTP content-negotiation, and utilizes query-rewriting to
resolve OpenLifeData IRIs and SPARQL queries against
the Bio2RDF SPARQL endpoints.
OpenLifeData data is accessed by users either via the Web,

through resolution of a URI to an HTML-representation of
its data content in their browser, or by the submission of a
SPARQL query to one of the OpenLifeData endpoints.
While the data-types and relationships within each endpoint



González et al. Journal of Biomedical Semantics 2014, 5:46 Page 3 of 12
http://www.jbiomedsem.com/content/5/1/46
can be determined by manual exploration of the endpoint,
SPARQL queries must nevertheless be constructed
manually, and then posed against the appropriate endpoint
(s). Extracting OpenLifeData Linked Data, therefore, remains
a non-trivial task for even experienced bioinformaticians.
The 2014 release of OpenLifeData (based on Release 3 of

Bio2RDF) developed a scheme to provide a pre-computed
summary, or index, of the contents of each OpenLifeData
SPARQL endpoint in order to reduce the computational
load required for exploratory queries and enable new
applications. Summary metrics were pre-computed,
including number of triples, number of unique subjects,
number of unique predicates, number of unique objects,
list and frequency of unique types, list and frequency of
unique predicates, list and frequency of unique subject,
predicate-unique object tuples, list and frequency of
instances of subject type, predicate, and instances of
unique object type, and finally number of links to other
datasets. These indexes make it easier to determine the
structure and content of each OpenLifeData endpoint,
and moreover, the structures are highly consistent from
endpoint to endpoint.
Semantic Automated Discovery and Integration (SADI)

[13] is a set of design principles for exposing Web Services
in a manner that simplifies their integration with other
Semantic Web resources. Described simply, SADI Services
are Web-based tools that consume a particular type of
data, and return another type of data that is explicitly
related to that input. For example, you could send DNA
sequences to a SADI tblastx service, and it would
give you back Protein sequences that are connected to the
original DNA sequence by the “hasProteinHomologyTo”
relationship. Expressed more concretely, SADI services
consume and produce RDF data, where instances of an
input OWL class, represented in RDF, are submitted to the
service by HTTP POST, and RDF instances of an output
OWL class are returned in response. The constraint SADI
places on these data is that the output class must be a
specialization of the input class such that the input
instances are related to the new service-generated
data nodes through ontologically-defined relations.
The result of chaining SADI services together, therefore, is
an unbroken network of well-formed and ontologically-
grounded Linked Data, which can be explored and
traversed using standard tools such as SPARQL.
SHARE (Semantic Health And Research Environment)

[14,15] is a SADI client that combines: a registry of the
input and output OWL classes for all known SADI
services, a service discovery and invocation API, an
automated workflow design and enactment engine, and a
logical reasoner. While other components of SHARE are
discussed in detail in the previously-referenced papers, it
is relevant to this manuscript that service discovery is
achieved by indexing all known SADI services in the
SHARE registry, such that input types, output types, and
the properties that link them, are all rapidly searchable.
This registry is made publicly available as a SPARQL
endpoint, where the data model of the registry follows that
of the myGrid serviceDescription [16] ontological class.
The similarity between the input-type, property,

output-type “signature” of a SADI Web Service, and the
subject-type, predicate, object-type indexes of the
OpenLifeData endpoints provides a natural mechanism
through which these two initiatives could be combined,
such that OpenLifeData becomes discoverable and access-
ible via SADI. At the NBDC/DBCLS BioHackathon 2013
we proposed that it should be possible to automatically
generate (a) formalized definitions of SADI services, (b)
SPARQL queries to retrieve the service-appropriate
data from the OpenLifeData endpoints, and (c) the
SADI service code to serve that data, all by simply parsing
the OpenLifeData indexes. This manuscript describes
the realization of that vision. For the remainder of the
manuscript will use the short name ‘OpenLifeData2SADI’
as a convenient way of referring to the project as a whole.

Implementation
OpenLifeData’s content summaries are provided as RDF
[17]. We utilize the Jena [18] Java libraries to parse the
[Subject type - predicate - Object type] (SPO) triple
patterns in these indexes, and additional indexes created
specifically for this project, to generate sets of three
configuration files used by OpenLifeData2SADI to
serve each data-type within OpenLifeData. The first
file contains two OWL ontological classes, describing the
input and output data for the service. These ontologies
are published on the Web such that the input and output
class URIs are resolvable through HTTP GET. The second
file is a summary containing the URIs of the input and
output OWL Classes for that service, the human-readable
class names, and the URI and name of the RDF predicate
that links the two classes. Finally, a third file is generated
that contains a SPARQL query template that, when
filled-in with data and executed against the appropriate
OpenLifeData endpoint, retrieves the output data
appropriate for that service. We now describe in additional
detail how each of these steps is undertaken.

Parsing the indexes
Each OpenLifeData dataset is served from its own
SPARQL endpoint, and contains data within a specific
namespace (e.g. ‘sgd’ for Sacharromyces Genome Database,
or ‘ncbigene’ for the NCBI Gene). The content of each
endpoint has been pre-indexed, using VoID (Vocabulary of
Interlinked Datasets), where the index captures all unique
data-type/predicate/data-type triples for that endpoint. For
example, one of the index triples for the HGNC endpoint
is “Gene Symbol/x-omim/Gene”. The Java collector first



González et al. Journal of Biomedical Semantics 2014, 5:46 Page 4 of 12
http://www.jbiomedsem.com/content/5/1/46
parses the information provided in the OpenLifeData in-
dexes to obtain two parameters: SPARQL Endpoint URL
and Namespace - effectively, the location of each dataset,
and the domain/scope of that dataset. In principle, each
endpoint could be interrogated to retrieve all SPO patterns
by executing the following SPARQL query:
This would be sufficient to gather all information
necessary to create SADI services that output resource
nodes (URIs); however, at this time, OpenLifeData does
not index the large component of data that exists as
literal values (numbers and strings). As such, to be fully
comprehensive, we execute an iterative set of queries
over each endpoint which gathers all subject-types, then
the predicates associated with each subject-type, and
finally the object type that is connected by each
predicate, including the cases where the object is a
literal value. To further enrich the semantics, we then
do federated queries over multiple end-points in an
attempt to determine more specific details about the
object types. For example, the omim dataset includes links
to entities in the hgnc dataset, but considers all of these to
be “Resources” - a generic term for something that exists
in another dataset. Through our federated queries, we can
determine that these hgnc “Resources” represent, for
example, Genes, or SNPs, and thereby we are able to
construct semantically richer descriptions of what the
SADI services will consume/produce.
The queries we execute (in template form) are as

follows:
Get Subject-types
Get Predicate-types
Get Object-types
Get Data-types
Federated Query for object types
Configuration file creation
After retrieving all SPO patterns for each endpoint,
OpenLifeData2SADI then builds the files needed to
automatically configure the SADI Service; each SPO
triple pattern becomes its own Service, where the service
consumes data of the ‘Subject’ type, and returns all
triples from that endpoint matching the SPO pattern
for that Subject. For each Service, three configuration
files must be created:

Input and output ontology classes
Using the Java OWL API [19] we create ontology classes
based on the pattern of each SPO in each endpoint;
these classes describe the OWL properties required
for/provided by the Input and Output of the service
respectively.
In OpenLifeData URIs the class/predicate identifier, and

namespace are separated either by the hash (#) or colon (:)
characters. Since we intend that OpenLifeData2SADI
services should “make sense” to both machines and
humans, an attempt is made to construct a human-readable
name for each class and property. The code first attempts
to resolve the URI to retrieve its rdf:label, and this label, if
available, is used as the human readable class/property
name in the final configuration file for that service. If no
label can be retrieved, the hash or colon separator is used to
split a name from the rest of the URI and this is used as the
human-readable name. While not entirely successful, this is



González et al. Journal of Biomedical Semantics 2014, 5:46 Page 5 of 12
http://www.jbiomedsem.com/content/5/1/46
our best attempt at automatically building services that have
accurate human-readable descriptions.
The input class (generically called ‘Subject_Class’ in

this discussion) is defined in OWL, simply, as the rdf:
type of the Subject of the SPO triple, as defined by
OpenLifeData. It contains no other axioms or restrictions.
The class representing the output of the service is then
defined as the Subject_Class with an additional property
defined by the Predicate of the SPO triple, where the
range of that predicate is defined by the Object data-type
component of the SPO triple. This is represented in
Manchester Syntax as follows:
Logically, therefore, the Service output is a subclass of
the Service input (Subject_Class), as is typical for all SADI
services. A similar approach is taken for OpenLifeData
predicates with Literal value ranges. The resulting ontology
is then saved to the local filestore with the naming
convention ./<namespace>/<subject_predicate_object > .owl
and this is published on the Web such that the URIs in that
ontology resolve correctly.
In a second phase, the process above is duplicated, but

in this second iteration, the owl:Inverse of the Predicate
is used, and Subject and Object are reversed. This allows
us to automatically create SADI services that traverse
the OpenLifeData in either orientation, and thus behave
in a manner akin to conventional SPARQL, where either
Subject or Object may be bound in a constraint clause
of the query.

Configuration file
This file contains parameters required to properly con-
figure the SADI service such that it (a) serves the
appropriate data using the appropriate descriptors,
and (b) provides its own metadata in a form that is
comprehensible to humans. The Java code that creates
these configuration files requires a single argument - the
root URL to the final location of the ontologies (created
above) on the Web. The configuration file contains the
following parameters:

� INPUTCLASS_NAME: The name of the input
class after removing the namespace. In cases
where the class name is opaque or numerical,
an attempt is made to resolve the class URI to
its full OWL-RDF definition, and retrieve the
“label” property, such that the class name is
human-readable.

� INPUTCLASS_URI: The URI of the input class
� OUTPUTCLASS_NAME: The name of the output

class. This is the same for all services, but conflicts
are avoided since each output class name exists in a
unique namespace (ontology); every output class is
named “#ServiceOutput”.

� OUTPUTCLASS_URI: The Web-resolvable URI of
the output class. This URI is generated by the con-
catenation of the root URL, the namespace of the
OpenLifeData dataset, the path and name of the
ontology file, and the generic class-name
“#ServiceOutput”.

� PREDICATE_NAME: The name of the predicate. As
with the input class name, an attempt is made to
retrieve the human-readable label of the predicate if
it appears that the predicate is somehow opaque or
numerical.

� PREDICATE_URI: The URI of the predicate.
� ORIGINAL_ENDPOINT: The URL of the original

endpoint indexed by OpenLifeData.
� GENERIC_ENDPOINT: The endpoint that should

be queried by the SADI service using SPARQL.
OpenLifeData is duplicated in several locations; the
preferred location to query would be the value of
this field.

� OUTPUT_CLASS: The rdf:type of the data that will
be added during the service execution.

The resulting file is written to the local filestore in
the same folder as the ontology file, with the naming
convention./<namespace>/<subject_predicate_object > .cfg.
SPARQL query file
The third file generated by OpenLifeData2SADI contains
the SPARQL query that should be executed within the
business logic of the SADI Web service. The content of
this query is service specific, but follows the pattern:
where < PREDICATE_NAMESPACE > is replaced with
the namespace of the predicate provided by the SPO,
and < predicate > element is replaced with the local
name of the predicate (the component after the ‘#’ or ‘:’
character). %VAR is left in the query template, and will be
substituted by the SADI service at run-time, based on the
input data.
In the case of the SPARQL query, there is no difference

between the ‘forward’ Predicate and the inverse predicate.
Inverse predicates do not exist in the OpenLifeData
SPARQL endpoints, but rather are simply defined in the
OWL logic that defines the entities and relationships
in those endpoints. As such, we rely on logical rea-
soning to determine that an inverse invocation can be
solved equally well by a ‘forward’ query; thus the



González et al. Journal of Biomedical Semantics 2014, 5:46 Page 6 of 12
http://www.jbiomedsem.com/content/5/1/46
query that serves both forward and inverse services is
identical.

SADI service implementation
To serve the OpenLifeData data, a single Perl script
using the standard SADI::Simple code libraries act as the
SADI Service Daemon for all services. The script listens
for HTTP calls to URLs of the form:
In this URL, SADI is the name of the OpenLifeData2SADI
Service script, while the additional path information
(namespace and service name) are used as keys to access
the configuration file and SPARQL query file appropriate
for that service, as described above. The SADI Perl script
parses these files, and configures itself to be capable of:

HTTP GET:

� Returning the complete service interface definition,
represented as an owl:Individual of the mygrid
ontology ServiceDescription Class, as per the SADI
design patterns.

HTTP POST:

� Parsing the input data, which arrives in RDF syntax
as owl:Individuals of that service’s Input OWL Class.

� Executing the SPARQL query, extracted from the
configuration files, against the correct OpenLifeData
endpoint for that service, using each of the
incoming owl:Individuals to fill the query variables
for that particular invocation.

� Constructing owl:Individuals compliant with the
class definition of that service’s Output OWL Class,
and passing this data back to the caller.

This is all accomplished using the normal SADI service
template [13]. The key difference is that the Service’s
interface template retrieves its values from a dynamic
look-up of data from the configuration files, rather than
being hard-coded into the service.

Service registration
Two scripts were written to automate the registration and
deregistration of the full suite of OpenLifeData2SADI.
The registration code and deregistration code are available
in the Perl folder of the GitHub project (see “Availability
and Requirements” section). They operate by querying all
of the configuration files (for registration) or all of the
existing SHARE registry entries (for deregistration) and
triggering the registry to call GET on each service end-
point. The registry functions by creating a service if it finds
a valid service description document at that endpoint, or
deregistering a service if it does not. Therefore, in the case
of registration, the SADI script should be installed on the
designated service endpoint first, in order to respond to
the registry calls. In the case of deregistration, the SADI
Service code should be removed prior to running the
deregistration script.

Workflows of Bio2RDF services
The establishment of the OpenLifeData2SADI suite of
services made it possible to more easily explore the
interconnections between OpenLifeData endpoints. In
order to generate an exhaustive list of these connections,
to assist third-parties in building novel exploration tools,
the following query was issued which creates a list of all
valid service-output to service-input pairs within the set of
OpenLifeData services (note that the PREFIX directives in
this example are shared for all queries in this manuscript,
and will not be repeated in later examples):
Since this, in principle, represents the complete set of
potential workflow connections that could be constructed
within these services, we chose to formally represent the out-
put of this query as an abstract workflow template, using the
Open Provenance Model for Workflows (OPMW) Abstract
Template ontology [20,21]. Those interested in generating a
copy of this abstract template for their own exploration can
simply execute the OpenLifeData2SADI2OPMW.pl script in
the GitHub project, which will generate a copy based on the
contents of the public SHARE registry. A copy generated
at the time of writing is also available in the project’s Git
repository (see “Availability” section).

Provenance
Provenance of data is becoming increasingly import-
ant as datasets get larger, more dispersed over the
Web, and as data gathering and analyses become more
automated. The OpenLifeData2SADI project has selected
the NanoPublication [22] conventions and model for



González et al. Journal of Biomedical Semantics 2014, 5:46 Page 7 of 12
http://www.jbiomedsem.com/content/5/1/46
passing provenance information to the client, along
with the results of their service invocation. As with
all SADI services, this is achieved through normal
HTTP content negotiation. If the client passes an “Accept:
application/n-quads” HTTP header, the OpenLifeData2-
SADI service will respond by returning three named
graphs, constructed according to the NanoPublication
specifications. One graph contains the service output,
the second contains the metadata describing the service
and, for example, its name, description, and URL, and the
third describing the date and time the NanoPublication
was generated.
Results and discussion
At this time there are more than 22,000 OpenLifeData2-
SADI services from 26 independent endpoints, and more
will be generated as OpenLifeData expands into new data-
types. These services are discoverable through simple
queries against the SHARE registry, or through a variety
of client applications. We now demonstrate the utility
of the OpenLifeData2SADI application by a series of
walkthroughs, where the process of discovery, execu-
tion, and chaining-together of SADI-wrapped OpenLi-
feData services is described in more detail and
compared to the interrogation of OpenLifeData dir-
ectly via SPARQL.
We will start with a small fragment of RDF data repre-

senting a Human Gene Naming Committee (HGNC) Gene
Symbol:
Discovery of OpenLifeData2SADI services
Discovery of services is generally accomplished by
executing a SPARQL query against the SHARE registry
[23]. Discovery of the OpenLifeData2SADI services
can be accomplished by a wide variety of query structures,
but in this example we will query for services that
consume OpenLifeData HGNC Gene Symbols and have
“approved-name” somewhere in the service’s descriptive
text. The query is:
This returns a single result, which is the URL for ser-
vice “hgnc_vocabulary_Gene-Symbol_hgnc_vocabular-
y_approved-name_string”.
Invocation of OpenLifeData2SADI services
Invocation of a discovered OpenLifeData data retrieval
service simply consists of sending the data to the service
endpoint using HTTP POST. This can be accomplished
with widely available tools such as Unix ‘curl’. Below, the
sample HGNC Gene Symbol record described earlier, is in
the file sampledata_hgnc.rdf. Curl is then used to invoke
the service, as follows:
the result of this service invocation is the output data,
containing the approved name from the OpenLifeData
HGNC endpoint:
Client applications
We do not expect that our users will typically discover
or access OpenLifeData2SADI services via SPARQL queries
or the command-line. More commonly, the same discovery
and invocation interactions presented in their raw form
above are presented to the user graphically via one of the
SADI plug-ins or client applications; nevertheless, discovery
and invocation happens the same way as described above,
regardless of the client. We believe that this simple
standardization provides a very low barrier-to-adoption for
new users and tool-developers who wish to gain access to
the myriad OpenLifeData resources.
There are a wide range of graphical clients capable of

executing SHARE registry queries in response to the user’s
contextual needs, or in some cases, fully automatically.
We will now present several of these applications,
showing how OpenLifeData services can be accessed and
chained-together within these diverse clients.
The list of services we will use for this demonstration

are:

(1) Gene-Symbol_approved-name
(2) Gene-Symbol_x-omim
(3) Gene_gene-function
(4) Gene_article
(5) Gene_x-mgi
(6) Gene_x-uniprot

Services (1) and (2) link an HGNC resource to its
approved name and a linked OMIM entry, services
(3), (4), and (5) link an OMIM resource to a gene
function description, its associated PubMed entries,



González et al. Journal of Biomedical Semantics 2014, 5:46 Page 8 of 12
http://www.jbiomedsem.com/content/5/1/46
and its associated Mouse Genome Informatics (MGI)
Gene, while service (6) links an MGI gene identifier to its
associated UniProt identifier. The template workflow
connecting these services in a biologically-meaningful way
is shown in Figure 1.

IO informatics knowledge explorer
The SADI plug-in to the IO Informatics Knowledge
Explorer [24,25] (KE) provides menu-driven access to
the SHARE registry through a context menu that
appears when right-clicking a piece of biological data on
the KE canvas. In Figures 2A and B we show the same
sample data from the examples above, loaded into the
Knowledge Explorer. A right click reveals the “Find
SADI Services” menu option, which then initiates a
search based on the data-type that was selected. Here we
have chosen the “approved-name” service from the resulting
services menu by clicking the selection box. In Figure 2C
the approved name for HGNC:7 has been added as new
information to the canvas. Figure 2D shows the final result
after a series of OpenLifeData2SADI services have been
executed, following the workflow path in Figure 1.

SHARE
The SHARE client [14] is one of several SADI clients
capable of chaining multiple services together. We will
utilize this client to emphasize the fact that, as a result
of exposing OpenLifeData data as SADI services, it is no
longer necessary to know which data exists in which of
the 26+ OpenLifeData SPARQL endpoints. In this use
case we imagine that a researcher has studied some
human condition, has narrowed-down to a specific gene
list of interest, and now wants to know more about those
genes, their functions, and whether or not the proteins
might be suitable drug targets based on known protein
Figure 1 A workflow of OpenLifeData2SADI services, numbered
as in the list of services above, and the output data that
will result.
information from their respective Mouse homologues.
Diagrammatically, the workflow is as shown in Figure 2
(using the service numbers and starting-data from above).
The SHARE interface is at http://dev.biordf.org/

cardioSHARE. SHARE exposes SADI Web Services as if
they were combined into a single, global, SPARQL
endpoint. The SHARE SPARQL query that will invoke
the workflow from Figure 2 is:
Note that it was not necessary to know which endpoint
contained which data elements, nor to use “service”
queries to federate over these endpoints. This is important
when considering the complex structure of federated
SPARQL queries, where it is necessary to know the location
of the endpoint, and in some cases, the named-graph
that must be queried. For example, the equivalent
SPARQL query over the OpenLifeData endpoints, would
be as follows:
As such, we believe that OpenLifeData2SADI makes
the exploration across the more than 20 OpenLifeData
data endpoints considerably more straightforward.

Galaxy
The Galaxy [26] workflow environment is very popular
among life scientists, yet to date, we know of no Galaxy
workflow that accesses OpenLifeData or Bio2RDF data.
This is likely due to the lack of life science tools and
services that deal with RDF-formatted data at all, and
the lack of a straightforward template for mapping data
between a workflow and a SPARQL query (and back
again). The SADI Galaxy plugin [27,28] provides SADI

http://dev.biordf.org/cardioSHARE
http://dev.biordf.org/cardioSHARE


Figure 2 Discovery and invocation of OpenLifeData2SADI services using the SADI plugin to the Sentient Knowledge Explorer. A. Data
nodes respond to a right-click with a context menu item “Find SADI Services”. B. a set of services capable of consuming nodes of that type are
discovered and presented in a menu-like manner. C. the result of selecting the “approved-name” service from the menu. D. the output after
iteratively invoking all 6 of the services from the example service list (effectively, manually executing the workflow in Figure 1).

González et al. Journal of Biomedical Semantics 2014, 5:46 Page 9 of 12
http://www.jbiomedsem.com/content/5/1/46
services as normal Galaxy tools [29], thus making it
straightforward to chain OpenLifeData services together
in the Galaxy environment. Figure 3 shows the same
workflow as above, created within the Galaxy workbench.
In order to reproduce the workflow, it is necessary to
create, for yourself, a user on our Galaxy server [30] and
import the history and workflow [31,32]. The first item of
the history can be used as the input to the workflow to
reproduce the results reported here.

Limitations and scalability
The use of SADI to expose data in SPARQL endpoints
clearly adds a certain amount of overhead with respect to
both execution-time and computational load; however, it
is difficult to directly compare the two scenarios because
(a) speed and load depend on the client, and web service
clients are significantly different from one another, and
from SPARQL clients; (b) the time (and knowledge)
required to manually construct each desired SPARQL
query, compared to the automated dynamic discovery
of appropriate SADI services, is not considered in a
head-to-head comparison of their respective execution
times, and (c) It is considerably easier to optimize the
execution plan for a SPARQL query, versus a service
workflow. Nevertheless, a direct comparison of the
“federated” query entered into the SHARE client (above)
versus the equivalent federated SPARQL query entered
into the Virtuoso web-based query interface, showed
execution times of 34-39 seconds for SHARE compared
to 2-3 seconds for Virtuoso. Thus, while the overhead of



Figure 3 A workflow of OpenLifeData2SADI services in the Galaxy workbench environment. This workflow is an instantiation of the
template workflow in Figure 1.

González et al. Journal of Biomedical Semantics 2014, 5:46 Page 10 of 12
http://www.jbiomedsem.com/content/5/1/46
the Web Service solution is, in this case, significant, we
feel it is still within reason for a user-interface, given the
difficulty a user would face in creating and debugging
SPARQL queries. Similarly, we would argue that the
dynamically-generated, menu-driven interface provided by
the KE plugin is orders of magnitude faster than the user
having to manually type each SPARQL query into the KE
SPARQL interface.

Conclusions
In this work we attempted to address four distinct
problems:
The first is that, since most bioinformatics workflows

combine a variety of different kinds of Web Services
together with local processors to execute the data retrieval
and analysis, it is highly desirable to expose SPARQL
endpoints in a discoverable manner akin to Web Services.
Current approaches to exposing SPARQL endpoints as ser-
vices result in services with low discoverability and incom-
plete (or even absent) descriptions of what will be returned
from a service invocation. By exposing the contents of
OpenLifeData as SADI Web Services, it becomes straight-
forward to integrate these endpoints into popular workflow
environments such as Taverna [33] or Galaxy, and more
importantly, the service interface, and the data that passes
through the service, is explicitly semantically defined.
Second, the discovery of data in Bio2RDF (or any
SPARQL endpoint) has, historically, required considerable
prior knowledge and often trial-and-error exploration
until an appropriate SPARQL query has been constructed.
By enhancing the semantics of Bio2RDF, and indexing all
of its semantically rich entity-relationships in the recent
release of OpenLifeData, it became possible to expose all
of this data as SADI services that are registered in the
SHARE registry. It is now straightforward to discover,
through highly predictable SPARQL queries, which
Bio2RDF endpoints contain data of interest, and what the
nature of that data is. Moreover, because the registry
query is predictable, it is trivial to make a comprehensive
map of all entity-to-entity connections within the entire
OpenLifeData “universe”, even spanning between separate
OpenLifeData endpoints, and this was made publicly
available as an abstract workflow template following
the Open Provenance Model for Workflows (OPMW)
ontology [20,21].
Third, SPARQL endpoints are a highly granular approach

to bioinformatics data publishing akin to publicly exposing
the SQL interface to a relational database. Historically,
there have been very few core bioinformatics data
hosts who allowed such fine-grained access to their
databases, primarily because of the potential for users
to submit resource-hungry queries (either accidentally,



González et al. Journal of Biomedical Semantics 2014, 5:46 Page 11 of 12
http://www.jbiomedsem.com/content/5/1/46
or on purpose). Indeed, this has already been identified as
a problem with respect to queries against the UniProt
SPARQL endpoint [34]. While losing the potential for
query optimization, exposing RDF data via SADI Services
has several advantages over exposing RDF triple-stores as
SPARQL. First, because SADI services can be executed in
a multiplexed manner, and asynchronously, bulk data
requests could be easily managed over the available
compute-resources at the host site. This is difficult to
achieve with existing SPARQL endpoints. Second, because
the Service exposes the RDF data via a ‘wrapper’ around a
simple SPARQL query that is guaranteed to be correct, it
becomes impossible for the data request to be malformed
or resource-consuming (beyond what the provider allows).
Thus, the data provider is better-shielded from misuse
or abuse.
Finally, in these early days of Linked Data publishing in

the life sciences, Linked Data resources can, justifiably,
change as the data providers adapt their models, publishing
procedures, publisher metadata and even endpoint
locations and access restrictions to accommodate new
behaviors or concerns. As such, SPARQL queries that are
successful one day, may not be successful the next. By
serving OpenLifeData through SADI Services, which are
dynamically discovered by clients that automatically
configure themselves for correct access, we provide an
API that is much more resilient to underlying change
than a pure SPARQL interface would be; updating the
OpenLifeData2SADI behavior is simply a matter of
changing the configuration file, or (in the worst case)
updating one simple piece of code, compared to all users
of the data being required to update their own software.
For all of these reasons, we feel that the availability

of OpenLifeData2SADI will dramatically enhance the
access to, and utility of, OpenLifeData for all biologists.
This, in turn, will hopefully spur a more rapid adoption of
both Linked Data and Semantic Web Services throughout
the life science data provider community.

Availability and requirements
The Java code and Perl scripts for this project are available
on the Wilkinson laboratory Github, at https://github.
com/wilkinsonlab/OpenLifeData2SADI under the Apache
version 2 license. Indexing the OpenLifeData endpoints
can be executed in either Java or Perl. Ontology and
configuration file creation requires Java 6, Jena, and
the OWL API. Serving the data as Web Services is
accomplished by running the indexer (in Java or Perl),
building the configuration files, and deploying the ‘SADI’
Perl script, with core dependencies on the SADI::Simple
and RDF::Query::Client libraries from CPAN. The repository
also contains the output files from the most recent
execution of the OpenLifeData2SADI2OPMW.pl script, and
these are free to use in any way.
Abbreviations
DBCLS: Database center for life science; HTTP: Hypertext transport protocol;
NBDC: National bioscience database center; OPMW: Open provenance model
for workflows; OWL: Web ontology language; RDF: Resource description
framework; SPARQL: SPARQL Protocol and RDF Query Language;
SADI: Semantic automated discovery and integration; SPO:
Subject-predicate-object; VoID: Vocabulary of interlinked datasets.

Competing interests
The authors declare they have no competing interests.

Authors’ contributions
MDW and MD conceived of, and planned, the project. MD, AC, and JCT
created the indexes of the OpenLifeData dataset, and enriched the
semantics of the underlying Bio2RDF data such that it could be optimally
represented using SADI Semantic Web Services. ARG wrote the Java
codebase and created the configuration files. MDW wrote the Perl ‘SADI’
service script and the Perl version of the OpenLifeData indexer. MEA created
the SADI Galaxy plugin, tools, and workflow. AG updated the Knowledge
Explorer plugin as depicted in Figure 2. All authors read, corrected, and
approved the manuscript.

Authors’ information
MD is the lead investigator of the OpenLifeData project and is Associate
Professor at Stanford University. MDW is the founder and leader of the SADI
project, Issac Peral Distinguished Researcher at the Center for Plant
Biotechnology and Genomics, and Director of the FBBVA-UPM Chair in
Biological Informatics at the Universidad Politécnica de Madrid. JCT, AC,
AG, MEA and ARG are, or have been, researchers in these collaborating
laboratories during the execution of this project.

Acknowledgements
MDW is supported by the Isaac Peral and Marie Curie COFUND Programmes
of the Universidad Politécnica de Madrid, Centre for Plant Biotechnology and
Genomics UPM-INIA. ARG is supported by the Isaac Peral programme, UPM.
Portions of this work have been funded by the Fundación BBVA. We wish to
express deep gratitude and appreciation to the National Bioscience Database
Center (NBDC) and Database Center for Life Science (DBCLS) in Tokyo, Japan,
and Dr. Toshiaki Katayama who has been organizing annual BioHackathon in
Japan since 2008; The idea for OpenLifeData2SADI emerged as a result of
the face-to-face contact facilitated by these extraordinary events.

Author details
1Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de
Madrid, Madrid, Spain. 2Center for Biomedical Informatics Research, Stanford
University, Stanford, CA, USA. 3Department of Biology, Carleton University,
Ottawa, ON, Canada. 4Genomic Resources Group, University of the Basque
Country (UPV-EHU), Bilbao, Spain.

Received: 17 July 2014 Accepted: 7 November 2014
Published: 19 November 2014

References
1. Goble C, Stevens R: State of the nation in data integration for

bioinformatics. J Biomed Inform 2008, 41:687–693.
2. Sheth A: Changing Focus on Interoperability in Information Systems:

From System, Syntax, Structure to Semantics. In Interoperating Geogr. Inf.
Syst. SE - 2, Vol. 495. Edited by Goodchild M, Egenhofer M, Fegeas R,
Kottman C. Springer US; 1999:5–29. http://link.springer.com/chapter/
10.1007%2F978-1-4615-5189-8_2#.

3. Ashburner M: When names are less than crystal clear. Nature 1998,
394:216.

4. Semantic Web: [http://www.w3.org/standards/semanticweb/]
5. RDF: Semantic Web Standards. [http://www.w3.org/RDF/]
6. SPARQL query language for RDF: [http://www.w3.org/TR/rdf-sparql-query/]
7. Linked Data - Design Issues: [http://www.w3.org/DesignIssues/LinkedData.html]
8. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,

Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A,
Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene
ontology: tool for the unification of biology. The Gene Ontology
Consortium. Nat Genet 2000, 25:25–29.

https://github.com/wilkinsonlab/OpenLifeData2SADI
https://github.com/wilkinsonlab/OpenLifeData2SADI
http://link.springer.com/chapter/10.1007/978-1-4615-5189-8_2
http://link.springer.com/chapter/10.1007/978-1-4615-5189-8_2
http://www.w3.org/standards/semanticweb/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/DesignIssues/LinkedData.html


González et al. Journal of Biomedical Semantics 2014, 5:46 Page 12 of 12
http://www.jbiomedsem.com/content/5/1/46
9. OWL 2 Web Ontology Language Document Overview (Second Edition):
[http://www.w3.org/TR/owl2-overview/]

10. Callahan A, Cruz-Toledo J, Ansell P, Dumontier M: Bio2RDF Release 2:
Improved Coverage, Interoperability and Provenance of Life Science
Linked Data. In The Semantic Web: Semantics and Big Data Lecture Notes in
Computer Science 2013,Volume 7882; 2013:200–212.

11. Belleau B, Nolin MA, Tourigny N, Rigault P, Morissette J: Bio2RDF: Towards
a mashup to build bioinformatics knowledge systems. J Biomed Inform
2008, 41(5):706–716.

12. Callahan A, Cruz-Toledo J, Dumontier M: Ontology-based querying with
Bio2RDF’s linked open data. J Biomed Semantics 2013, 4:S1.

13. Wilkinson MD, Vandervalk B, McCarthy L: The Semantic Automated
Discovery and Integration (SADI) web service design-pattern, API and
reference implementation. J Biomed Semantics 2011, 2:8.

14. Vandervalk BP, McCarthy EL, Wilkinson MD: SHARE: A Web Service Based
Framework for Distributed Querying and Reasoning on the Semantic Web.
Third Asian Semant. Web Conf. ASWC 2008, Work. Proc; 2008:69–78.

15. Vandervalk B, McCarthy L, Wilkinson M: SHARE: A Semantic Web Query Engine
for Bioinformatics. Semant. Web, Lect. Notes Comput. Sci. Proc. ASWC, Volume
5926; 2009:367–369.

16. The myGrid-Moby Ontology: [http://www.mygrid.org.uk/mygrid-moby-
service#serviceDescription]

17. Bio2RDF Dataset Metrics: [https://github.com/bio2rdf/bio2rdf-scripts/wiki/
Bio2RDF-dataset-metrics]

18. Apache Jena: [https://jena.apache.org/]
19. OWL API: [http://owlapi.sourceforge.net/]
20. Garijo D, Gil Y: A New Approach for Publishing Workflows: Abstractions,

Standards, and Linked Data. WORKS '11 Proceedings of the 6th workshop on
Workflows in support of large-scale science; 2011:47–56.

21. Garijo D, Gil Y: Towards Open Publication of Reusable Scientific Workflows:
Abstractions, Standards, and Linked Data; 2012. Accessible from:
http://www.isi.edu/~gil/papers/garijo-gil-opmw12.pdf.

22. Groth P, Gibson A, Velterop J: The anatomy of a nanopublication. Inf Serv
Use 2010, 30:51–56.

23. Virtuoso SPARQL query form: [http://sadiframework.org/registry/sparql]
24. IO-Informatics: Download: Sentient Knowledge Explorer - Personal Edition:

[http://www.io-informatics.com/download_KE_PersEd_B.html]
25. Wilkinson MD, McCarthy L: The SADI plug-in to IO informatics’ sentient

knowledge explorer. In Proc. 4th Int. Work. Semant. Web Appl. Tools Life
Sci; 2011:116–118.

26. Goecks J, Nekrutenko A, Taylor J, The Galaxy Team: Galaxy: a
comprehensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences. Genome Biol
2010, 11(8):R86.

27. First Release: [https://zenodo.org/record/10181]
28. Egaña Aranguren M, Rodríguez González A, Wilkinson MD: Executing SADI

services in Galaxy. J Biomed Semantics 2014, 5:42.
29. Blankenberg D, Von Kuster G, Bouvier E, Baker D, Afgan E, Stoler N, the

Galaxy Team, Taylor J, Nekrutenko A: Dissemination of scientific software
with Galaxy ToolShed. Genome Biol 2014, 15:403.

30. The Wilkinson Lab Galaxy Server: [http://biordf.org:8983]
31. OpenLifeData2SADI workflow: [http://biordf.org:8983/u/mikel-egana-

aranguren/w/openlifedata2sadi-jbms-named]
32. OpenLifeData2SADI history: [http://biordf.org:8983/u/mikel-egana-

aranguren/h/openlifedata2sadi-jbms-named]
33. Withers D, Kawas E, McCarthy L, Vandervalk B, Wilkinson MD:

Semantically-Guided Workflow Construction in Taverna: The SADI
and BioMoby Plug-Ins. In Leveraging Applications of Formal Methods,
Verification, and Validation 4th International Symposium on Leveraging
Applications, Lecture Notes in Computer Science; 2010:301–312.

34. bio2rdf sending queries to beta.sparql.uniprot.org that won't return
results - Google Groups. [http://goo.gl/3sI4df]

doi:10.1186/2041-1480-5-46
Cite this article as: González et al.: Automatically exposing OpenLifeData
via SADI semantic Web Services. Journal of Biomedical Semantics
2014 5:46.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.w3.org/TR/owl2-overview/
http://www.mygrid.org.uk/mygrid-moby-service#serviceDescription
http://www.mygrid.org.uk/mygrid-moby-service#serviceDescription
https://github.com/bio2rdf/bio2rdf-scripts/wiki/Bio2RDF-dataset-metrics
https://github.com/bio2rdf/bio2rdf-scripts/wiki/Bio2RDF-dataset-metrics
https://jena.apache.org/
http://owlapi.sourceforge.net/
http://www.isi.edu/~gil/papers/garijo-gil-opmw12.pdf
http://sadiframework.org/registry/sparql
http://www.io-informatics.com/download_KE_PersEd_B.html
https://zenodo.org/record/10181
http://biordf.org:8983/
http://biordf.org:8983/u/mikel-egana-aranguren/w/openlifedata2sadi-jbms-named
http://biordf.org:8983/u/mikel-egana-aranguren/w/openlifedata2sadi-jbms-named
http://biordf.org:8983/u/mikel-egana-aranguren/h/openlifedata2sadi-jbms-named
http://biordf.org:8983/u/mikel-egana-aranguren/h/openlifedata2sadi-jbms-named
http://goo.gl/3sI4df

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Parsing the indexes
	Configuration file creation
	Input and output ontology classes
	Configuration file

	SPARQL query file
	SADI service implementation
	Service registration
	Workflows of Bio2RDF services
	Provenance
	Results and discussion
	Discovery of OpenLifeData2SADI services
	Invocation of OpenLifeData2SADI services
	Client applications
	IO informatics knowledge explorer
	SHARE
	Galaxy
	Limitations and scalability

	Conclusions
	Availability and requirements
	Abbreviations
	Competing interests
	Authors’ contributions
	Authors’ information
	Acknowledgements
	Author details
	References

