
JOURNAL OF
BIOMEDICAL SEMANTICS

Dietze et al. Journal of Biomedical Semantics 2014, 5:48
http://www.jbiomedsem.com/content/5/1/48

SOFTWARE Open Access

TermGenie – a web-application for
pattern-based ontology class generation
Heiko Dietze1*, Tanya Z Berardini2, Rebecca E Foulger3, David P Hill4, Jane Lomax3,
David Osumi-Sutherland3, Paola Roncaglia2 and Christopher J Mungall1

Abstract

Background: Biological ontologies are continually growing and improving from requests for new classes (terms) by
biocurators. These ontology requests can frequently create bottlenecks in the biocuration process, as ontology
developers struggle to keep up, while manually processing these requests and create classes.

Results: TermGenie allows biocurators to generate new classes based on formally specified design patterns or
templates. The system is web-based and can be accessed by any authorized curator through a web browser.
Automated rules and reasoning engines are used to ensure validity, uniqueness and relationship to pre-existing classes.
In the last 4 years the Gene Ontology TermGenie generated 4715 new classes, about 51.4% of all new classes created.
The immediate generation of permanent identifiers proved not to be an issue with only 70 (1.4%) obsoleted classes.

Conclusion: TermGenie is a web-based class-generation system that complements traditional ontology
development tools. All classes added through pre-defined templates are guaranteed to have OWL equivalence
axioms that are used for automatic classification and in some cases inter-ontology linkage. At the same time, the
system is simple and intuitive and can be used by most biocurators without extensive training.

Keywords: Ontology, Class generation

Background
Biological ontologies such as the GeneOntology (GO) and
the Human Phenotype Ontology (HP) provide a rich set of
constructs for describing biological entities such as genes,
alleles and diseases. Like most data resources, ontologies
are rarely complete, and healthy ontologies are continually
growing and improving, as the state of knowledge pro-
gresses. One process by which ontologies grow is from
requests for new classes (terms) by biocurators. These
ontology requests can frequently create bottlenecks in the
biocuration process, as ontology developers struggle to
keep up with a deluge of requests.
Historically the process used in projects such as the GO

Consortium would be for ontology developers to work
through a set of requests collected in an issue tracking
system, and to manually add them to the ontology, using
a specialized Ontology Development Tool (ODT) such

*Correspondence: hdietze@lbl.gov
1Genomics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron
Road, 94720 Berkeley, CA, USA
Full list of author information is available at the end of the article

as OBO-Edit [1] – see Figure 1. Sometimes the ontology
developers apply documented design patterns to guide
this process, particularly where collections of classes fol-
low a common structure. For example, most classes in the
developmental process portion of the GO follow a consis-
tent lexical form and relational structure as dictated in the
GO developers documentation [2]. However, even with
this documentation in place, this has still largely been a
time-consuming and error-prone manual process, espe-
cially where ontology developers need to rearrange to the
ontology structure.
Use of the Web Ontology Language (OWL), and in

particular providing computable definitions in the form
of equivalence axioms can greatly assist in ontology
development and maintenance through the use of OWL
reasoners. However, reasoners do not in themselves
help with the task of class generation. Furthermore,
for many biological ontologies, the axioms necessary
for reasoning have been added post-hoc [3,4] rather
than prospectively at the time of class creation. This
kind of retrospective axiomatization is inefficient but

© 2014 Dietze et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto: hdietze@lbl.gov
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Dietze et al. Journal of Biomedical Semantics 2014, 5:48 Page 2 of 13
http://www.jbiomedsem.com/content/5/1/48

Figure 1 Conventional ontology class request workflow. General workflow for ontology class requests using a traditional issue tracker. A simple
class request may take several days, for complex cases even longer.

has in part been dictated by limitations of OBO-Edit.
This can be partly circumvented by using an ODT
that fully supports OWL such as Protégé, but this tool
can be difficult for biocurators to use, and even in the
hands of experts it can be time consuming to generate
new classes complete with axioms referencing external
ontologies.
Here we describe an application called TermGenie

that allows biocurators to generate new classes based on
formally specified design patterns or templates. The sys-
tem is web-based and can be accessed by any authorized
curator through a web browser. Automated rules and
reasoning engines are used to ensure validity, unique-
ness and relationship to pre-existing classes. The system
makes extensive use of OWL axioms, but can be easily
used without understanding these axioms. TermGe-
nie is used extensively in the GO and is currently also
in use for the Cell Type Ontology and for phenotype
ontologies.

Implementation
To minimize the entrance barrier for biocurators and
non-experts, we provide TermGenie as a web applica-
tion. The only requirement is a JavaScript enabled web
browser. There are separate interfaces for separate tasks in
TermGenie, one for class requests, and another for
request review by ontology developers.

Architectural components
The TermGenie application is based on client-server
architecture. The web client uses two JavaScript libraries
(jQuery [5] and jQuery UI [6]) to implement the user
interface in the web browser. The server is written in Java
and accepts JSON messages in AJAX RPC calls from the
client via a Java servlet listener. Figure 2 illustrates the
required TermGenie components and the general work-
flow for ontology class generation.
The TermGenie server uses a set of modules and com-

ponents to provide the required services for TermGenie.



Dietze et al. Journal of Biomedical Semantics 2014, 5:48 Page 3 of 13
http://www.jbiomedsem.com/content/5/1/48

Figure 2 Overview of TermGenie Components andWorkflow. (1) Retrieve existing templates for user selection; (2) Term generation processing
and validation; (2a) Generate textual data and OWL axioms; (2b) Use reasoning to check for existing classes and new or changed relations; (3)
Review of generated classes by the user in the web interface; (4) After review, assign permanent identifiers to the new classes; (5) Add the new
classes into the queue for review; (6) Senior ontology developers review the classes: accept, modify, obsolete; (7) Commit the changes to the
ontology; (8) Send confirmation e-mail to the user.

This set includes modules for basic functionalities such
as loading ontologies, a persistence layer, reasoning, iden-
tifier generation, access to version control systems, and
sending e-mails. Some modules are used for more com-
plex components, such as the term generation, request
submission, and review interface.

Ontology loading and synchronization
For ontology loading and the in-memory model,
TermGenie relies on the OWL-API [7]. This Java library
provides an axiom-based ontology model with parsers
and writers for many OWL serialization formats. In
addition, we use a Java implementation for handling
OBO format [8], which also executes the conversion to
the OWL in-memory model from OBO format. Future
versions of the OWL-API will integrate the OBO format
library, removing the need for this extra step. An impor-
tant TermGenie feature is the support of ontology file
handling in a version control systems (VCS). Currently
TermGenie supports Subversion [9] and future support
for Git [10] is planned. In addition, for a more efficient
load of imports and files not in a VCS, TermGenie uses

a local file cache for ontology files. The caching duration
is a configuration parameter of each TermGenie instal-
lation. TermGenie loads the required ontologies during
the server start. To keep the ontologies up-to-date and in
sync with the source file, TermGenie periodically updates
the VCS files and reloads the ontologies.

Request queue and services
As shown in the workflow, TermGenie saves the requested
classes for review in a queue. This request queue is
separate from the ontology file and requires a separate
persistent storage module. The persistence module is
implemented via the Java Persistence API using Open-
JPA [11] as object-relational mapper and HSQLDB [12]
as a simple embedded database for storage on disk. This
lightweight default implementation makes TermGenie
independent from more complex database setups and
configuration issues. Because TermGenie does not push
the requests to the ontology until they are reviewed,
TermGenie provides additional services to access infor-
mation about the pending request. Option one, there
is a separate TermGenie page, which list the currently



Dietze et al. Journal of Biomedical Semantics 2014, 5:48 Page 4 of 13
http://www.jbiomedsem.com/content/5/1/48

pending and recently approved requests. This table is
intended for users to quickly check their recent requests.
Option two, there is a web service to query the status of
requested class and whether it is an approved, pending,
or unknown class identifier. This service is intended for
the integration of TermGenie in curation tools. Currently
Protein2GO [13] uses the service to verify the class iden-
tifiers and prevent curators from entering invalid identi-
fiers, while still allowing the immediate usage of newly
generated classes.

Sessions and user authentication
TermGenie uses Java servlets mainly as abstraction layer,
but we make use of the built-in session handling mech-
anism. The session is used to store the relevant tokens
for the authentication of users. For the authentica-
tion, TermGenie currently relies on Persona [14] as a
lightweight service. Persona is a 3rd-party (non-profit
and open source) protocol and service, which uses an
e-mail address as primary identifier. It provides a conve-
nient JavaScript client library and easy server-side calls for
token verification. Once a TermGenie session has been
authenticated, the authorization module uses the e-mail
address as primary identifier to check whether the user
has the appropriate permissions for the requested opera-
tion. TermGenie has different sets of permissions depend-
ing on the tasks. For example, the submission of classes
requires a different set of permissions than the TermGenie
management console for administrators.

Logic-based autocompletion
An important convenience feature for TermGenie users
is autocompletion. TermGenie uses a Lucene in-memory
index to provide appropriate suggestions. To optimize the
suggested classes and restrict the classes for a template,
TermGenie can be configured to use only a subset of
all available classes. For example, to create a subset for
the molecular functions in GO, the configured set just
contains the root class GO:0003674 (molecular_function).
Using a reasoner, this set is then extended to include all
direct and indirect subclasses. The same configuration
mechanism can also be used to allow the input of classes
from multiple ontologies in an input field. For example,
it is possible to use cell-type classes form the Cell Type
Ontology and plant cell classes from the Plant Ontology.

Configuration
All the different TermGenie components and modules
are configured and combined via Google Guice [15], a
lightweight dependency injection framework. TermGenie
uses a combination of Java-based and compiler-
checked defaults, configuration property files, and
optional command-line overrides to configure a specific
TermGenie installation. For example, the Guice modules

are part of the Java configuration, creating a generic web
application. The machine-specific details and secrets (e.g.
passwords and private keys) are provided as a property
file to override the default parameters. The location of the
property file is declared via a command-line parameter.
This helps to avoid the problem of accidental release of
sensitive information into a public version control system.

Templating system
The core of TermGenie is template-based class gener-
ation. The template-based approach allows the separa-
tion of ontology design tasks, a fairly involved process,
and standard class generation, a relatively straightforward
task. For the former, the ontology developers extract or
create, and test appropriate patterns for the generation of
new classes based on the design principles of the ontology.
A template consists of the OWL equivalent class axiom
for the formal definition and reasoning, label and textual
definition building blocks and, if applicable, details for
synonym generation. These templates can then be used
by biocurators to generate desired standard classes with-
out need for knowledge of the internal workings of the
ontology.
In TermGenie each template is specified as a separate

JavaScript function and file. During the generation the
JavaScript code is executed by a Java-embedded JavaScript
engine. The embedded approach allows the use of native
Java objects and functions, such as the ontology model
and reasoner checks, in Javascript calls without the need
for conversions. The Java layer also provides a set of func-
tions intended to be used in the JavaScript code. These are
shortcut functions for common tasks, such as the retrieval
of a label for a given class. With these helpers it is possi-
ble to create fairly compact JavaScript code for a template.
This approach does not preclude the application to more
complex operations and checks. Most of the validation,
such as the search for existing classes and the inference
of relations, is done in Java using standard OWL-API
reasoners.
Every template has an associated XML-based configu-

ration file. Amongst others, this configuration specifies
the required and optional input fields, including details
on the relevant ontology subsets for the appropriate auto-
complete suggestions. For an example of a template with
its XML configuration, JavaScript code and resulting input
fields in TermGenie, see Figure 3. It should also be noted
that this particular example template is configured to
require exactly one ontology class as input. Other tem-
plates can use up to three different input classes in the
equivalent class axioms for a generated class.

Reasoning
TermGenie uses reasoning for two tasks: validation and
relation inference. Both tasks rely on the equivalent class



Dietze et al. Journal of Biomedical Semantics 2014, 5:48 Page 5 of 13
http://www.jbiomedsem.com/content/5/1/48

Figure 3 Example template and configuration for TermGenie. (top-left) XML-based example template configuration for the Gene Ontology
template chemical_export. Includes declarations for required and optional input fields and corresponding JavaScript file; (top-right) Javascript
snippet from the JavaScript file. for generating a class and OWL axioms; (bottom) Screenshot of the generated TermGenie input fields. Also shows
autocompletion on ChEBI classes.

axioms specified in the templates. For the validation,
TermGenie asks the reasoner for equivalent named classes
for the given hypothetical new class. Similarly, for the
inference and update of relations, we query the reasoner
for the direct super- and subclasses of the hypothetical
class. This is done by declaring a new class using a new
temporary identifier and adding the corresponding equiv-
alent class axioms. Next, TermGenie creates an up-to-date
reasoner instance for the changed ontology. To prevent
unpredictable inferences, the ontology is checked for
inconsistency and unsatisfiable classes. Once these checks
are completed, the actual new-class-related queries are
done. After querying, the axiom changes are reverted and
the reasoner is discarded. The inferred direct subclasses
are used to assert the most specific superclasses. In addi-
tion the direct subclasses of the hypothetical new class
are checked and their relations updated. This strategy
allows the creation of not only the new leaf classes in the
ontology graph, but also new intermediate classes with
an automatic update of relations for existing classes. An
example of an inference using equivalent class axioms and
a reference ontology is available in Figure 4.
Using this workflow the reasoner creation and querying

are the most time-consuming steps of a TermGenie tem-
plate request. In theory, TermGenie can use any OWL-
API compliant reasoner, but the requirements for an
interactive web-application introduce a processing time

limit for the reasoner. We have experimented with multi-
ple reasoners and chose ELK [16] as the most convenient
compromise for TermGenie.

User workflow
In a typical workflow, the user begins by loading the rel-
evant TermGenie web page, selecting and filling in the
relevant template. After the class generation and valida-
tion, the class is submitted for user review and approval
and assignment of a permanent identifier, see also Figure 5
for a workflow diagram.
On the user side, a TermGenie template consists of a

set of required and optional input fields. TermGenie pro-
vides autocompletion for ontology classes for appropriate
input fields. Before a user starts the new class generation
and validation, a number of quick checks are executed.
The checks include one for missing entries in required
input fields, such as a missing literature reference. After
passing these checks, the request is sent to the server.
After the generation and reasoning step on the server,
the users have the chance to review the proposed classes.
They can also make modifications to textual parts if nec-
essary (e.g. definition) or add additional synonyms. The
next step is the submission of the generated classes for
review. As part of this process, a new permanent identifier
is generated using a customizable identifier pattern and
range. To complete the submission step, the user must be



Dietze et al. Journal of Biomedical Semantics 2014, 5:48 Page 6 of 13
http://www.jbiomedsem.com/content/5/1/48

Figure 4 Inferences for a class using a standard OWL reasoner. Reasoning example for a genus + differentia pattern for camptothecin
catabolism in the GeneOntology. The class is defined by its genus ‘catabolic process’ (GO:0009045) and differentia ‘has_input camptothecin’
(CHEBI:27656). Following that definition, the class is a subclass of catabolic process. Using the additional axioms from ChEBI and the GeneOntology,
a standard OWL reasoner can infer the more specific superclass ‘alkaloid catabolic process’ (GO:0009822).

logged in (authenticated), as the server will check for the
appropriate permissions and will use the user metadata
for provenance information of the generated classes and
requested e-mail notifications.
Ideally, after generating the identifier, a biocurator can

immediately use the generated identifiers for annotation.
To facilitate this even while the identifier is not yet com-
mitted to the ontology, we provide a web service to check
the validity of class identifiers.

Review process
After a user has submitted their generated class requests
and generated the permanent identifiers, the requests are
put into a queue for review by an ontology developer.
During the review the ontology developer has the follow-
ing three choices: approve, modify, or obsolete. There is
no reject or delete option at that stage because a per-
manent identifier has already been generated. In most
cases the classes can be approved without (or with min-
imal) modifications since they rely on tested templates.
Should a developer need more details, he/she may con-
tact the original requester without making a decision, and
keep the request pending. The ontology developers can
use the e-mail information available from the provenance
information of each request.
Once the ontology developer has determined which

classes to commit to the ontology, he/she selects the
corresponding checkboxes and initiates the commit. On
the server, the classes from the requests are first quickly
checked again. For the commit, the server uses the version
control to create a clean checkout. From there TermGenie
loads the ontology as a separate instance and applies

the relevant changes. Depending on the original ontol-
ogy file format this can either be OWL axioms or OBO
term frames. After writing the changed ontology as a file,
TermGenie tries to commit the updated file into the VCS.
When there is more than one request selected for commit
to the ontology, TermGenie processes each one separately
with individual commits. This allows for a more fine-
grained and aspect-oriented tracking of changes in the
underlying VCS. See also Figure 6 for the workflow during
the review process.

Results and discussion
Usage in the Gene Ontology The pattern-based Ter-
mGenie approach has been used for the Gene Ontology
since July 2010, with the current Java implementation
in place since November 2012. During the period from
July 2010 until the end of June 2014, the Gene Ontology
instance of TermGenie has been used to generate 4715
classes, which represents 51.4% of all new classes created
in GO during that time. For a quarterly report of new
classes in GO see Table 1. The number of available tem-
plates has been growing over time and currently stands at
38 templates, see also Table 2 for a list of the templates.
Many of these templates utilize an external ontology.
As described before, TermGenie relies heavily on rea-

soning for automatic classification and validation. This
requires that the ontology underlying a TermGenie
instance be sufficiently axiomatized with equivalent class
axioms. In the case of the Gene Ontology, with its consid-
erable size and development history, a significant amount
of time and effort was needed to introduce equivalent
class axioms into the ontology. The formalization of GO



Dietze et al. Journal of Biomedical Semantics 2014, 5:48 Page 7 of 13
http://www.jbiomedsem.com/content/5/1/48

Figure 5 TermGenie user workflow. To create a class in TermGenie, Biocurators go to the TermGenie website and select the relevant template for
their request. The template consists of a set of required and optional input fields. TermGenie provides autocompletion for appropriate input fields.
After passing some quick checks, the request is sent to the server, where generation and reasoning are executed. The results are send back and the
users have the chance to review the proposed classes. The next step is the submission of the generated classes for review. As part of this process, a
new permanent identifier is generated using a customizable identifier pattern and range. Furthermore, the request is added to the review queue for
final approval by the ontology developers.

started in the early 2000s [17] and is still an ongoing task.
It not only includes intra-ontology definitions [18], but
also makes use of existing other domain-specific ontolo-
gies, such as the Chemical Entities of Biological Interest
(ChEBI) ontology [19]. The most frequently referenced
external ontology is ChEBI, but we also use the Plant
Ontology (PO), Cell Type Ontology, Phenotypic Quality
Ontology (PATO), and Uberon [4] to define class pat-
terns in GO. One could argue that ontology formalization
is critical in creating a scalable and affordable long-
term maintenance strategy because it supports automatic
inferences and reasoning. The template-based formaliza-
tion process helps to make implicit design patterns and
assumptions explicit.

Streamlining ontology development The template-
based approach allows the separation of concerns and
roles between ontology engineering and everyday ontol-
ogy class requests. Most of the ontology work for creating

a template can be done by the ontology developers and
OWL experts during the design and test phase for each
of the templates. Once a pattern has been created and is
available in a TermGenie web application, adding a new
class in that same pattern is vastly streamlined. The biocu-
rators can quickly and safely create classes and permanent
identifiers on the website within minutes and return to
their annotation task. The effort for the final review by an
ontology developer for each class in TermGenie is min-
imal as it relies on a pre-existing and tested solution.
TermGenie also provides the convenient feature of e-mail
notifications.

Bounds on complexity of composed classes Even
though templates are usually tested and approved by
the ontology developers, one interesting issue for Gene
Ontology requests has come up. Some templates generate
classes of the same category as the input class (e.g. pro-
cess involved_in process, or regulation of processes). This



Dietze et al. Journal of Biomedical Semantics 2014, 5:48 Page 8 of 13
http://www.jbiomedsem.com/content/5/1/48

Figure 6 TermGenie workflow during a submitted class review by an ontology developer. After a user has submitted their generated class
requests, the requests are put into a queue for review by an ontology developer. During the review the ontology developer has the following three
choices: approve, modify, or obsolete. For the commit, the server uses the version control adapter to create a clean checkout. From there TermGenie
loads the ontology as a separate instance and applies the relevant changes. After writing the changed ontology as a file, TermGenie tries to commit
the updated file into the version control. After a successful commit the queue is updated and a confirmation e-mail is sent to the requester.

means that it is possible to recursively compose classes
with definitions that unfold to a deeply nested hierarchy,
with complex textual definitions and labels that impose
a cognitive burden on users. Most of these classes are
requested for the annotation of complex biological pro-
cesses and functions with a pre-composition strategy or
legacy systems with a simplistic annotation model (e.g.
single unrelated annotations). From the formal point of
view these classes have a clear axiomatized definition and
can be unfolded into simpler annotations [20]. This kind
of class request, although not very common in TermGe-
nie, take longer to review as they often require further
discussion andmodifications by ontology developers. One
proposal has been to design a strategy to prevent the cre-
ation of these multiply compounded classes and to instead
redirect users to the issue tracker instead of proceeding
with the request. The detection and redirection feature
has not yet been implemented.

The most time-saving feature for biocurators is the
immediate creation of permanent identifiers. Therefore,
during the review by an ontology developer, this leaves
only obsoletion as a way to reject a request. In theory
this could lead to higher number of unnecessary obsoleted
classes. However, this proved not to be an issue for the
Gene Ontology TermGenie instance. Only 70 requested
classes have been obsoleted since inception, about 1.6% of
the TermGenie requests.

Non-templated class generation Biology and other
complex subjects cannot always be axiomatized in a tem-
platable way. Therefore, not all class requests can or
should be done using a template. To address this issue and
at the request of the ontology developers, we added a free-
form option to TermGenie. This allows very experienced
users to quickly specify all the relevant details of a class,
validate, and generate the new class using TermGenie. The

Table 1 TermGenie generated class counts in GO over time

Quarter 2010-III 2010-IV 2011-I 2011-II 2011-III 2011-IV 2012-I 2012-II

TermGenie 139 154 236 254 307 175 255 806

Manual 575 413 332 295 313 364 462 324

Fraction 19.47% 27.16% 41.55% 46.27% 49.52% 32.47% 35.56% 71.33%

Quarter 2012-III 2012-IV 2013-I 2013-II 2013-III 2013-IV 2014-I 2014-II Total

TermGenie 303 352 357 285 218 231 301 342 4715

Manual 371 283 62 92 170 164 109 110 4439

Fraction 44.96% 55.43% 85.20% 75.60% 56.19% 58.48% 73.41% 75.66% 51.51%



Dietze et al. Journal of Biomedical Semantics 2014, 5:48 Page 9 of 13
http://www.jbiomedsem.com/content/5/1/48

Table 2 Available templates for the geneontology termgenie instance

Template Input fields Equivalent class statement

regulation: biological process

regulation X:BP GO:0065007 and ‘regulates’ some ?X

negative_regulation X:BP GO:0065007 and ‘negatively regulates’ some ?X

positive_regulation X:BP GO:0065007 and ‘positively regulates’ some ?X

regulation: molecular function

regulation X:MF GO:0065007 and ‘regulates’ some ?X

negative_regulation X:MF GO:0065007 and ‘negatively regulates’ some ?X

positive_regulation X:MF GO:0065007 and ‘positively regulates’ some ?X

involved_in P:BP, W:BP ?P and ‘part_of’ some ?W

involved_in_mf_bp P:MF, W:BP ?P and ‘part_of’ some ?W

occurs_in P:BP, C:CC ?P and ‘occurs in’ some ?C

regulation_by R:GO:0050789, P:BP ?R and ‘results_in’ some ?P

part_of_cell_component P:CC, W: CC ?P and ‘part_of’ some ?W

chemical_transport X:chebi GO:0006810 and ‘transports or maintains localization of’ some ?X

chemical_transporter_activity X:chebi GO:0005215 and ‘transports or maintains localization of’ some ?X

chemical_binding X:chebi GO:0005488 and ‘has input’ some ?X

metabolism_catabolism_biosynthesis

metabolism X:chebi GO:0008152 and ‘has participant’ some ?X

catabolism X:chebi GO:0009056 and ‘has input’ some ?X

biosynthesis X:chebi GO:0009058 and ‘has output’ some ?X

chemical_transmembrane_transport X:chebi GO:0055085 and ‘transports or maintains localization of’ some ?X

chemical_transmembrane_transporter_activity

transmembrane transporter activity X:chebi GO:0022857 and ‘transports or maintains localization of’ some ?X

secondary active transmembrane transporter activity X:chebi GO:0015291 and ‘transports or maintains localization of’ some ?X

uptake transmembrane transporter activity X:chebi GO:0015563 and ‘transports or maintains localization of’ some ?X

transmembrane-transporting ATPase activity X:chebi GO:0042626 and ‘transports or maintains localization of’ some ?X

chemical_response_to

response to X:chebi GO:0050896 and ‘has input’ some ?X

cellular response to X:chebi GO:0070887 and ‘has input’ some ?X

chemical_homeostasis

chemical homeostasis X:chebi GO:0048878 and ‘regulates level of’ some ?X

cellular chemical homeostasis X:chebi GO:0055082 and ‘regulates level of’ some ?X

chemical_import X:chebi GO:0006810 and ‘imports’ some ?X

chemical_export X:chebi GO:0006810 and ‘exports’ some ?X

chemical_import_into S:chebi, T:CC GO:0006810 and ‘has target end location’ some ?T and ‘imports’ some ?S

cc_transport_from_to

transport F:CC, T:CC GO:0006810 and ‘has target start location’ some ?F and ‘has target end
location’ some ?T

vesicle-mediated transport F:CC, T:CC GO:0016192 and ‘has target start location’ some ?F and ‘has target end
location’ some ?T

cc_transport

transport C:CC GO:0006810 and ‘transports or maintains localization of’ some ?C

vesicle-mediated transport C:CC GO:0016192 and ‘transports or maintains localization of’ some ?C



Dietze et al. Journal of Biomedical Semantics 2014, 5:48 Page 10 of 13
http://www.jbiomedsem.com/content/5/1/48

Table 2 Available templates for the geneontology termgenie instance (Continued)

chemical_transport_from_to

transport X:chebi, [F:CC], [T:CC] GO:0006810 and ‘transports ormaintains localization of’ some ?X [and ‘has
target start location’ some ?F] [and ‘has target end location’ some ?T]

vesicle-mediated transport X:chebi, [F:CC], [T:CC] GO:0016192 and ‘transports ormaintains localization of’ some ?X [and ‘has
target start location’ some ?F] [and ‘has target end location’ some ?T]

cc_assembly_disassembly

assembly C:CC GO:0022607 and ‘results_in_assembly_of’ some ?C

disassembly C:CC GO:0022411 and ‘results_in_disassembly_of’ some ?C

plant_development P:plant anatomical structure development’ and ‘results in development of’ some
?P

plant_formation X:plant anatomical structure formation involved inmorphogenesis’ and ‘results in
formation of’ some ?X

plant_maturation X:plant developmental maturation’ and ‘results in developmental progression of’
some ?X

plant_morphogenesis X:plant anatomical structure morphogenesis’ and ‘results in morphogenesis of’
some ?X

plant_structural_organization X:plant anatomical structure arrangement’ and ‘results in structural organization
of’ some ?X

cell_apoptotic_process C:cell cell-type specific apoptotic process’ and ‘occurs in’ some ?C

cell_differentiation C:cell GO:0030154 and ‘results in acquisition of features of’ some ?C

cell_migration C:cell cell migration’ and ‘alters location of’ some ?C

protein_localization_to

protein localization C:CC GO:0008104 and ‘has target end location’ some ?C

establishment of protein localization C:CC GO:0045184 and ‘has target end location’ some ?C

protein_complex_by_activity A:MF GO:0043234 and ‘capable_of’ some ?A

single_multi_organism_process

single-organism P:BP ?P and ‘bearer of’ some PATO:0002487

multi-organism P:BP ?P and ‘bearer of’ some PATO:0002486

biosynthesis_from T:chebi, F:chebi GO:0009058 and ‘has output’ some ?T and ‘has input’ some ?F

biosynthesis_via T:chebi, V:chebi GO:0009058 and ‘has output’ some ?T and ‘has intermediate’ some ?V

catabolism_to S:chebi, R:chebi GO:0009056 and ‘has input’ some ?S and ‘has output’ some ?T

catabolism_via X:chebi, V:chebi GO:0009056 and ‘has input’ some ?X and ‘has intermediate’ some ?V

metazoan_development X:Uberon anatomical structure development’ and ‘results in development of’ some
?X

The first column contains the template names and available templates variations. The second column lists the expected ontology inputs for the equivalent class
statement in the third column, with BP= GO:biological_process, MF = GO:molecular_function, CC= GO:cellular_component, chebi= ‘chemical entity’ (CHEBI:24431),
plant = ‘plant anatomical entity’ (PO:0025131), cell = ‘native cell’ (CL:0000003), Uberon = ‘anatomical entity’ (UBERON:0001062).

free-from workflow extends to the existing validation pro-
cedures with additional checks. It searches for and warns
about existing similar class names and synonyms for a
given class request. For example, a request for ‘omega-
some’ via free-form, produces a warning that a similar
class ‘megasome’ already exists. In this case the warning
could be dismissed as the two classes refer to completely
different cell components. This additional check helps the
ontology developers to avoid the creation of redundant
classes.
Due to the different use-case, this free-form template is

implemented as a separate tool in the TermGenie webapp,

but shares many services (e.g., autocomplete, e-mail noti-
fications) and adds requests to the common review queue.
Furthermore, we use a different set of permissions to
restrict the access of users to this template. Due to the
more experimental nature of the requests via the free-
form template, the obsoletion rate is slightly higher, with
16 of 387 (4.1%) obsoleted requests.

Evaluation of OWL reasoners for use in TermGenie
Because reasoning is a core task in TermGenie, we
experimented with multiple OWL-API compliant reason-
ers. Currently, we haven chosen ELK [16] as the best



Dietze et al. Journal of Biomedical Semantics 2014, 5:48 Page 11 of 13
http://www.jbiomedsem.com/content/5/1/48

compromise for TermGenie. ELK is an OWL 2 EL pro-
file [21] reasoner and provides a good trade off between
response time and supported inference. Other tested
reasoners include HermiT [22], JFact [23], Pellet [24],
MORe [25] as full OWL compliant reasoners and jcel [26]
as another OWL 2 EL compliant reasoner. In general all
full OWL2 reasoners proved to be too slow for usage in
TermGenie. The other EL reasoner, jcel, is a viable alterna-
tive, but ELK using multithreading out-performed jcel in
the initial classification step. A typical reasoning task for
the Gene Ontology and the required external ontologies
includes about 415,000 logical axioms. Using ELK, we can
respond to a single request within a few seconds.

TermGenie for other ontologies The TermGenie sys-
tem was designed from the outset to be ontology-neutral.
In addition to the Gene Ontology instance [27], we have
worked with the developers of other OBO Library ontolo-
gies to create custom TermGenie instances.
The OBO Cell Type Ontology (CL) [28] represents cell

types found in animals. One of the main uses of the CL
is to rigorously describe samples collected as part of large
next-generation sequencing projects such as Functional
Annotation of Mammalian Genomes 5 (FANTOM5) and
the Encyclopaedia of DNA Elements (ENCODE), allow-
ing analyses that yield insight into properties of different
cell types [29]. The ENCODE curators have found the
CL instance of TermGenie useful as it provides a simple
web-based way to generate new classes used to describe
samples.
The Ontology of Biological Attributes (OBA) [30] was

created as a unified representation of traits (for exam-
ple ‘eye color’) encompassing ontologies for describing
animals, plants and single-celled organisms. Many traits
follow a trivial compositional pattern, encompassing a
simple entity-attribute pattern, with the attribute being
taken from the ‘attribute’ subset of PATO, and the entity
taken from ontologies such as Uberon or PO. This ontol-
ogy was originally created to be able to structure the
‘regulation of biological quality’ branch of the GO, but it
has found uses in other areas. Curators in the Monarch
Initiative project have used it to describe mouse strain
phenotypes, andmost recently it has incorporated into the
Encyclopaedia of Life (EOL) TraitBank [31] project.
Ontologies of abnormal or variant phenotypes also

benefit from a templated approach, as their classes can
often be described using an Entity-Quality combinatorial
approach, akin to that used inOBA. So far we have created
instances for the Mammalian Phenotype Ontology [32]
and the Human Phenotype Ontology (HP) [33], with plans
to create instances for other species-specific phenotype
ontologies. The HP instance was created in part to serve
the needs of the NIH Undiagnosed Diseases Program
(UDP), which is systematically describing the phenotypes

of patients with undiagnosed diseases, so that phenotype
comparison algorithms can be used to assist the hunt for
the genomic underpinnings of these diseases. In this case,
it is important that a diversity of ontology contributors can
efficiently and effectively contribute to the HP. We believe
that TermGenie will greatly facilitate contributions from
the rare disease community.
Note that in order for these instances to work effec-

tively, it was first necessary for the respective developers
to make their ontologies ‘reasoner-ready’ by providing
OWL equivalent class axioms, a process that has been
underway for several years [3,34]. In contrast, once the
necessary OWL refactoring is complete, the configura-
tion of the ontology-specific TermGenie instances takes
about a week, with most of the time spent on testing the
templates.

Comparison with other approaches
Creating new classes in ontologies is a common task, one
that is typically done by a developer using an Ontology
Development Tool (ODT) such as OBO-Edit [1] or Pro-
tégé [35]. These are both comprehensive, general purpose
environments, and are not intended for use by annotators
and biocurators without requisite training. In addition,
both are desktop applications, requiring an installation on
the user’s machine. The limitations of desktop ontology
development software, especially for collaborative work,
led to the creation of WebProtégé, a web-based ontology
development tool [36]. All three applications are pow-
erful tools with steep learning curves and are usually
intended for knowledge/ontology engineers and ontology
developers. They do not offer the separation of design
and quick everyday use for non-experts. TermGenie is not
intended to replace comprehensive ODTs; the pattern-
based approach and ODTs complement each other in the
ontology development workflow. In fact the comprehen-
sive ODTs are required during the template design and
testing.
Other related work exists in the form of the Term

Generation plugin DOG4DAG [37]. It is available as an
OBO-Edit and Protégé plugin. The tool allows proposal of
new classes based on phrases extracted from a given text
corpus. The most common use case is to create or add
domain-specific vocabulary to an ontology. The best use is
in early stages of ontology projects as it generates mostly
list of candidate classes. For amoremature and formalized
ontology, a more axiomatized result is required.
The Network-Extracted Ontology (NeXO) [38] is an

example of an orthogonal, data-driven approach to ontol-
ogy generation. This approach takes as input a suffi-
ciently large and dense network (i.e. gene and protein
interactions), and applies a clustering algorithm to gen-
erate classes and relationships between these classes. So
far, NeXO has been used to generate a yeast cellular



Dietze et al. Journal of Biomedical Semantics 2014, 5:48 Page 12 of 13
http://www.jbiomedsem.com/content/5/1/48

component ontology. It remains to be seen how well the
approach works for other portions of ontologies such as
the GO.
Another template-driven class generation approach is

Quick Term Templates [39]. There are multiple imple-
mentations available for this approach: a MappingMaster
plugin for Protégé, the OntoRat web application [40],
or custom Perl code combined with spreadsheets. Each
implementation still requires quite a bit of detailed knowl-
edge of the ontology. One huge issue is the informa-
tion flow back to the ontology developers, which also
includes the assignment of valid/permanent identifier
and access control. In the TermGenie application these
details are controlled by the server and the built-in review
mechanism.
The Cellular Phenotype Ontology (CPO) is an ontology

that was entirely generated programmatically [41]. A cus-
tom program was written using the java OWL-API to
generate a class from the cross-product of the ‘cellular
process’ branch of GO and a subset of PATO. This kind of
en-mass class generation is in contrast to the TermGenie
approach, in which biocurators flesh out a subset of the
space of all possible classes on an as-needed basis. The
resulting ontology is more compact and is arguably more
usable than one in which the entire space of terms is
fleshed out in advance.
Most recently, the Tawny-OWL framework provides an

elegant and powerful way to generate an entire ontology
programmatically using a high-level declarative domain-
specific language [42]. At this time, Tawny is difficult to
integrate into a conventional ontology development work-
flow as it requires the source for the ontology to be stored
as a Clojure program rather than in a non-programmatic
format such as OBO or OWL. However, we are working
with the Tawny developers to explore ways to integrate
our approaches.

Conclusion
TermGenie is a web-based class-generation system that
complements traditional ontology development tools. All
classes added through pre-defined templates are guaran-
teed to have OWL equivalence axioms that are used for
automatic classification and in some cases inter-ontology
linkage. At the same time, the system is simple and intu-
itive and can be used by most biocurators without exten-
sive training. Its use in the Gene Ontology has removed a
significant curation bottleneck, and has freed up ontology
developers from performing time-consuming repetitive
tasks allowing them to work on high-level design issues.
In the last 4 years the Gene Ontology TermGenie instance
was used to generated 4715 new classes, about 51.4% of
all new classes created. The immediate generation of per-
manent identifiers proved not to be an issue with only 70
(1.4%) obsoleted classes. TermGenie is now in use in other

projects as well, including the Mammalian Phenotype
Ontology, the Human Phenotype Ontology, the Cell Type
Ontology and the Ontology of Biological Attributes.

Availability and requirements
• Project name: TermGenie
• Project home page: http://termgenie.org
• Operating system(s): Platform independent
• Programming language: Java, JavaScript
• Other requirements: Java 6 or higher, Jetty 6 or

higher, Maven 3.0.x
• License: New BSD (BSD 3 Clause)
• Any restrictions to use by non-academics: none

Abbreviations
GO: GeneOntology; HP: Human Phenotype; ODT: Ontology Development Tool;
OWL: Web Ontology Language; VCS: Version Control System; ChEBI: Chemical
Entities of Biological Interest; PO: Plant Ontology; CL: Cell Type Ontology;
PATO: Phenotypic Quality Ontology; OBA: Ontology of Biological Attributes.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
CJM conceptualized and implemented the initial prototype. HD designed,
implemented, and maintains the current TermGenie system. CJM, TZB, REF,
DPH, JL, DOS, PR provided the ontology expertise, templates, and test
examples, and performed necessary ontology axiomatization and refactoring.
All authors provided feedback, drove requirements and participated in testing
and improving the system. All authors read and approved the final manuscript.

Acknowledgements
We thank all the GO curators who have provided feedback on the GO
TermGenie instance. Thanks to Jen Hammock from the Encyclopaedia of Life
for testing the OBA TermGenie instance.
All authors are supported by the National Human Genome Research Institute
(NHGRI) P41 grant 5P41HG002273-09 to the Gene Ontology Consortium. In
addition, JL is funded by the European Molecular Biology Laboratory (EMBL),
European Bioinformatics Institute Outstation (EMBL-EBI) core funds. In
addition, HD and CJM’s contribution was also supported by the Director,
Office of Science, Office of Basic Energy Sciences, of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231.

Author details
1Genomics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road,
94720 Berkeley, CA, USA. 2The Arabidopsis Information Resource, Phoenix
Bioinformatics, 94063 Redwood City, CA, USA. 3European Molecular Biology
Laboratory, European Bioinformatics Institute (EMBL-EBI), CB10 1SD Hinxton,
Cambridge, UK. 4Mouse Genome Informatics, The Jackson Laboratory, 04609
Bar Harbor, ME, USA.

Received: 28 August 2014 Accepted: 29 October 2014
Published: 11 December 2014

References
1. Day-Richter J, Harris MA, Haendel M, The Gene Ontology OBO-Edit

Working Group, Lewis S: OBO-Edit-an ontology editor for biologists.
Bioinformatics 2007, 23(16):2198–2200.

2. Gene ontology developer documentation. http://geneontology.org/
page/development

3. Mungall CJ, Gkoutos GV, Smith CL, Haendel MA, Lewis SE, Ashburner M:
Integrating phenotype ontologies across multiple species. Genome
Biol 2010, 11:2.

4. Mungall CJ, Torniai C, Gkoutos GV, Lewis SE, Haendel MA: Uberon, an
integrative multi-species anatomy ontology. Genome Biol 2012,
13(1):5.

5. jQuery javascript library. http://jquery.com

http://termgenie.org
http://geneontology.org/page/development
http://geneontology.org/page/development
http://jquery.com


Dietze et al. Journal of Biomedical Semantics 2014, 5:48 Page 13 of 13
http://www.jbiomedsem.com/content/5/1/48

6. jQueryUI Javascript Library. http://jqueryui.com
7. Horridge M, Bechhofer S: The OWL API: A java api for OWL ontologies.

Semantic Web 2011, 2(1):11–21.
8. OBO Format. http://oboformat.org
9. Subversion. http://subversion.apache.org
10. Git. http://git-scm.com
11. Apache OpenJPA. http://openjpa.apache.org
12. HyperSQL DataBase. http://hsqldb.org
13. Barrell D, Dimmer E, Huntley RP, Binns D, O’Donovan C, Apweiler R: The

GOA database in 2009 - an integrated Gene Ontology annotation
resource. Nucleic Acids Res 2009, 37(Database-Issue):396–403.

14. Persona. http://www.persona.org
15. Google Guice. http://github.com/google/guice
16. Kazakov Y, Krötzsch M, Simanc̆ík F: The incredible ELK - from

polynomial procedures to efficient reasoning with EL ontologies.
J Automated Reason 2014, 53(1):1–61.

17. Hill DP, Blake JA, Richardson JE, Ringwald M: Extension and integration
of the Gene Ontology (GO): Combining GO vocabularies with
external vocabularies. Genome Res 2002, 12(12):1982–1991.

18. Mungall CJ, Bada M, Berardini TZ, Deegan J, Ireland A, Harris MA, Hill DP,
Lomax J: Cross-product extensions of the Gene Ontology. J Biomed
Inform 2011, 44(1):80–86. Ontologies for Clinical and Translational
Research

19. Hill D, Adams N, Bada M, Batchelor C, Berardini T, Dietze H, Drabkin H,
Ennis M, Foulger R, Harris M, Hastings J, Kale N, de Matos P, Mungall C,
Owen G, Roncaglia P, Steinbeck C, Turner S, Lomax J: Dovetailing
biology and chemistry: integrating the Gene Ontology with the
ChEBI chemical ontology. BMC Genomics 2013, 14(1):513.

20. Huntley RP, Harris MA, Alam-Faruque Y, Blake JA, Carbon S, Dietze H,
Dimmer EC, Foulger RE, Hill DP, Khodiyar VK, Lock A, Lomax J, Lovering
RC, Mutowo-Meullenet P, Sawford T, Van Auken K, Wood V, Mungall CJ: A
method for increasing expressivity of Gene Ontology annotations
using a compositional approach. BMC Bioinformatics 2014, 15(1):155.

21. OWL 2 web ontology language profiles. http://www.w3.org/TR/owl2-
profiles/

22. Glimm B, Horrocks I, Motik B, Stoilos G: Optimising ontology
classification. In Proceedings of The Semantic Web - ISWC 2010 - 9th
International Semantic Web Conference: 7-11 November 2010; Shanghai,
China. Edited by Patel-Schneider PF, Pan Y, Hitzler P, Mika P, Zhang L, Pan
JZ, Horrocks I, Glimm B: Springer: Lecture Notes in Computer Science;
2010:225–240. http://dx.doi.org/10.1007/978-3-642-17746-0_15

23. JFact Reasoner. http://jfact.sourceforge.net
24. Pellet Reasoner. http://clarkparsia.com/pellet/
25. Romero AA, Grau BC, Horrocks I:MORe: Modular combination of OWL

reasoners for ontology classification. In Proceedings of The Semantic
Web - ISWC 2012 - 11th International Semantic Web Conference: 11-15
November 2012; Boston, MA, USA. Edited by Cudré-Mauroux P, Heflin J, Sirin
E, Tudorache T, Euzenat J, Hauswirth M, Parreira JX, Hendler J, Schreiber G,
Bernstein A, Blomqvist E: Springer: Lecture Notes in Computer Science;
2012:1–16. http://dx.doi.org/10.1007/978-3-642-35176-1_1

26. Jcel Reasoner. http://jcel.sourceforge.net
27. TermGenie for the GeneOntology. http://go.termgenie.org
28. Bard J, Rhee SY, Ashburner M: An ontology for cell types. Genome Biol

2005, 6(2):21.
29. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M,

Chen Y, Zhao X, Schmidl C, Suzuki T, Ntini E, Arner E, Valen E, Li K,
Schwarzfischer L, Glatz D, Raithel J, Lilje B, Rapin N, Bagger FO,
Jorgensen M, Andersen PR, Bertin N, Rackham O, Burroughs AM, Baillie JK,
Ishizu Y, Shimizu Y, Furuhata E, Maeda S, et al: An atlas of active
enhancers across human cell types and tissues. Nature 2014,
507(7493):455–461.

30. TermGenie for the ontology of biological attributes (OBA).
http://oba.termgenie.org

31. Parr CS, Wilson N, Leary P, Schulz KS, Lans K, Walley L, Hammock JA,
Goddard A, Rice J, Studer M, Holmes JTG, Corrigan RJ Jr: The
encyclopedia of life v2: providing global access to knowledge about
life on earth. Biodivers Data J 2014, 2:e1079. doi:10.3897/BDJ.2.e1079.

32. TermGenie for the Mammalian Phenotype Ontology (MP).
http://mp.termgenie.org

33. TermGenie for the Human Phenotype Ontology (HP).
http://hp.termgenie.org

34. Meehan TF, Masci AM, Abdulla A, Cowell LG, Blake JA, Mungall CJ, Diehl
AD: Logical development of the cell ontology. BMC Bioinformatics
2011, 12(1):6.

35. Protégé. http://protege.stanford.edu
36. Horridge M, Tudorache T, Vendetti J, Nyulas C, Musen MA, Noy NF:

Simplified OWL ontology editing for the web: Is WebProtégé
enough? In Proceedings of The Semantic Web - ISWC 2013 - 12th
International Semantic Web Conference: 21-25 October 2013; Sydney, NSW,
Australia. Edited by Alani H, Kagal L, Fokoue A, Groth PT, Biemann C,
Parreira JX, Aroyo L, Noy NF, Welty C, Janowicz K: Springer: Lecture Notes
in Computer Science; 2013:200–215. http://dx.doi.org/10.1007/978-3-
642-41335-3_13

37. Wächter T, Schroeder M: Semi-automated ontology generation within
OBO-Edit. Bioinformatics [ISMB] 2010, 26(12):88–96.

38. Dutkowski J, Kramer M, Surma MA, Balakrishnan R, Cherry JM, Krogan NJ,
Ideker T: A gene ontology inferred frommolecular networks. Nat
Biotechnol 2012, 31(1):38–45.

39. Rocca-Serra P, Ruttenberg A, O’Connor MJ, Whetzel PL, Schober D,
Greenbaum J, Courtot M, Brinkman RR, Sansone S-A, Scheuermann RH,
Peters B: Overcoming the ontology enrichment bottleneck with
quick term templates. Appl Ontol 2011, 6(1):13–22.

40. Xiang Z, Yu L, He Y: Ontorat Web Server for Automatic Generation of
New Ontology Terms. In Proceedings of the 3rd International Conference
on Biomedical Ontology - ICBO 2012, KR-MED Series. Graz, Austria; 2012.

41. Hoehndorf R, Harris MA, Herre H, Rustici G, Gkoutos GV: Semantic
integration of physiology phenotypes with an application to the
cellular phenotype ontology. Bioinformatics 2012, 28(13):1783–1789.

42. Lord P: The semantic web takes wing: Programming ontologies with
Tawny-OWL. In Proceedings of the 10th International Workshop on OWL:
Experiences and Directions (OWLED 2013) Co-located with 10th Extended
Semantic Web Conference (ESWC 2013): 26-27 May 2013; Montpellier, France.
Edited by Rodriguez-Muro M, Jupp S, Srinivas K: vol. 1080 CEUR-WS.org:
CEUR Workshop Proceedings; 2013. http://ceur-ws.org/Vol-1080/
owled2013_16.pdf http://ceur-ws.org/Vol-1080/

doi:10.1186/2041-1480-5-48
Cite this article as: Dietze et al.: TermGenie – a web-application for
pattern-based ontology class generation. Journal of Biomedical Semantics
2014 5:48.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://jqueryui.com
http://oboformat.org
http://subversion.apache.org
http://git-scm.com
http://openjpa.apache.org
http://hsqldb.org
http://www.persona.org
http://github.com/google/guice
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://dx.doi.org/10.1007/978-3-642-17746-0_15
http://jfact.sourceforge.net
http://clarkparsia.com/pellet/
http://dx.doi.org/10.1007/978-3-642-35176-1_1
http://jcel.sourceforge.net
http://go.termgenie.org
http://oba.termgenie.org
http://mp.termgenie.org
http://hp.termgenie.org
http://protege.stanford.edu
http://dx.doi.org/10.1007/978-3-642-41335-3_13
http://dx.doi.org/10.1007/978-3-642-41335-3_13
http://ceur-ws.org/Vol-1080/owled2013_16.pdf
http://ceur-ws.org/Vol-1080/owled2013_16.pdf
http://ceur-ws.org/Vol-1080/

	Abstract
	Background
	Results
	Conclusion
	Keywords

	Background
	Implementation
	Architectural components
	Ontology loading and synchronization
	Request queue and services
	Sessions and user authentication
	Logic-based autocompletion
	Configuration
	Templating system
	Reasoning

	User workflow
	Review process

	Results and discussion
	Usage in the Gene Ontology
	Streamlining ontology development
	Bounds on complexity of composed classes
	Non-templated class generation
	Evaluation of OWL reasoners for use in TermGenie
	TermGenie for other ontologies


	Comparison with other approaches

	Conclusion
	Availability and requirements
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

