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Abstract

Background: Terminologies that account for variation in language use by linking synonyms and abbreviations to
their corresponding concept are important enablers of high-quality information extraction from medical texts. Due to
the use of specialized sub-languages in the medical domain, manual construction of semantic resources that
accurately reflect language use is both costly and challenging, often resulting in low coverage. Although models of
distributional semantics applied to large corpora provide a potential means of supporting development of such
resources, their ability to isolate synonymy from other semantic relations is limited. Their application in the clinical
domain has also only recently begun to be explored. Combining distributional models and applying them to different
types of corpora may lead to enhanced performance on the tasks of automatically extracting synonyms and
abbreviation-expansion pairs.

Results: A combination of two distributional models – Random Indexing and Random Permutation – employed in
conjunction with a single corpus outperforms using either of the models in isolation. Furthermore, combining
semantic spaces induced from different types of corpora – a corpus of clinical text and a corpus of medical journal
articles – further improves results, outperforming a combination of semantic spaces induced from a single source, as
well as a single semantic space induced from the conjoint corpus. A combination strategy that simply sums the cosine
similarity scores of candidate terms is generally the most profitable out of the ones explored. Finally, applying simple
post-processing filtering rules yields substantial performance gains on the tasks of extracting abbreviation-expansion
pairs, but not synonyms. The best results, measured as recall in a list of ten candidate terms, for the three tasks are:
0.39 for abbreviations to long forms, 0.33 for long forms to abbreviations, and 0.47 for synonyms.

Conclusions: This study demonstrates that ensembles of semantic spaces can yield improved performance on the
tasks of automatically extracting synonyms and abbreviation-expansion pairs. This notion, which merits further
exploration, allows different distributional models – with different model parameters – and different types of corpora
to be combined, potentially allowing enhanced performance to be obtained on a wide range of natural language
processing tasks.

Background
In order to create high-quality information extraction sys-
tems, it is important to incorporate some knowledge of
semantics, such as the fact that a concept can be signified
by multiple signifiersa. Morphological variants, abbrevia-
tions, acronyms, misspellings and synonyms – although
different in form – may share semantic content to differ-
ent degrees. The various lexical instantiations of a concept

*Correspondence: aronhen@dsv.su.se
†Equal contributors
1Department of Computer and Systems Sciences (DSV), Stockholm University,
Forum 100, SE-164 40 Kista, Sweden
Full list of author information is available at the end of the article

thus need to be mapped to some standard representa-
tion of the concept, either by converting the different
expressions to a canonical form or by generating lexical
variants of a concept’s ‘preferred term’. These mappings
are typically encoded in semantic resources, such as the-
sauri or ontologiesb, which enable the recall (sensitivity) of
information extraction systems to be improved. Although
their value is undisputed, manual construction of such
resources is often prohibitively expensive and may also
result in limited coverage, particularly in the biomedi-
cal and clinical domains where language use variability is
exceptionally high [1].

© 2014 Henriksson et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:aronhen@dsv.su.se
http://creativecommons.org/licenses/by/2.0


Henriksson et al. Journal of Biomedical Semantics 2014, 5:6 Page 2 of 25
http://www.jbiomedsem.com/content/5/1/6

There is thus a need for (semi-)automatic methods that
can aid and accelerate the process of lexical resource
development, especially ones that are able to reflect real
language use in a particular domain and adapt to differ-
ent genres of text, as well as to changes over time. In
the clinical domain, for instance, language use in gen-
eral, and (ad-hoc) abbreviations in particular, can vary
significantly across specialities. Statistical, corpus-driven
and language-agnostic methods are attractive due to their
inherent portability: given a corpus of sufficient size in
the target domain, the methods can be applied with no or
little adaptation needed. Models of distributional seman-
tics, building on the assumption that linguistic items with
similar distributions in large bodies of linguistic data
have similar meanings, fulfill these requirements and have
been used to extract semantically similar terms from large
corpora; with increasing access to data from electronic
health records, their application in the clinical domain
has lately begun to be explored. In this paper, we present
a method that employs distributional semantics for the
extraction of synonyms and abbreviation-expansion pairs
from two corpora: a clinical corpus (comprising health
record narratives) and a medical corpus (comprising jour-
nal articles). We also demonstrate that performance can
be enhanced by creating ensembles of (distributional)
semantic spaces – both with different model param-
eter configurations and induced from different genres
of text.
The structure of this paper is as follows. First, we

present some relevant background literature on syn-
onyms, abbreviations and their extraction/expansion. We
also introduce the ideas underlying distributional seman-
tics in general and, in particular, the models employed in
this study: Random Indexing and Random Permutation.
Then, we describe our method of combining semantic
spaces induced from single and multiple corpora, includ-
ing the details of the experimental setup and the mate-
rials used. A presentation of the experimental results is
followed by an analysis and discussion of their implica-
tions. Finally, we conclude the paper with a summary and
conclusions.

Language use variability: synonyms and abbreviations
Synonymy is a semantic relation between two phono-
logically distinct words with very similar meaning. It is,
however, extremely rare that two words have the exact
same meaning – perfect synonyms – as there is often at
least one parameter that distinguishes the use of one word
from another [2]. For this reason, we typically speak of
near-synonyms instead; that is, two words that are inter-
changeable in some, but not all, contextsc [2]. Two near-
synonyms may also have different connotations, such as
conveying a positive or a negative attitude. To compli-
cate matters further, the same concept can sometimes be

referred to with different words in different dialects; for
a speaker who is familiar with both dialects, these can
be viewed as synonyms. A similar phenomenon concerns
different formality levels, where one word in a synonym
pair is used only as slang and the other only in a more
formal context [2]. In the medical domain, there is one
vocabulary that is more frequently used by medical pro-
fessionals, whereas patients often use alternative, layman
terms [3]. When developing many natural language pro-
cessing (NLP) applications, it is important to have ready
access to terminological resources that cover this variation
in the use of vocabulary by storing synonyms. Examples of
such applications are query expansion [3], text simplifica-
tion [4] and, as already mentioned previously, information
extraction [5].
The use of abbreviations and acronyms is prevalent in

both medical journal text [6] and clinical text [1]. This
leads to decreased readability [7] and poses challenges
for information extraction [8]. Semantic resources that
also link abbreviations to their corresponding concept, or,
alternatively, simple term lists that store abbreviations and
their corresponding long form, are therefore as important
as synonym resources for many biomedical NLP appli-
cations. Like synonyms, abbreviations are often inter-
changeable with their corresponding long form in some, if
not all, contexts. An important difference between abbre-
viations and synonyms is, however, that abbreviations are
semantically overloaded to a much larger extent; that is,
one abbreviation often has several possible long forms,
with distinct meanings. In fact, 81% of UMLSd abbrevia-
tions in biomedical text were found to be ambiguous [6].

Identifying synonymous relations between terms
The importance of synonym learning is well recognized in
the NLP research community, especially in the biomedical
[9] and clinical [1] domains. A wide range of techniques
has been proposed for the identification of synonyms
and other semantic relations, including the use of lexico-
syntactic patterns, graph-based models and, indeed, dis-
tributional semantics [10] – the approach investigated in
this study.
For instance, Hearst [11] proposes the use of lexico-

syntactic patterns for the automatic acquisition of
hyponymse from unstructured text. These patterns are
hand-crafted according to observations in a corpus. Pat-
terns can similarly be constructed for other types of lexical
relations. However, a requirement is that these syntactic
patterns are common enough to match a wide array of
hyponym pairs. Blondel et al. [12] present a graph-based
method that takes its inspiration from the calculation of
hub, authority and centrality scores when ranking hyper-
linked web pages. They illustrate that the central similarity
score can be applied to the task of automatically extract-
ing synonyms from a monolingual dictionary, in this case
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the Webster dictionary, where the assumption is that
synonyms have a large overlap in the words used in their
definitions; they also co-occur in the definition of many
words. Another possible source for extracting synonyms
is the use of linked data, such as Wikipedia. Nakayama
et al. [13] also utilize a graph-basedmethod, but instead of
relying on word co-occurrence information, they exploit
the links betweenWikipedia articles (treated as concepts).
This way they can measure both the strength (the number
of paths from one article to another) and the distance (the
length of each path) between concepts: concepts close to
each other in the graph and with common hyperlinks are
deemed to bemore closely related than those farther away.
There have also been some previous efforts to obtain

better performance on the synonym extraction task by not
only using a single source and a single method. Inspiration
for some of these approaches has been drawn from ensem-
ble learning, a machine learning technique that combines
the output of several different classifiers with the aim
of improving classification performance (see [14] for an
overview). Curran [15] exploits this notion for synonym
extraction and demonstrates that ensemble methods out-
perform individual classifiers even for very large corpora.
Wu and Zhou [16] use multiple resources – a monolin-
gual dictionary, a bilingual corpus and a largemonolingual
corpus – in a weighted ensemble method that combines
the individual extractors, thereby improving both preci-
sion and recall on the synonym acquisition task. Along
somewhat similar lines, van der Plas and Tiedemann [17]
use parallel corpora to calculate distributional similarity
based on (automatic) word alignment, where a trans-
lational context definition is employed; synonyms are
extracted with both greater precision and recall com-
pared to a monolingual approach. This approach is, how-
ever, hardly applicable in the medical domain due to the
unavailability of parallel corpora. Peirsman and Geeraerts
[18] combine predictors based on collocation measures
and distributional semantics with a so-called compound-
ing approach, wherein cues are combined with strongly
associated words into compounds and verified against a
corpus. This ensemble approach is shown substantially
to outperform the individual predictors of strong term
associations in a Dutch newspaper corpus. In informa-
tion retrieval, Diaz and Metzler [19] report increased
performance gains when utilizing language models that
derive evidence from both a target corpus and an external
corpus, compared to using the target corpus alone.
In the biomedical domain, most efforts have focused

on extracting synonyms of gene and protein names
from the biomedical literature [20-22]. In the clinical
domain, Conway and Chapman [23] propose a rule-based
approach to generate potential synonyms from the Bio-
Portal ontology – using permutations, abbreviation gener-
ation, etc. – after which candidate synonyms are verified

against a large clinical corpus. Henriksson et al. [24,25]
use models of distributional semantics to induce unigram
word spaces and multiword term spaces from a large cor-
pus of clinical text in an attempt to extract synonyms of
varying length for SNOMED CT preferred terms. Zeng
et al. [26] evaluate three query expansion methods for
retrieval of clinical documents and conclude that an LDA-
based topic model generates the best synonyms. Pedersen
et al. [27] explore a set of measures for automatically
judging semantic similarity and relatedness among med-
ical term pairs that have been pre-assessed by human
experts. The measures range from ones based on thesauri
or ontologies (WordNet, SNOMED-CT, UMLS, Mayo
Clinic Thesaurus) to those based on distributional seman-
tics. They find that the measure based on distributional
semantics performs at least as good as any of the ontology-
dependentmeasures. In a similar task, Koopman et al. [28]
evaluate eight different data-driven measures of seman-
tic similarity. Using two separate training corpora, one
containing clinical notes and the other medical literature
articles, they conclude that the choice of training cor-
pus has a significant impact on the performance of these
measures.

Creating abbreviation dictionaries automatically
There are a number of studies on the automatic creation of
biomedical abbreviation dictionaries that exploit the fact
that abbreviations are sometimes defined in the text on
their first mention. These studies extract candidates for
abbreviation-expansion pairs by assuming that either the
long form or the abbreviation is written in parentheses
[29]; other methods that use rule-based pattern matching
have also been proposed [30]. The process of determin-
ing which of the extracted candidates that are likely to
be correct abbreviation-expansion pairs is then performed
either by rule-based [30] or machine learning [31,32]
methods. Most of these studies have been conducted for
English; however, there is also a study on Swedish medical
text [33], for instance.
Yu et al. [34] have, however, found that around 75% of

all abbreviations found in biomedical articles are never
defined in the text. The application of these methods to
clinical text is most likely inappropriate, as clinical text is
often written in a telegraphic style, mainly for documen-
tation purposes [1]; that effort would be spent on defining
used abbreviations in this type of text seems unlikely.
There has, however, been some work on identifying such
undefined abbreviations [35], as well as on finding the
intended abbreviation expansion among several possible
expansions available in an abbreviation dictionary [36].
In summary, automatic creation of biomedical abbre-

viation dictionaries from texts where abbreviations are
defined is well studied. This is also the case for abbrevia-
tion disambiguation given several possible long forms in
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an abbreviation dictionary. The abbreviation part of this
study, however, focuses on a task that has not as yet been
adequately explored: to find abbreviation-expansion pairs
without requiring the abbreviations to be defined in the
text.

Distributional semantics: inducing semantic spaces from
corpora
Distributional semantics (see [37] for an overview of
methods and their application in the biomedical domain)
were initially motivated by the inability of the vector
space model [38] – as it was originally conceived – to
account for the variability of language use andword choice
stemming from natural language phenomena such as syn-
onymy. To overcome the negative impact this had on
recall in information retrieval systems, models of dis-
tributional semantics were proposed [39-41]. The the-
oretical foundation underpinning such semantic models
is the distributional hypothesis [42], which states that
words with similar distributions in language – in the
sense that they co-occur with overlapping sets of words –
tend to have similar meanings. Distributional methods
have become popular with the increasing availability
of large corpora and are attractive due to their com-
putational approach to semantics, allowing an estimate
of the semantic relatedness between two terms to be
quantified.
An obvious application of distributional semantics is

the extraction of semantically related terms. As near-
synonyms are interchangeable in at least some contexts,
their distributional profiles are likely to be similar, which
in turn means that synonymy is a semantic relation that
should, to a certain degree, be captured by these meth-
ods. This seems intuitive, as, next to identity, the highest
degree of semantic relatedness between terms is real-
ized by synonymy. It is, however, well recognized that
other semantic relations between terms that share similar
contexts will likewise be captured by these models [43];
synonymy cannot readily be isolated from such relations.
Spatial modelsf of distributional semantics generally

differ in how vectors representing term meaning are con-
structed. These vectors, often referred to as context vec-
tors, are typically derived from a term-context matrix that
contains the (weighted, normalized) frequency with which
terms occur in different contexts. Working directly with
such high-dimensional (and inherently sparse) data —
where the dimensionality is equal to the number of con-
texts (e.g. the number of documents or the size of the
vocabulary, depending on which context definition is
employed) — would entail unnecessary computational
complexity, in particular since most terms only occur in
a limited number of contexts, which means that most
cells in the matrix will be zero. The solution is to project
the high-dimensional data into a lower-dimensional

space, while approximately preserving the relative dis-
tances between data points. The benefit of dimensionality
reduction is two-fold: on the one hand, it reduces com-
plexity and data sparseness; on the other hand, it has
also been shown to improve the coverage and accuracy
of term-term associations, as, in this reduced (semantic)
space, terms that do not necessarily co-occur directly in
the same contexts – this is indeed the typical case for syn-
onyms and abbreviation-expansion pairs – will neverthe-
less be clustered about the same subspace, as long as they
appear in similar contexts, i.e. have neighbors in common
(co-occur with the same terms). In this way, the reduced
space can be said to capture higher order co-occurrence
relations.
In latent semantic analysis (LSA) [39], dimensionality

reduction is performed with a computationally expensive
matrix factorization technique known as singular value
decomposition. Despite its popularity, LSA has conse-
quently received some criticism for its poor scalability
properties. More recently, alternative methods for con-
structing semantic spaces based on term co-occurrence
information have been proposed.

Random indexing
Random indexing (RI) [44] is an incremental, scalable
and computationally efficient alternative to LSA in which
explicit dimensionality reduction is avoidedg: a lower
dimensionality d is instead chosen a priori as a model
parameter and the d-dimensional context vectors are then
constructed incrementally. This approach allows new data
to be added at any given time without having to rebuild the
semantic space. RI can be viewed as a two-step operation:

1. Each context (e.g. each document or unique term) is
first given a static, unique representation in the
vector space that is approximately uncorrelated to all
other contexts. This is achieved by assigning a sparse,
ternaryh and randomly generated d-dimensional
index vector: a small number (usually around 1–2%)
of +1’s and −1’s are randomly distributed, with the
rest of the elements set to zero. By generating sparse
vectors of a sufficiently high dimensionality in this
way, the index vectors will be nearly orthogonali.

2. Each unique term is assigned an initially empty
context vector of the same dimensionality d. The
context vectors are then incrementally populated
with context information by adding the (weighted)
index vectors of the contexts in which the target
term appears. With a sliding window context
definition, this means that the index vectors of the
surrounding terms are added to the target term’s
context vector. The meaning of a term, represented
by its context vector, is effectively the (weighted)
sum of all the contexts in which it occurs.
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Randompermutation
Models of distributional semantics, including RI, generally
treat each context as a bag of wordsj. Suchmodels are often
criticized for failing to account for term order. Recently,
methods have been developed for building distributional
semantic models that store and emphasize word order
information [45-47]. Random permutation (RP) [46] is a
modification of RI that encodes term order information by
simply permuting (i.e., shifting) the elements in the index
vectors according to their direction and distancek from
the target term before they are added to the context vector.
For instance, before adding the index vector of a term two
positions to the left of the target term, the elements are
shifted two positions to the left; similarly, before adding
the index vector of a term one position to the right of the
target term, the elements are shifted one position to the
right. In effect, each term has multiple unique representa-
tions: one index vector for each possible position relative
to the target term in the context window. Incorporat-
ing term order information not only enables order-based
retrieval; it also constrains the types of semantic relations
that are captured.

Model parameters
There are a number of model parameters that need to be
configured according to the task that the induced seman-
tic spaces will be used for. For instance, the types of
semantic relations captured depends on the context def-
inition [43,48]. By employing a document-level context
definition, relying on direct co-occurrences, one models
syntagmatic relations. That is, two terms that frequently
co-occur in the same documents are likely to be about the
same general topic. By employing a sliding window con-
text definition, one models paradigmatic relations. That
is, two terms that frequently co-occur with similar sets of
words – i.e., share neighbors – but do not necessarily co-
occur themselves, are semantically similar. Synonymy is
a prime example of a paradigmatic relation. The size of
the context window also affects the types of relations that
are modeled and needs to be tuned for the task at hand.
This is also true for semantic spaces produced by RP; how-
ever, the precise impact of window size on RP spaces and
the internal relations of their context vectors is yet to be
studied in depth.

Method
The main idea behind this study is to enhance the
performance on the task of extracting synonyms and
abbreviation-expansion pairs by combining multiple and
different semantic spaces – different in terms of (1) type
of model and model parameters used, and (2) type of
corpus from which the semantic space is induced. In addi-
tion to combining semantic spaces induced from a single
corpus, we also combine semantic spaces induced from

two different types of corpora: in this case, a clinical
corpus (comprising health record notes) and a medi-
cal corpus (comprising journal articles). The notion of
combining multiple semantic spaces to improve perfor-
mance on some task is generalizable and can loosely be
described as creating ensembles of semantic spaces. By
combining semantic spaces, it becomes possible to benefit
from model types that capture slightly different aspects of
semantics, to exploit various model parameter configura-
tions (which influence the types of semantic relations that
are modeled), as well as to observe language use in poten-
tially very different contexts (by employing more than one
corpus type).We set out exploring this approach by query-
ing each semantic space separately and then combining
their output using a number of combination strategies
(Figure 1).
The experimental setup can be divided into the fol-

lowing steps: (1) corpora preprocessing, (2) construction
of semantic spaces from the two corpora (and from the
conjoint corpus), (3) identification of the most profitable
single-corpus (and conjoint corpus) combinations, (4)
identification of the most profitable (disjoint) multiple-
corpora combinations, (5) evaluations of the single-corpus
(including the conjoint corpus) and multiple-corpora
combinations, (6) post-processing of candidate terms, and
(7) frequency threshold experiments. Once the corpora
have been preprocessed, ten semantic spaces from each
corpus, as well as the conjoint corpus, are induced with
different context window sizes (RP spaces are induced
with and without stop words). Ten pairs of semantic
spaces are then combined using three different combina-
tion strategies. These are evaluated on the three tasks – (1)
abbreviations → expansions, (2) expansions → abbrevia-
tions and (3) synonyms – using the development subsets
of the reference standards (a list of medical abbreviation-
expansion pairs for 1 and 2 and MeSH synonyms for 3).
Performance is mainly measured as recall top 10, i.e. the
proportion of expected candidate terms that are among
a list of ten suggestions. The pair of semantic spaces
involved in the most profitable combination for each cor-
pus is then used to identify the most profitable multiple-
corpora combinations, where eight different combination
strategies are evaluated. The best single-corpus combi-
nations are evaluated on the evaluation subsets of the
reference standards, where using RI and RP in isolation
constitute the two baselines. The best multiple-corpora
combination is likewise evaluated on the evaluation sub-
sets of the reference standards; here, the results are
compared both to (1) semantic spaces induced from a
single corpus and the conjoint corpus, and (2) ensem-
bles of semantic spaces induced from a single corpus (and
the conjoint corpus). Post-processing rules are then con-
structed using the development subsets of the reference
standards and the outputs of the various semantic space
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Figure 1 Ensembles of semantic spaces for synonym extraction and abbreviation expansion. Semantic spaces built with different model
parameters are induced from different corpora. The output of the semantic spaces are combined in order to obtain better results compared to
using a single semantic space in isolation.

combinations. These are evaluated on the evaluation sub-
sets of the reference standards using the most profitable
single-corpus and multiple-corpora ensembles. All eval-
uations on the evaluation subsets of the reference stan-
dards also include an evaluation of weighted precision,
see Eq. 1:

Weighted Precision :Pw =
∑j−1

i=0 (j − i) · f (i)∑j−1
i=0 j − i

where

f (i) =
{
1 if i ∈ {tp}
0 otherwise

(1)

and j is the pre-specified number of labels – here, ten,
except in the case of a dynamic cut-off – and {tp} is the set
of true positives. In words, this assigns a score to true pos-
itives according to their (reverse) ranking in the list, sums
their scores and divides the total score by the maximum
possible score (where all j labels are true positives).
Finally, we explore the impact of frequency thresholds

(i.e., how many times each pair of terms in the reference
standards needs to occur to be included) on performance.

Inducing semantic spaces from clinical andmedical corpora
Each individual semantic space is constructed with one
model type, using a predefined context window size and
induced from a single corpus type. The semantic spaces
are constructed with random indexing (RI) and random
permutation (RP) using JavaSDM [49]. For all semantic
spaces, a dimensionality of 1,000 is used (with 8 non-zero,
randomly distributed elements in the index vectors: four

1s and four -1s). When the RI model is employed, the
index vectors are weighted according to their distance
from the target term, see Eq. 2, where distit is the distance
to the target term. When the RP model is employed, the
elements of the index vectors are instead shifted accord-
ing to their direction and distance from the target term;
no weighting is performed.

weighti = 21−distit (2)

For all models, window sizes of two (1 + 1), four (2 + 2)
and eight (4 + 4) surrounding terms are used. In addition,
RI spaces with a window size of twenty (10 + 10) are
induced in order to investigate whether a significantly
wider context definition may be profitable. Incorporating
order information (RP) with such a large context window
makes little sense; such an approach would also suffer
from data sparseness. Different context definitions are
experimented with in order to find one that is best suited
to each task. The RI spaces are induced only from corpora
that have been stop-word filtered, as co-occurrence infor-
mation involving high-frequent and widely distributed
words contribute very little to the meaning of terms. The
RP spaces are, however, also induced from corpora in
which stop words have been retained. The motivation
behind this is that all words, including function words –
these make up the majority of the items in the stop-word
lists – are important to the syntactic structure of language
and may thus be of value when modeling order infor-
mation [45]. A stop-word list is created for each corpus
by manually inspecting the most frequent word types
and removing from the list those words that may be of
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interest, e.g. domain-specific terms. Each list consists of
approximately 150 terms.
The semantic spaces are induced from two types of cor-

pora – essentially belonging to different genres, but both
within the wider domain of medicine: (1) a clinical corpus,
comprising notes from health records, and (2) a medical
corpus, comprising medical journal articles.
The clinical corpus contains a subset of the Stockholm

EPR Corpus [50], which encompasses health records from
the Karolinska University Hospital in Stockholm, Sweden
over a five-year periodl. The clinical corpus used in this
study is created by extracting the free-text, narrative
parts of the health records from a wide range of clini-
cal practices. The clinical notes are written in Swedish
by physicians, nurses and other health care professionals
over a six-month period in 2008. In summary, the cor-
pus comprises documents that each contain clinical notes
documenting a single patient visit at a particular clinical
unit.
The medical corpus contains the freely available subset

of Läkartidningen (1996–2005), which is the Journal of the
Swedish Medical Association [51]. It is a weekly journal
written in Swedish and contains articles discussing new
scientific findings in medicine, pharmaceutical studies,
health economic evaluations, etc. Although these issues
have been made available for research, the original order
of the sentences has not been retained due to copy-
right reasons. The sentences thus appear in a randomized
order, which means that the original texts cannot be
recreated.
Both corpora are lemmatized using the Granska Tagger

[52] and thereafter further preprocessed by removing
punctuation marks and digits. Two versions of each cor-
pus are created: one version in which the stop words are
retained and one version in which they are removedm. As
the sentences in Läkartidningen are given in a random
order, a document break is indicated between each sen-
tence for this corpus. It is thereby ensured that context
information from surrounding sentences will not be incor-
porated in the induced semantic space. Statistics for the
two corpora are shown in Table 1.
In summary, a total of thirty semantic spaces are

induced – ten from each corpus type, and ten from the
conjoint corpus. Four RI spaces are induced from each

Table 1 Corpora statistics

Corpus With stop words Without stop words Segments

Clinical ∼42.5M tokens ∼22.5M tokens 268,727 documents
(∼0.4M types) (∼0.4M types)

Medical ∼20.3M tokens ∼12.1M tokens 1,153,824 sentences
(∼0.3M types) (∼0.3M types)

The number of tokens and unique terms (word types) in the medical and clinical
corpus, with and without stop words.

corpus type (12 in total), the difference being the context
definition employed (1 + 1, 2 + 2, 4 + 4, 10 + 10). Six RP
spaces are induced from each corpus type (18 in total), the
difference being the context definition employed (1 + 1,
2 + 2, 4 + 4) and whether stop words have been removed
or retained (sw).

Combinations of semantic spaces from a single corpus
Since RI and RP model semantic relations between terms
in slightly different ways, it may prove profitable to com-
bine them in order to increase the likelihood of capturing
synonymy and identifying abbreviation-expansion pairs.
In one study it was estimated that the overlap in the out-
put produced by RI and RP spaces is, on average, only
around 33% [46]: by combining them, we hope to cap-
ture different semantic properties of terms and, ultimately,
boost results. The combinations from a single corpus type
involve only two semantic spaces: one constructed with RI
and one constructed with RP. In this study, the combina-
tions involve semantic spaces with identical window sizes,
with the following exception: RI spaces with a wide con-
text definition (10 + 10) are combined with RP spaces with
a narrow context definition (1 + 1, 2 + 2). The RI spaces
are combined with RP spaces both with and without stop
words.
Three different strategies of combing an RI-based

semantic space with an RP space are designed and evalu-
ated. Thirty combinations are evaluated for each corpus,
i.e. sixty in total (Table 2). The three combination strate-
gies are:

• RI ⊂ RP30
Finds the top ten terms in the RI space that are
among the top thirty terms in the RP space.

• RP ⊂ RI30
Finds the top ten terms in the RP space that are
among the top thirty terms in the RI space.

• RI + RP
Sums the cosine similarity scores from the two spaces
for each candidate term.

For the first two strategies (RI ⊂ RP30 and RP ⊂ RI30)
a two-stage approach is applied. First one type of model
is used (RI or RP) to produce an initial ranking of words
according to a given query. The other model type, trained
on the same corpus, is then used to re-rank the top
30 words produced by the first model according to its
internal ranking. The intuition behind this approach is
to see if synonyms and abbreviation-expansion pairs can
be detected by trying to ensure that the set of contex-
tually related words also have similar grammatical prop-
erties, and vice versa. In the third strategy (RI + RP),
we apply a straightforward summing of the generated
similarity scores.
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Table 2 Overview of experiments conducted with a single semantic space

For each of the 2 corpora, 10 semantic spaces were induced.

RI spaces RI_20 RI_2 RI_4 RI_8

RP spaces RP_2 RP_2_sw RP_4 RP_4_sw RP_8 RP_8_sw

The induced semantic spaces were combined in 10 different combinations.

Combinations

Identical window size RI_2, RP_2 RI_4, RP_4 RI_8, RP_8

Identical window size, stop words RI_2, RP_2_sw RI_4, RP_4_sw RI_8, RP_8_sw

Large window size RI_20, RP_2 RI_20, RP_4

Large window size, stop words RI_20, RP_2_sw RI_20, RP_4_sw

For each combination, 3 combination strategies were evaluated.

Combination strategies RI ⊂ RP30 RP ⊂ RI30 RI + RP

For each of the two corpora and the conjoint corpus, 30 different combinations were evaluated. The configurations are described according to the following pattern:
model_windowSize. For RP, swmeans that stop words are retained in the semantic space. For instance,model_20means a window size of 10+10 was used.

Combinations of semantic spaces frommultiple corpora
In addition to combining semantic spaces induced from
one and the same corpus, a combination of semantic
spaces induced from multiple corpora could potentially
yield even better performance on the task of extracting
synonyms and abbreviation-expansion pairs, especially if
the terms of interest occur with someminimum frequency
in both corpora. Such ensembles of semantic spaces –
in this study consisting of four semantic spaces – allow
not only different model types and model parameter con-
figurations to be employed, but also allow us to capture
language use in different genres or domains, in which
terms may be used in slightly different contexts. The pair
of semantic spaces from each corpus that is best able to
perform each of the aforementioned tasks – consisting of
two semantic spaces – is subsequently combined using
various combination strategies.
The combination strategies can usefully be divided into

two sets of approaches: in the first, the four seman-
tic spaces are treated equally – irrespective of source
– and combined in a single step; in the other, a two-
step approach is assumed, wherein each pair of semantic
spaces – induced from the same source – is combined
separately before the combination of combinations is per-
formed. In both sets of approaches, the outputs of the
semantic spaces are combined in one of two ways: SUM,
where the cosine similarity scores are merely summed,
and AVG, where the average cosine similarity score is
calculated based on the number of semantic spaces in
which the term under consideration exists. The latter is
an attempt to mitigate the effect of differences in vocabu-
lary between the two corpora. In the two-step approaches,
the SUM/AVG option is configurable for each step. In
the single-step approaches, the combinations can be per-
formed either with or without normalization, which in
this case means replacing the exact cosine similarity
scores of the candidate terms in the output of each queried

semantic space with their ranking in the list of candi-
date terms. This means that the candidate terms are now
sorted in ascending order, with zero being the highest
score. When combining two or more lists of candidate
terms, the combined list is also sorted in ascending order.
The rationale behind this option is that the cosine sim-
ilarity scores are relative and thus only valid within a
given semantic space: combining similarity scores from
semantic spaces constructed with different model types
and parameter configurations, and induced from differ-
ent corpora, might have adverse effects. In the two-step
approach, normalization is always performed after com-
bining each pair of semantic spaces. In total, eight combi-
nation strategies are evaluated:

Single-step approaches
• SUM: RIclinical + RPclinical + RImedical + RPmedical

Each candidate term’s cosine similarity score in each
semantic space is summed. The top ten terms from
this list are returned.

• SUM, normalized: norm(RIclinical) + norm
(RPclinical) + norm(RImedical) + norm(RPmedical)
The output of each semantic space is first normalized
by using the ranking instead of cosine similarity; each
candidate term’s (reverse) ranking in each semantic
space is then summed. The top ten terms from this
list are returned.

• AVG:
RIclinical + RPclinical + RImedical + RPmedical

countterm
Each candidate term’s cosine similarity score in each
semantic space is summed; this value is then averaged
over the number of semantic spaces in which the term
exists. The top ten terms from this list are returned.

• AVG, normalized:
norm(RIclinical)+ norm(RPclinical)+ norm(RImedical)+ norm(RPmedical)

countterm
The output of each semantic space is first normalized
by using the ranking instead of cosine similarity; each
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candidate term’s normalized score in each semantic
space is then summed; this value is finally averaged
over the number of semantic spaces in which the term
exists. The top ten terms from this list are returned.

Two-step approaches
• SUM→SUM: norm(RIclinical + RPclinical) +

norm(RImedical + RPmedical)
Each candidate term’s cosine similarity score in each
pair of semantic spaces is first summed; these are
then normalized by using the ranking instead of the
cosine similarity; finally, each candidate term’s
normalized score is summed. The top ten terms from
this list are returned.

• AVG→AVG:
norm

(RIclinical + RPclinical
countterm−source−a

)
+ norm

(RImedical + RPmedical
countterm−source−b

)

countterm−source−a + countterm−source−b

Each candidate term’s cosine similarity score for each
pair of semantic spaces is first summed; for each pair
of semantic spaces, this value is then averaged over
the number of semantic spaces in that pair in which
the term exists; these are subsequently normalized by
using the ranking instead of the cosine similarity;
each candidate term’s normalized score in each
combined list is then summed and averaged over the
number of semantic spaces in which the term exists
(in both pairs of semantic spaces). The top ten terms
from this list are returned.

• SUM→AVG:
norm(RIclinical +RPclinical) + norm(RImedical +RPmedical)

countterm
Each candidate term’s cosine similarity score for each
pair of semantic spaces is first summed; these are then
normalized by using the ranking instead of the cosine
similarity; each candidate term’s normalized score in
each combined list is then summed and averaged over
the number of semantic spaces in which the term
exists. The top ten terms from this list are returned.

• AVG→SUM: norm
(
RIclinical + RPclinical

countterm

)
+

norm
(
RImedical + RPmedical

countterm

)
Each candidate term’s cosine similarity score for each
pair of semantic spaces is first summed and averaged
over the number of semantic spaces in that pair in
which the term exists; these are then normalized by
using the ranking instead of the cosine similarity;
each candidate term’s normalized score in each
combined list is finally summed. The top ten terms
from this list are returned.

Post-processing of candidate terms
In addition to creating ensembles of semantic spaces, sim-
ple filtering rules are designed and evaluated for their
ability to enhance performance further on the task of
extracting synonyms and abbreviation-expansion pairs.
For obvious reasons, this is easier for abbreviation-
expansion pairs than for synonyms.
With regards to abbreviation-expansion pairs, the focus

is on increasing precision by discarding poor suggestions
in favor of potentially better ones. This is attempted by
exploiting properties of the abbreviations and their cor-
responding expansions. The development subset of the
reference standard (see Evaluation framework) is used to
construct rules that determine the validity of candidate
terms. For an abbreviation-expansion pair to be consid-
ered valid, each letter in the abbreviation has to be present
in the expansion and the letters also have to appear in the
same order. Additionally, the length of abbreviations and
expansions is restricted, requiring an expansion to con-
tain more than four letters, whereas an abbreviation is
allowed to contain a maximum of four letters. These rules
are shown in Eq. 3 and Eq. 4.
For synonym extraction, cut-off values for rank and

cosine similarity are instead employed. These cut-off val-
ues are tuned to maximize precision for the best semantic
space combinations in the development subset of the ref-
erence standard, without negatively affecting recall (see
Figures 2, 3 and 4). Used cut-off values are shown in Eq. 5
for the clinical corpus, in Eq. 6 for the medical corpus, and
in Eq. 7 for the combination of the two corpora. In Eq. 7,
Cos denotes the combination of the cosine values, which
means that it has a maximum value of four rather than
one.

Exp → Abbr =
{
True, if (Len < 5) ∧ (Subout = True)
False, Otherwise

(3)

Abbr → Exp =
{
True, if (Len > 4) ∧ (Subin = True)
False, Otherwise

(4)

Synclinical=
{
True, if (Cos≥0.60)∨(Cos≥0.40∧Rank<9)
False, Otherwise

(5)

Synmedical =
{
True, if (Cos ≥ 0.50)
False, Otherwise (6)

Synclinical+medical =
{
True, if (Cos ≥ 1.9) ∨ (Cos ≥ 1.8 ∧ Rank < 6) ∨ (Cos ≥ 1.75 ∧ Rank < 3)
False, Otherwise (7)
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Figure 2 Distribution of candidate terms for the clinical corpus. The distribution (cosine similarity and rank) of candidates for synonyms for the
best combination of semantic spaces induced from the clinical corpus. The results show the distribution for query terms in the development
reference standard.

Figure 3 Distribution of candidate terms for the medical corpus. The distribution (cosine similarity and rank) of candidates for synonyms for
the best combination of semantic spaces induced from the medical corpus. The results show the distribution for query terms in the development
reference standard.
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Figure 4 Distribution of candidate terms for clinical + medical corpora. The distribution (combined cosine similarity and rank) of candidates
for synonyms for the ensemble of semantic spaces induced from medical and clinical corpora. The results show the distribution for query terms in
the development reference standard.

Cos: Cosine similarity between candidate term and
query term.

Rank: The ranking of the candidate term, ordered by
cosine similarity.

Subout: Whether each letter in the candidate term is
present in the query term, in the same order
and with identical initial letters.

Subin: Whether each letter in the query term is
present in the candidate term, in the same
order and with identical initial letters.

Len: The length of the candidate term.

The post-processing filtering rules are employed in two
different ways. In the first approach, the semantic spaces
are forced to suggest a predefined number of candidate
terms (ten), irrespective of how good they are deemed to
be by the semantic space. Candidate terms are retrieved by
the semantic space until ten have been classified as correct
according to the post-processing rules, or until one hun-
dred candidate terms have been classified. If less than ten
are classified as incorrect, the highest ranked discarded
terms are used to populate the remaining slots in the
final list of candidate terms. In the second approach, the
semantic spaces are allowed to suggest a dynamic num-
ber of candidate terms, with a minimum of one and a
maximum of ten. If none of the highest ranked terms are
classified as correct, the highest ranked term is suggested.

Evaluation framework
Evaluation of the numerous experiments is carried out
with the use of reference standards: one contains known

abbreviation-expansion pairs and the other contains
known synonyms. The semantic spaces and their var-
ious combinations are evaluated for their ability to
extract known abbreviations/expansions (abbr→exp and
exp→abbr) and synonyms (syn) – according to the
employed reference standard – for a given query term
in a list of ten candidate terms (recall top 10). Recall
is prioritized in this study and any decisions, such as
deciding which model parameters or which combina-
tion strategies are the most profitable, are solely based
on this measure. When precision is reported, it is cal-
culated as weighted precision, where the weights are
assigned according to the ranking of a correctly identified
term.
The reference standard for abbreviations is taken from

Cederblom [53], which is a book that contains lists of
medical abbreviations and their corresponding expan-
sions. These abbreviations have been manually collected
from Swedish health records, newspapers, scientific arti-
cles, etc. For the synonym extraction task, the reference
standard is derived from the freely available part of the
Swedish version of MeSH [54] – a part of UMLS – as
well as a Swedish extension that is not included in UMLS
[55]. As the semantic spaces are constructed only tomodel
unigrams, all multiword expressions are removed from
the reference standards. Moreover, hypernym/hyponym
and other non-synonym pairs found in the UMLS ver-
sion of MeSH are manually removed from the reference
standard for the synonym extraction task. Models of dis-
tributional semantics sometimes struggle to model the
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meaning of rare terms accurately, as the statistical basis
for their representation is insufficiently solid. As a result,
we only include term pairs that occur at least fifty times
in each respective corpus. This, together with the fact
that term frequencies differ from corpus to corpus, means
that one separate reference standard is used for the eval-
uation of the clinical corpus and another is used for the
evaluation of the medical corpus. For evaluating combina-
tions of semantic spaces induced from different corpora,
a third – common – reference standard is therefore cre-
ated, in which only term pairs that occur at least fifty
times in both corpora are included. Included terms are
not restricted to form pairs; in the reference standard for
the synonym extraction task, some form larger groups of
terms with synonymous relations. There are also abbrevi-
ations with several possible expansions, as well as expan-
sions with several possible abbreviations. The term pairs
(or n-tuples) in each reference standard are randomly split
into a development set and an evaluation set of roughly
equal size. The development sets are used for identi-
fying the most profitable ensembles of semantic spaces
(with optimized parameter settings, such as window size
and whether to include stop words in the RP spaces) for
each of the three tasks, as well as for creating the post-
processing filtering rules. The evaluation sets are used for
the final evaluation to assess the expected performance of
the ensembles in a deployment setting. Baselines for the
single-corpus ensembles are created by employing RI and
RP in isolation; baselines for the multiple-corpora ensem-
bles are created by using the most profitable clinical and
medical ensembles from the single-corpus experiments,
as well a single space induced from the conjoint cor-
pus and an ensemble of semantic spaces induced from
the conjoint corpus. Statistics for the reference standards
are shown in Table 3. The differences in recall between
the different semantic spaces/ensembles, when evaluated
on the evaluation subset of the reference standards, are
tested for statistical significance. The exact binomial sign
test is used ([56], pp. 532–535), assuming independence
between all query terms.

In addition to the automatic evaluation using the ref-
erence standards, a small manual evaluation is also car-
ried out on the synonym task. A random sample of 30
query terms (out of 135 terms in the Clinical + Medi-
cal reference standard) and their respective ten candidate
terms as suggested by the best combination of seman-
tic spaces is investigated and a manual classification of
the semantic relation between each of the candidate
terms and the target term is carried out. The candi-
date terms are manually classified as either a synonym,
an antonymn, a hypernymo, a hyponym or an alterna-
tive spelling (for instance rinitis/rhinitis) of the target
term.

Results
The experimental setup was designed in such a manner
that the semantic spaces that performed best in com-
bination for a single corpus would also be used in the
subsequent combinations from multiple corpora. Identi-
fying the most profitable combination strategy for each
of the three tasks was achieved using the development
subsets of the reference standards. These combinations
were then evaluated on separate evaluation sets con-
taining unseen data. All further experiments, including
the post-processing of candidate terms, were carried out
with these combinations on the evaluation sets. This
is therefore also the order in which the results will be
presented.

Combination strategies: a single corpus
The first step involved identifying the most appropriate
window sizes for each task, in conjunction with evalu-
ating the combination strategies. The reason for this is
that the optimal window sizes for RI and RP in isolation
are not necessarily identical to the optimal window sizes
when RI and RP are combined. In fact, when RI is used
in isolation, a window size of 2 + 2 performs best on the
two abbreviation-expansion tasks, and a window size of
10 + 10 performs best on the synonym task. For RP, a
semantic space with a window size of 2 + 2 yields the

Table 3 Reference standards statistics

Reference standard
Clinical corpus Medical corpus Clinical + Medical

Size 2 Cor 3 Cor Size 2 Cor 3 Cor Size 2 Cor 3 Cor

Abbr→Exp (Devel) 117 9.4% 0.0% 55 13% 1.8% 42 14% 0%

Abbr→Exp (Eval) 98 3.1% 0.0% 55 11% 0% 35 2.9% 0%

Exp→Abbr (Devel) 110 8.2% 1.8% 63 4.7% 0% 45 6.7% 0%

Exp→Abbr (Eval) 98 7.1% 0.0% 61 0% 0% 36 0% 0%

Syn (Devel) 334 9.0% 1.2% 266 11% 3.0% 122 4.9% 0%

Syn (Eval) 340 14% 2.4% 263 13% 3.8% 135 11% 0%

Size shows the number of queries, 2 cor shows the proportion of queries with two correct answers and 3 cor the proportion of queries with three (or more) correct
answers. The remaining queries have one correct answer.
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best results on two of the tasks – abbr→exp and syn –
while a window size of 4 + 4 is more successful on
the exp→abbr task. These are the model configurations
used in the RI and RP baselines, to which the single-
corpus combination strategies are compared in the final
evaluation.
Using the semantic spaces induced from the clinical cor-

pus, the RI +RP combination strategy, wherein the cosine
similarity scores are merely summed, is the most success-
ful on all three tasks: 0.42 recall on the abbr→exp task,
0.32 recall on the exp→abbr task, and 0.40 recall on the
syn task (Table 4). For the abbreviation expansion task, a
window size of 2 + 2 appears to work well for both mod-
els, with the RP space retaining stop words. On the task of
identifying the abbreviated form of an expansion, seman-
tic spaces with window sizes of 2 + 2 and 4 + 4 perform
equally well; the RP spaces should include stop words.
Finally, on the synonym extraction task, an RI space with
a large context window (10 + 10) in conjunction with an
RP space with stop words and a window size of 2 + 2 is the
most profitable.
Using the semantic spaces induced from the med-

ical corpus, again, the RI + RP combination strategy
outperforms the RI ⊂ RP30 and RP ⊂ RI30 strategies:
0.10 recall on the abbr→exp task, 0.08 recall on the
exp→abbr task, and 0.30 recall on the syn task (Table 5)
are obtained. This combination outperforms the other
two by a large margin on the exp→abbr task: 0.08 recall
compared to 0.03 recall. The most appropriate window
sizes for capturing these phenomena in the medical
corpus are fairly similar to those that worked best with
the clinical corpus. On the abbr→exp task, the opti-
mal window sizes are indeed identical across the two
corpora: a 2 + 2 context window with an RP space that
incorporates stop words yields the highest performance.
For the exp→abbr task, a slightly larger context window
of 4 + 4 seems to work well – again, with stop words
retained in the RP space. Alternatively, combining a large
RI space (10 + 10) with a smaller RP space (2 + 2, with
stop words) performs comparably on this task and with

this test data. Finally, for synonyms, a large RI space
(10 + 10) with a very small RP space (1 + 1) that retains
all words best captures this phenomenon with this type of
corpus.
Using the semantic spaces induced from the conjoint

corpus, the RI ⊂ RP30 combination strategy outperforms
the other two strategies on the abbr→exp task: 0.30 recall
compared to 0.25 and 0.23 (Table 6). On the exp→abbr
task, this and the RI + RP combination strategy perform
equally well, with 0.18 recall. Finally, on the synonym task,
the RI +RP performs best with a recall of 0.46. In general,
somewhat larger window sizes seem to work better when
combining semantic spaces induced from the conjoint
corpus.
The best-performing combinations from each corpus

and for each task were then treated as (ensemble) base-
lines in the final evaluation, where combinations of
semantic spaces from multiple corpora are evaluated.

Combination strategies: multiple corpora
The pair of semantic spaces from each corpus that
performed best on the three tasks were subsequently
employed in combinations that involved four semantic
spaces – two from each corpus: one RI space and one
RP space. The single-step approaches generally performed
better than the two-step approaches, with some excep-
tions (Table 7). The most successful ensemble was a
simple single-step approach, where the cosine similar-
ity scores produced by each semantic space were simply
summed (SUM), yielding 0.32 recall for abbr→exp, 0.17
recall for exp→abbr, and 0.52 recall for syn. The AVG
option, although the second-highest performer on the
abbreviation-expansion tasks, yielded significantly poorer
results. Normalization, whereby ranking was used instead
of cosine similarity, invariably affected performance neg-
atively, especially when employed in conjunction with
SUM. The two-step approaches performed significantly
worse than all non-normalized single-step approaches,
with the sole exception taking place on the synonym
extraction task. It should be noted that normalization was

Table 4 Results on clinical development set

Strategy
Abbr→Exp Exp→Abbr Syn

RI RP Result RI RP Result RI RP Result

RI ⊂ RP30 RI_8 RP_8_sw 0.38 RI_8 RP_8 0.30 RI_8 RP_8 0.39

RP ⊂ RI30 RI_20 RP_4_sw 0.35

RI_4 RP_4_sw

0.30

RI_8 RP_8

0.38RI_20 RP_4_sw RI_8 RP_8_sw

RI_20 RP_2_sw

RI + RP RI_4 RP_4_sw 0.42
RI_4 RP_4_sw

0.32 RI_20 RP_4_sw 0.40
RI_8 RP_8_sw

Results (recall, top ten) of the best configurations for each model and model combination on the three tasks. The configurations are described according to the
following pattern:model_windowSize. For RP, swmeans that stop words are retained in the model.
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Table 5 Results onmedical development set

Strategy
Abbr→Exp Exp→Abbr Syn

RI RP Result RI RP Result RI RP Result

RI ⊂ RP30

RI_4 RP_4_sw

0.08

RI_2 RP_2

0.03 RI_20 RP_4_sw 0.26

RI_20 RP_2 RI_4 RP_4

RI_20 RP_4_sw RI_4 RP_4_sw

RI_8 RP_8

RI_20 RP_2

RI_20 RP_2_sw

RI_20 RP_4

RI_20 RP_4_sw

RP ⊂ RI30

RI_2 RP_2_sw

0.08

RI_2 RP_2

0.03 RI_8 RP_8_sw 0.24

RI_4 RP_4 RI_2 RP_2_sw

RI_4 RP_4_sw RI_4 RP_4

RI_8 RP_8 RI_4 RP_4_sw

RI_8 RP_8_sw RI_8 RP_8

RI_20 RP_2_sw RI_8 RP_8_sw

RI_20 RP_4 RI_20 RP_2

RI_20 RP_4_sw RI_20 RP_2_sw

RI_20 RP_4

RI_20 RP_4_sw

RI + RP RI_4 RP_4_sw 0.10
RI_8 RP_8_sw

0.08 RI_20 RP_2_sw 0.30
RI_20 RP_4_sw

Results (recall, top ten) of the best configurations for each model and model combination on the three tasks. The configurations are described according to the
following pattern:model_windowSize. For RP, swmeans that stop words are retained in the model.

always performed in the two-step approaches – this was
done after each pair of semantic spaces from a single cor-
pus had been combined. Of the four two-step combina-
tion strategies, AVG→AVG and AVG→SUM performed
best, with identical recall scores on the three tasks.

Final evaluations
The combination strategies that performed best on the
development sets were finally evaluated on completely
unseen data in order to assess their generalizability to
new data and to assess their expected performance in a

Table 6 Conjoined corpus space results on clinical + medical development set

Strategy
Abbr→Exp Exp→Abbr Syn

RI RP Result RI RP Result RI RP Result

RI ⊂ RP30
RI_4 RP_4_sw

0.30 RI_4 RP_4_sw 0.18 RI_8 RP_8_sw 0.41
RI_20 RP_4_sw

RP ⊂ RI30

RI_4 RP_4

0.23

RI_4 RP_4_sw

0.13

RI_8 RP_8

0.36

RI_4 RP_4_sw RI_8 RP_8_sw RI_8 RP_8_sw

RI_8 RP_8 RI_20 RP_2_sw RI_20 RP_2_sw

RI_20 RP_2 RI_20 RP_4_sw RI_20 RP_4_sw

RI_20 RP_4

RI + RP RI_2 RP_2_sw 0.25

RI_4 RP_4_sw

0.18 RI_8 RP_8_sw 0.46RI_8 RP_8_sw

RI_20 RP_4_sw

Results (recall, top ten) of the best configurations for each model and model combination on the three tasks. The configurations are described according to the
following pattern:model_windowSize. For RP, swmeans that stop words are retained in the model.
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Table 7 Disjoint corpus ensemble results on clinical + medical development set

Strategy Normalize

Abbr→Exp Exp→Abbr Syn

Clinical Medical Clinical Medical Clinical Medical

RI_4 RI_4 RI_4 RI_8 RI_20 RI_20

RP_4_sw RP_4_sw RP_4_sw RP_8_sw RP_4_sw RP_2_sw

AVG True 0.13 0.09 0.39

AVG False 0.24 0.11 0.39

SUM True 0.13 0.09 0.34

SUM False 0.32 0.17 0.52

AVG→AVG 0.15 0.09 0.41

SUM→SUM 0.13 0.07 0.40

AVG→SUM 0.15 0.09 0.41

SUM→AVG 0.13 0.07 0.40

Results (P = weighted precision, R = recall, top ten) of the best models with and without post-processing on the three tasks. Dynamic # of suggestions allows the
model to suggest less than ten terms in order to improve precision. The results are based on the application of the model combinations to the development data.

deployment setting. Each evaluation phase involves com-
paring the results to one or more baselines: in the case
of single-corpus combinations, the comparisons are made
to RI and RP in isolation; in the case of multiple-corpora
combinations, the comparisons are made to semantic
spaces induced from a single corpus (as well as the con-
joint corpus) and ensembles of semantic spaces induced
from a single corpus (and, again, the conjoint corpus).
When applying the single-corpus combinations from

the clinical corpus, the following results were obtained:
0.31 recall on abbr→exp, 0.20 recall on exp→abbr, and
0.44 recall on syn (Table 8). Compared to the results on
the development sets, the results on the two abbreviation-
expansion tasks decreased by approximately ten per-
centage points; on the synonym extraction task, the
performance increased by a couple of percentage points.
The RI baseline was outperformed on all three tasks;
the RP baseline was outperformed on two out of three
tasks, with the exception of the exp→abbr task. Finally,

it might be interesting to point out that the RP base-
line performed better than the RI baseline on the two
abbreviation-expansion tasks, but that the RI baseline did
somewhat better on the synonym extraction task.
With the medical corpus, the following results were

obtained: 0.17 recall on abbr→exp, 0.11 recall on
exp→abbr, and 0.34 recall on syn (Table 9). Compared
to the results on the development sets, the results were
higher for all three tasks. Both the RI and RP baselines
were outperformed, with a considerable margin, by their
combination. However, the improvement in recall for the
combination method compared to the best baseline was
only statistically significant for the synonym task. In com-
plete contrast to the clinical corpus, the RI baseline here
outperformed the RP baseline on the two abbreviation-
expansion tasks, but was outperformed by the RP baseline
on the synonym extraction task.
When applying the disjoint corpora ensembles, the fol-

lowing results were obtained on the evaluation sets: 0.30

Table 8 Results on clinical evaluation set

Evaluation configuration

Abbr→Exp Exp→Abbr Syn

RI_4+RP_4_sw RI_4+RP_4_sw RI_20+RP_4_sw

P R P R P R

RI Baseline 0.04 0.22 0.03 0.19 0.07 0.39

RP Baseline 0.04 0.23 0.04 0.24 0.06 0.36

Clinical Ensemble 0.05 0.31 0.03 0.20 0.07 0.44

+Post-Processing (Top 10) 0.08 0.42 0.05 0.33 0.08 0.43

+Dynamic Cut-Off (Top ≤ 10) 0.11 0.41 0.12 0.33 0.08 0.42

Results (P = weighted precision, R = recall, top ten) of the best models with and without post-processing on the three tasks. Dynamic # of suggestions allows the
model to suggest less than ten terms in order to improve precision. The results are based on the application of the model combinations to the evaluation data. The
improvements in recall between the best baseline and the ensemble method for the synonym task and for the abbr→exp task are both statistically significant for a
p-value < 0.05. (abbr→exp task: p-value = 0.022 and synonym task: p-value = 0.002.) The improvement in recall that was achieved by post-processing is statistically
significant for both abbreviation tasks (p-value = 0.001 for abbr→exp and p-value = 0.000 for exp→abbr).
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Table 9 Results onmedical evaluation set

Evaluation configuration

Abbr→Exp Exp→Abbr Syn

RI_4+RP_4_sw RI_8+RP_8_sw RI_20+RP_2_sw

P R P R P R

RI baseline 0.02 0.09 0.01 0.08 0.03 0.18

RP baseline 0.01 0.06 0.01 0.05 0.05 0.26

Medical ensemble 0.03 0.17 0.01 0.11 0.06 0.34

+Post-processing (top 10) 0.03 0.17 0.02 0.11 0.06 0.34

+Dynamic cut-off (top ≤ 10) 0.17 0.17 0.10 0.11 0.06 0.34

Results (P = weighted precision, R = recall, top ten) of the best semantic spaces with and without post-processing on the three tasks. Dynamic # of suggestions allows
the model to suggest less than ten terms in order to improve precision. The results are based on the application of the model combinations to the evaluation data.
The difference in recall when using the ensemble method compared to the best baseline is only statistically significant (p-value < 0.05) for the synonym task (p-value =
0.000).

recall on abbr→exp, 0.19 recall on exp→abbr, and 0.47
recall on syn (Table 10). Compared to the results on
the development sets, the results decreased somewhat on
two of the tasks, with exp→abbr the exception. The p-
values for the significance tests of the recall differences in
Table 10 are shown in Table 11. The two ensemble base-
lines were clearly outperformed by the larger ensemble of
semantic spaces from two types of corpora on two of the
tasks; the clinical ensemble baseline performed equally
well on the exp→abbr task.

Post-processing
In an attempt to further improve results, simple post-
processing of the candidate terms was performed. In one
setting, the system was forced to suggest ten candidate
terms regardless of their cosine similarity score or other

properties of the terms, such as their length. In another
setting, the system had the option of suggesting a dynamic
number – ten or less – of candidate terms.
This was unsurprisingly more effective on the two

abbreviation-expansion tasks. With the clinical corpus,
recall improved substantially with the post-processing fil-
tering: from 0.31 to 0.42 on abbr→exp and from 0.20
to 0.33 on exp→abbr (Table 8). With the medical cor-
pus, however, almost no improvements were observed for
these tasks (Table 9). For the combination of semantic
spaces from the two corpora, the improvements in recall
after applying post-processing on the two abbreviation
tasks are not statistically significant (Table 10).
With a dynamic cut-off, only precision could be

improved, although at the risk of negatively affect-
ing recall. With the clinical corpus, recall was largely

Table 10 Results on clinical + medical evaluation set

Evaluation configuration

Abbr→Exp Exp→Abbr Syn

Clinical Medical Clinical Medical Clinical Medical

RI_4 RI_4 RI_4 RI_8 RI_20 RI_20

RP_4_sw RP_4_sw RP_4_sw RP_8_sw RP_4_sw RP_2_sw

SUM, False SUM, False SUM, False

P R P R P R

Clinical space 0.03 0.17 0.03 0.19 0.05 0.29

Medical space 0.01 0.06 0.01 0.08 0.03 0.18

Conjoint corpus space 0.03 0.19 0.01 0.08 0.05 0.30

Clinical ensemble 0.04 0.24 0.03 0.19 0.06 0.34

Medical ensemble 0.02 0.11 0.01 0.11 0.05 0.33

Conjoint corpus ensemble 0.03 0.19 0.02 0.14 0.07 0.40

Disjoint corpora ensemble 0.05 0.30 0.03 0.19 0.08 0.47

+Post-processing (top 10) 0.07 0.39 0.06 0.33 0.08 0.47

+Dynamic cut-off (top ≤ 10) 0.28 0.39 0.31 0.33 0.08 0.45

Results (P = weighted precision, R = recall, top ten) of the best semantic spaces and ensembles on the three tasks. The results are based on the clinical + medical
evaluation set and are grouped according to the number of semantic spaces employed: one, two or four. The disjoint corpus ensemble is performed with and without
post-processing. A dynamic cut-off allows less than ten terms to be suggested in an attempt to improve precision. Results for tests of statistical significance are shown
in Table 11.
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Table 11 P-values for recall results presented in Table 10

P-values, recall Medical Conjoint Clinical Medical Conjoint Disjoint

(synonym task) space corpus ensemble ensemble corp. ens. corp. ens.

Clinical space 0.011 1.000 0.057 0.885 0.003 0.000

Medical space - 0.004 0.000 0.000 0.000 0.000

Conjoint corpus - - 0.210 1.000 0.001 0.000

Clinical ensemble - - - 0.480 0.189 0.001

Medical ensemble - - - - 0.047 0.000

Conjoint corp. ens. - - - - - 0.041

P-values for the differences between the recall results on the synonym task for the semantic spaces/ensembles presented in Table 10. P-values showing a statistically
significant difference (p-value < 0.05) are presented in bold-face.
P-values for the post-processing and for the abbr→exp and exp→abbr are not shown in the table. However, for the significance level p-value < 0.05, there were no
statistically significant recall difference between the standard Disjoint Corpora Ensemble and the post-processing version for any of the three tasks (p-value = 0.25 for
abbr→exp and p-value = 0.062 for exp→abbr). When testing the recall difference between the pairs of semantic spaces/ensembles shown in Table 10 for the
abbr→exp task, there was only a significant difference for the pairs Medical Space vs. Clinical Ensemble (p-value = 0.039), Medical Space vs. Disjoint Corpora Ensemble
(p-value = 0.004) and Medical Ensemble vs. Disjoint Corpora Ensemble (p-value = 0.039). For the exp→abbr task, there were no statistically significant differences.

unaffected for the two abbreviation-expansion task, while
precision improved by 3–7 percentage points (Table 8).
With the medical corpus, the gains were even more sub-
stantial: from 0.03 to 0.17 precision on abbr→exp and
from 0.02 to 0.10 precision on exp→abbr – without hav-
ing any impact on recall (Table 9). The greatest improve-
ments on these tasks were, however, observed with the
combination of semantic spaces from multiple corpora:
precision increased from 0.07 to 0.28 on abbr→exp and
from 0.06 to 0.31 on exp→abbr – again, without affecting
recall (Table 10).
In the case of synonyms, this form of post-processing

is more challenging, as there are no simple properties of
the terms, such as their length, that can serve as indica-
tions of their quality as candidate synonyms. Instead, one
has to rely on their use in different contexts and grammat-
ical properties; as a result, cosine similarity and ranking
of the candidate terms were exploited in an attempt to
improve the candidate synonyms. This approach was,
however, clearly unsuccessful for both corpora and their
combination, with almost no impact on either precision

or recall. In a single instance – with the clinical corpus –
precision increased by one percentage point, albeit at the
expense of recall, which suffered a comparable decrease
(Table 8). With the combination of semantic spaces from
two corpora, the dynamic cut-off option resulted in a
lower recall score, without improving precision (Table 10).

Frequency thresholds
In order to study the impact of different frequency thresh-
olds – i.e., how often each pair of terms had to occur in
the corpora to be included in the reference standard – on
the task of extracting synonyms, the best ensemble sys-
temwas applied to a range of evaluation sets with different
thresholds from 1 to 100 (Figure 5). With a low frequency
threshold, it is clear that a lower performance is obtained.
For instance, if each synonym pair only needs to occur
at least once in both corpora, a recall of 0.17 is obtained.
As the threshold is increased, recall increases too - up to
a frequency threshold of around 50, after which no per-
formance boosts are observed. Already with a frequency
threshold of around 30, the results seem to level off. With

Figure 5 Frequency thresholds. The relation between recall and the required minimum frequency of occurrence for the reference standard terms
in both corpora. The number of query terms for each threshold value is also shown.



Henriksson et al. Journal of Biomedical Semantics 2014, 5:6 Page 18 of 25
http://www.jbiomedsem.com/content/5/1/6

frequency thresholds over 100, there is not enough data in
this case to produce any reliable results.

Discussion
The results clearly demonstrate that combinations of
semantic spaces lead to improved results on the synonym
extraction task. For the two abbreviation tasks, most of the
observed performance gains were not statistically signifi-
cant. Combining random indexing and random permuta-
tion allows slightly different aspects of lexical semantics to
be captured; by combining them, stronger semantic rela-
tions between terms are extracted, thereby increasing the
performance on these tasks. Combining semantic spaces
induced from different corpora further improves perfor-
mance. This demonstrates the potential of distributional
ensemble methods, of which this – to the extent of our
knowledge – is the primary implementation of its kind,
and it only scratches the surface. In this initial study, only
four semantic spaces were used; however, with increas-
ing computational capabilities, there is nothing stopping
a much larger number of semantic spaces from being
combined. These can capture various aspects of seman-
tics – aspects which may be difficult, if not impossible,
to incorporate into a single model – from a large variety
of observational data on language use, where the contexts
may be very different.

Clinical vs. medical corpora
When employing corpus-driven methods to support lex-
ical resource development, one naturally needs to have
access to a corpus in the target domain that reflects
the language use one wishes to model. Hence, one can-
not, without due qualification, state that one corpus type
is better than another for the extraction of synonyms
or abbreviation-expansion pairs. This is something that
needs to be duly considered when comparing the results
for the semantic spaces on the clinical and medical cor-
pora, respectively. Another issue concerns the size of each
corpus: in fact, the size of themedical corpus is only half as
large as the clinical corpus (Table 1). The reference stan-
dards used in the respective experiments are, however, not
identical: each term pair had to occur at least fifty times
to be included – this will differ across corpora. To some
extent this mitigates the effect of the total corpus size and
makes the comparison between the two corpora fairer;
however, differences in reference standards also entail that
the results presented in Tables 8 and 9 are not directly
comparable. Another difference between the two corpora
is that the clinical corpus contains more unique terms
(word types) than the medical corpus, which might indi-
cate that it consists of a larger number of concepts. It has
previously been shown that it can be beneficial, indeed
important, to employ a larger dimensionality when using
corpora with a large vocabulary, as is typically the case

in the clinical domain [57]; in this study a dimensional-
ity of 1,000 was used to induce all semantic spaces. The
results, on the contrary, seem to indicate that better per-
formance is generally obtained with the semantic spaces
induced from the clinical corpus.
An advantage of using non-sensitive corpora like the

medical corpus employed in this study is that they are gen-
erally more readily obtainable than sensitive clinical data.
Perhaps such and similar sources can complement smaller
clinical corpora and yet obtain similar or potentially even
better results.

Combining semantic spaces
Creating ensembles of semantic spaces has been shown to
be profitable, at least on the task of extracting synonyms
and abbreviation-expansion pairs. In this study, the focus
has been on combining the output of the semantic spaces.
This is probably the most straightforward approach and
it has several advantages. For one, the manner in which
the semantic representations are created can largely be
ignored, which would potentially allow one to combine
models that are very different in nature, as long as one
can retrieve a ranked list of semantically related terms
with a measure of the strength of the relation. It also
means that one can readily combine semantic spaces that
have been induced with different parameter settings, for
instance with different context definitions and of differ-
ent dimensionality. An alternative approach would per-
haps be to combine semantic spaces on a vector level.
Such an approach would be interesting to explore; how-
ever, it would pose numerous challenges, not least in
combining context vectors that have been constructed dif-
ferently and potentially represent meaning in disparate
ways.
Several combination strategies were designed and eval-

uated. In both the single-corpus and multiple-corpora
ensembles, the most simple strategy performed best: the
one whereby the cosine similarity scores are summed.
There are potential problems with such a strategy, since
the similarity scores are not absolute measures of seman-
tic relatedness, but merely relative and only valid within
a single semantic space. The cosine similarity scores will,
for instance, differ depending on the distributional model
used and the size of the context window. An attempt
was made to deal with this by replacing the cosine sim-
ilarity scores with ranking information, as a means to
normalize the output of each semantic space before comb-
ing them. This approach, however, yielded much poorer
results. A possible explanation for this is that a measure
of the semantic relatedness between terms is of much
more importance than their ranking. After all, a list of
the highest ranked terms does not necessarily imply that
they are semantically similar to the query term; only that
they are the most semantically similar in this space. For
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the multiple-corpora ensembles, the AVG strategy was
applied with the aim of not penalizing candidate syn-
onyms that only appear in one of the two corpora. It is
not surprising that this strategy was not successful given
the form of the evaluation, which consisted of suggesting
candidate synonyms that were known to occur at least 50
times in both corpora. The two-step approaches for the
multiple-corpora ensembles all included a normalizing
and/or averaging component, resulting in a lower recall
compared to the SUM strategy, probably for the same rea-
sons as when these strategies were applied in the one-step
approach.
To gain deeper insights into the process of combining

the output of multiple semantic spaces, an error analy-
sis was conducted on the synonym extraction task. This
was achieved by comparing the outputs of the most prof-
itable combination of semantic spaces from each corpus,
as well as with the combination of semantic spaces from
the two corpora. The error analysis was conducted on the
development sets. Of the 68 synonyms that were correctly
identified as such by the corpora combination, five were
not extracted by either of the single-corpus combinations;
nine were extracted by the medical ensemble but not by
the clinical ensemble; as many as 51 were extracted by the
clinical ensemble but not by its medical counterpart; in
the end, this means that only three terms were extracted
by both the clinical and medical ensembles. These results
augment the case for multiple-corpora ensembles. There
appears to be little overlap in the top-10 outputs of
the corpora-specific ensembles; by combining them, 17
additional true synonyms are extracted compared to the
clinical ensemble alone. Moreover, the fact that so many
synonyms are extracted by the clinical ensemble demon-
strates the importance of exploiting clinical corpora and
the applicability of distributional semantics to this genre
of text. In Table 12, the first two examples, sjukhem
(nursing-home) and depression show cases for which the
multiple-corpora ensemble was successful but the single-
corpus ensembles were not. In the third example, both
the multiple-corpora ensemble and the clinical ensemble
extract the expected synonym candidate.
There was one query term – the drug name omepra-

zol – for which both single-corpus ensembles were able
to identify the synonym, but where the multiple-corpora
ensemble failed. There were also three query terms for
which synonyms were identified by the clinical ensemble,
but not by the multiple-corpora ensemble; there were five
query terms that were identified by the medical ensem-
ble, but not by the multiple-corpora ensemble. This shows
that combining semantic spaces can also, in some cases,
introduce noise.
Since synonym pairs were queried both ways, i.e. each

term in the pair would be queried to see if the other
could be identified, we wanted to see if there were

cases where the choice of query term would be impor-
tant. Indeed, among the sixty query terms for which the
expected synonym was not extracted, this was the case
in fourteen instances. For example, given the query term
blindtarmsinflammation (“appendix-inflammation”), the
expected synonym appendicit (appendicitis) was given as
a candidate, whereas with the query term appendicit, the
expected synonym was not successfully identified.
Models of distributional semantics face the problem of

modeling terms with several ambiguous meanings. This
is, for instance, the case with the polysemous term arv
(referring to inheritance as well as to heredity). Distant
synonyms also seem to be problematic, e.g. the pair reha-
bilitation/habilitation. For approximately a third of the
synonym pairs that are not correctly identified, however,
it is not evident that they belong to either of these two
categories.

Post-processing
In an attempt to improve results further, an additional
step in the proposed method was introduced: filtering
of the candidate terms, with the possibility of extract-
ing new, potentially better ones. For the extraction of
abbreviation-expansion pairs, this was fairly straightfor-
ward, as there are certain patterns that generally apply
to this phenomenon, such as the fact that the letters in
an abbreviation are contained – in the same order –
in its expansion. Moreover, expansions are longer than
abbreviations. This allowed us to construct simple yet
effective rules for filtering out unlikely candidate terms
for these two tasks. As a result, both precision and recall
increased; with a dynamic cut-off, precision improved
significantly. Although our focus in this study was pri-
marily on maximizing recall, there is a clear incentive
to improve precision as well. If this method were to
be used for terminological development support, with
humans inspecting the candidate terms, minimizing the
number of poor candidate terms has a clear value. How-
ever, given the seemingly easy task of filter out unlikely
candidates, it is perhaps more surprising that the results
were not even better. A part of the reason for this may
stem from the problem of semantically overloaded word
types, which affects abbreviations to a large degree, par-
ticularly in the clinical domain with its telegraphic style
and where ad-hoc abbreviations abound. This was also
reflected in the reference standard, as in some cases
the most common expansion of an abbreviation was not
included.
The post-processing filtering of synonyms clearly failed.

Although ranking information and, especially, cosine sim-
ilarity provide some indication of the quality of synonym
candidates, employing cut-off values with these features
can impossibly improve recall: new candidates will always
have a lower ranking and a lower cosine similarity score
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Table 12 Examples of extracted candidate synonyms

Query term: sjukhem (nursing-home)

Clinical Medical Clinical + Medical

Heartcenter (heart-center) Vårdcentral (health-center) Vårdcentral (health-center)

Bröstklinik (breast-clinic) Akutmottagning (emergency room) Mottagning (reception)

Hälsomottagningen (health-clinic) Akuten (ER) Vårdhem (nursing-home)

Hjärtcenter (heart-center) Mottagning (reception) Gotland (a Swedish county)

Län (county) Intensivvårdsavdelning (ICU) Sjukhus (hospital)

Eyecenter (eye-center) Arbetsplats (work-place) Gård (yard)

Bröstklin (breast-clin.) Vårdavdelning (ward) Vårdavdelning (ward)

Sjukhems (nursing-home’s) Gotland (a Swedish county) Arbetsplats (work-place)

Hartcenter (“hart-center”) Kväll (evening) Akutmottagning (emergency room)

Biobankscentrum (biobank-center) Ks (Karolinska hospital) Akuten (ER)

Query term: depression (depression)

Clinical Medical Clinical + Medical

Sömnstörning (insomnia) Depressioner (depressions) Sömnstörning ( insomnia)

Sömnsvårigheter (insomnia) Osteoporos (osteoporosis) Osteoporos (osteoporosis)

Panikångest (panic disorder) Astma (asthma) Tvångssyndrom (OCD)

Tvångssyndrom (OCD) Fetma (obesity) Epilepsi (epilepsy)

Fibromyalgi (fibromyalgia) Smärta (pain) Hjärtsvikt (heart failure)

Ryggvärk (back-pain) Depressionssjukdom (depressive-illness) Nedstämdhet (sadness)

Självskadebeteende (self-harm) Bensodiazepiner (benzodiazepines) Fibromyalgi (fibromyalgia)

Osteoporos (osteoporosis) Hjärtsvikt (heart-failure) Astma (asthma)

Depressivitet (“depressitivity”) Hypertoni (hypertension) Alkoholberoende ( alcoholism)

Pneumoni (pneumonia) Utbrändhet (burnout) Migrän (migraine)

Query term: allergi (allergy)

Clinical Medical Clinical + Medical

Pollenallergi (pollen-allergy) Allergier (allergies) Allergier (allergies)

Födoämnesallergi (food-allergy) Sensibilisering (sensitization) Hösnuva (hay-fever)

Hösnuva (hay-fever) Hösnuva (hay-fever) Födoämnesallergi ( food-allergy)

Överkänslighet (hypersensitivity) Rehabilitering (rehabilitation) Pollenallergi (pollen-allergy)

Kattallergi (cat-allergy) Fetma (obesity) Överkänslighet (hypersensitivity)

Jordnötsallergi (peanut-allergy) Kol (COPD) Astma (asthma)

Pälsdjursallergi (animal-allergy) Osteoporos (osteoporosis) Kol (COPD)

Negeras (negated) Födoämnesallergi (food-allergy) Osteoporos ( osteoporosis)

Pollen (pollen) Astma (asthma) Jordnötsallergi (peanut-allergy)

Pollenallergiker (“pollen-allergic”) Utbrändhet (burnout) Pälsdjursallergi (animal-allergy)

The top ten candidate synonyms for three different query terms with the clinical ensemble, the medical ensemble and the disjoint corpus ensemble. The synonym in
the reference standard is in boldface.

than discarded candidate terms. It can, however – at
least in theory – potentially improve precision when
using these rules in conjunction with a dynamic cut-off,
i.e. allowing less than ten candidates terms to be sug-
gested. In this case, however, the rules did not have this
effect.

Thresholds
Increasing the frequency threshold further did not
improve results. In fact, a threshold of 30 occurrences
in both corpora seems to be sufficient. A high frequency
threshold is a limitation of distributional methods; thus,
the ability to use a lower threshold is important, especially
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in the clinical domain where access to data is difficult to
obtain.
The choice of evaluating recall among ten candidates

was based on an estimation of the number of candidate
terms that would be reasonable to present to a lexicog-
rapher for manual inspection. Recall might improve if
more candidates were presented, but it would likely come
at the expense of decreased usability. It might instead
be more relevant to limit further the number of candi-
dates to present. As is shown in Figure 4, there are only
a few correct synonyms among the candidates ranked 6–
10. By using more advanced post-processing techniques
and/or being prepared to sacrifice recall slightly, it is
possible to present fewer candidates for manual inspec-
tion, thereby potentially increasing usability. On the other
hand, a higher cut-off value could be used for evaluating a
system aimed at a user who is willing to review a longer list
of suggestions. An option for incorporating this difference
in user behavior would be to use an evaluation metrics,
such as rank-biased precision [58], that models the per-
sistence of the user in examining additional lower-ranked
candidates.

Reflections on evaluation
To make it feasible to compare a large number of seman-
tic spaces and their various combinations, fixed reference
standards derived from terminological resources were
used for evaluation, instead of manual classification of
candidate terms. One of the motivations for the current
study, however, is that terminological resources are sel-
dom complete; they may also reflect a desired use of lan-
guage rather than actual use. A manual classification on a
sample of one of the reference standards,Medical + Clini-
cal, was carried out on the synonym task in order to verify
this claim. The results in this study thus mainly reflect to
what extent different semantic spaces – and their com-
binations – are able to extract synonymous relations that
have been considered relevant according to specific termi-
nologies, rather than to what extent the semantic spaces
– and their combinations – capture the phenomenon of
synonymy. This is, for instance, illustrated by the query
term depression in Table 12, in which one potential syn-
onym is extracted by the clinical ensemble – depressivitet
(“depressitivity”) – and another potential synonym by the
medical ensemble: depressionsjukdom (depressive illness).
Although these terms might not be formal or frequent
enough to include in all types of terminologies, they are
highly relevant candidates for inclusion in terminologies
intended for text mining. Neither of these two terms
are, however, counted as correct synonyms, and only the
multiple-corpora ensemble is able to find the synonym
included in the terminology.
Furthermore, a random sample of 30 words (out of

135) was manually classified for the semantic relation

between each of the candidate terms in the sample, as
suggested by the best combination of semantic spaces
(the Disjoint Corpus Ensemble, see Table 10), and the
target term. In the reference standard for this sample,
33 synonyms are to be found (only three target words
have two synonyms; none have three or more). The best
combination finds only 10 of these reference synonyms
(exact match), which accounts for the low recall figures
in Table 10. However, a manual classification shows that
the same combination finds another 29 synonyms that
do not occur in the reference standard. Furthermore,
the Disjoint Corpus Ensemble also suggests a total of 15
hyponyms, 14 hypernyms and 3 spelling variants as can-
didate terms, which, depending on the context, can be
viewed as synonyms. Among the candidate terms, we also
find 3 antonyms, which shows the inability of the models
readily to distinguish between different types of semantic
relations.
In one instance, we also capture a non-medical sense of

a term while completely missing the medical sense. For
the target term sänka (erythrocyte sedimentation rate), 9
out of 10 candidate terms relate to the more general sense
of lowering something (also sänka in Swedish), with can-
didate terms such as rising, reducing, increasing, halving
and decreasing. None of these are included in the ref-
erence standard, which for this word only contains the
abbreviation SR (ESR) as a synonym.
In the case of the target term variecella, the reference

standard contains only the synonym vattkoppor (chick-
enpox), while the Disjoint Corpus Ensemble correctly
suggests the abbreviation VZV, as well as herpes and the
plural form varicellae (which is apparently missed by the
lemmatizer).
It is important to recognize that this type of manual

post-evaluation always bears the risk that you are too
generous, believing in your method, and thus (manually)
assign too many correct classifications – or, alternatively
that you are too strict in your classification in fear of being
too generous. Future studies would thus benefit from
an extensive manual classification of candidates derived
from data generated in clinical practice, beforehand, with
the aim of also finding synonyms that are not already
included in current terminologies but are in frequent
use. These could then be used as reference standards in
future evaluations.
The choice of terminological resources to use as ref-

erence standards was originally based on their appropri-
ateness for evaluating semantic spaces induced from the
clinical corpus. However, for evaluating the extraction
of abbreviation-expansion pairs with semantic spaces
induced from the medical corpus, the chosen resources –
in conjunction with the requirement that terms should
occur at least fifty times in the corpus – were less appro-
priate, as it resulted in a very small reference standard.
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This, in turn, resulted in no significant differences for
either of the two the abbreviation tasks between the best
single space and the combination of medical spaces, or
between the conjoint corpus ensemble and the disjoint
corpus ensemble. When assessing the potential of using
semantic spaces for abbreviation-expansion tasks, more
focus should therefore be put on the results from the eval-
uation on the spaces created from the clinical corpus, as
the improvement in recall gained by post-processing was
statistically significant for both the abbr→exp task and the
exp→abbr task, as was also the improvement gained from
using an ensemble of spaces compared to a single corpus
space for the abbr→exp task.
For synonyms, the number of instances in the reference

standard is, of course, smaller for the experiments with
multiple-corpora ensembles than for the single-corpus
experiments. However, the differences between the single
space and the ensemble of spaces are statistically signifi-
cant. Moreover, when evaluating the final results with dif-
ferent frequency thresholds, similar results are obtained
when lowering the threshold and, as a result, including
more evaluation instances. With a threshold of twenty
occurrences, 306 input terms are evaluated, which results
in a recall of 0.42; with a threshold of thirty occurrences
and 222 query terms, a recall of 0.46 is obtained.

Future work
Now that this first step has been taken towards creat-
ing ensembles of semantic spaces, this notion should be
explored in greater depth and taken further. It would, for
instance, be interesting to combine a larger number of
semantic spaces, possibly including those that have been
more explicitly modeled with syntactic information. To
verify the superiority of this approach, it should be com-
pared to the performance of a single semantic space that
has been induced from multiple corpora.
Further experiments should likewise be conducted

with combinations involving a larger number of corpora
(types). One could, for instance, combine a professional
corpus with a layman corpus – e.g. a corpus of extracts
from health-related fora – in order to identify layman
expressions for medical terms. This could provide a useful
resource for automatic text simplification.
Another technique that could potentially be used to

identify term pairs with a higher degree of semantic simi-
larity is to ensure that both terms have each other as their
closest neighbors in the semantic subspace. This is not
always the case, as we pointed out in our error analysis.
This could perhaps improve performance on the task of
extracting synonyms and abbreviation-expansion pairs.
A limitation of the current study – in the endeavor to

create a method that accounts for the problem of language
use variability – is that the semantic spaces were con-
structed to model only unigrams. Textual instantiations

of the same concept can, however, vary in term length.
This needs to be accounted for in a distributional frame-
work and concerns paraphrasing more generally than
synonymy in particular. Combining unigram spaces with
multiword spaces is a possibility that could be explored.
This would also make the method applicable for acronym
expansion.

Conclusions
This study demonstrates that combinations of semantic
spaces can yield improved performance on the task of
automatically extracting synonyms. First, combining two
distributional models – random indexing and random
permutation – on a single corpus enables the capturing
of different aspects of lexical semantics and effectively
increases the quality of the extracted candidate terms, out-
performing the use of one model in isolation. Second,
combining distributional models and types of corpora –
a clinical corpus, comprising health record narratives, and
a medical corpus, comprising medical journal articles –
improves results further, outperforming ensembles of
semantic spaces induced from a single source, as well as
single semantic space induced from the conjoint corpus.
We hope that this study opens up avenues of exploration
for applying the ensemble methodology to distributional
semantics.
Semantic spaces can be combined in numerous ways. In

this study, the approach was to combine the outputs, i.e.
ranked lists of semantically related terms to a given query
term, of the semantic spaces. How this should be done is
not wholly intuitive. By exploring a variety of combination
strategies, we found that the best results were achieved by
simply summing the cosine similarity scores provided by
the distributional models.
On the task of extracting abbreviation-expansion pairs,

substantial performance gains were obtained by applying
a number of simple post-processing rules to the list of can-
didate terms. By filtering out unlikely candidates based on
simple patterns and retrieving new ones, both recall and
precision were improved by a large margin.
Lastly, analysis of a manually classified sample from the

synonym task shows that the semantic spaces not only
extract synonyms that are present in the reference stan-
dard. Equally valid synonyms not present in the reference
standard are also found. This serves to show that the refer-
ence standards, as most often is the case, lack in coverage,
as well as supports the fact that the semantic spaces can
be used to enrich and expand such resources.

Endnotes
aSignifiers are here simply different linguistic items

referring to the same concept.
bOntologies are formal descriptions of concepts and

their relationships.
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cThe words big and large are, for instance, synonymous
when describing a house, but certainly not when
describing a sibling.

dUnified Medical Language System: http://www.nlm.
nih.gov/research/umls/

eHyponyms are words that are subordinate to another
word, its hypernym. For instance, dog is a hyponym of
mammal, which in turn is a hyponym of animal.

fThere are also probabilistic models, which view
documents as a mixture of topics and represent terms
according to the probability of their occurrence during
the discussion of each topic: two terms that share similar
topic distributions are assumed to be semantically related.

gExplicit dimensionality reduction is avoided in the
sense that an initial term-context matrix is not
constructed, the dimensionality of which is then reduced.
The high-dimensional data is prereduced, if you will, by
selecting a much lower dimensionality from the outset
(effectively making this a parameter of the model).

hTernary vectors allow three possible values: +1’s, 0’s
and −1’s. Allowing negative vector elements ensures that
the entire vector space is utilized.

iOrthogonal index vectors would yield completely
uncorrelated context representations; in the RI
approximation, near-orthogonal index vectors result in
almost uncorrelated context representations.

jThe bag-of-words model is a simplified representation
of a text as an unordered collection of words, where
grammar and word order are ignored.

kAn alternative is to shift the index vectors according to
direction only, effectively producing direction vectors [46].

lThis research has been approved by the Regional
Ethical Review Board in Stockholm
(Etikprövningsnämnden i Stockholm), permission
number 2012/834-31/5.

mThe used stop word lists are available at http://people.
dsv.su.se/~mariask/resources/stoppord.txt (clinical
corpus) and http://people.dsv.su.se/~mariask/resources/
lt_stoppord.txt. (medical corpus)

nAntonyms are words that differ in one dimension of
meaning, and thus are mutually exclusive in this sense.
For instance, something cannot be both large and small
in size at the same time.

oHypernyms are words that are superordinate to
another word, its hyponym. For instance, animal is a
hypernym ofmammal, which in turn is a hypernym of
dog.
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