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Abstract

Most computational methods that predict protein function do not take advantage of the large amount of information
contained in the biomedical literature. In this work we evaluate both ontology term co-mention and bag-of-words
features mined from the biomedical literature and analyze their impact in the context of a structured output support
vector machine model, GOstruct. We find that even simple literature based features are useful for predicting human
protein function (F-max: Molecular Function = 0.408, Biological Process = 0.461, Cellular Component = 0.608). One
advantage of using literature features is their ability to offer easy verification of automated predictions. We find
through manual inspection of misclassifications that some false positive predictions could be biologically valid
predictions based upon support extracted from the literature. Additionally, we present a “medium-throughput”
pipeline that was used to annotate a large subset of co-mentions; we suggest that this strategy could help to speed
up the rate at which proteins are curated.
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Introduction
Characterizing the functions of proteins is an important
task in bioinformatics today. In recent years, many com-
putational methods to predict protein function have been
developed to help understand functions without perform-
ing costly experiments. Most computational methods use
features derived from sequence, structure or protein inter-
action databases [1]; very few take advantage of the wealth
of unstructured information contained in the biomedical
literature. Because little work has been conducted using
the literature for function prediction, it is not clear what
type of text-derived information will be useful for this task
or the best way to incorporate it. In this work, we evaluate
two different types of literature features, co-occurrences
of specific concepts of interest as well as a bag-of-words
model, and assess the most effective way to combine
them for automated function prediction. We also provide
many examples of the usefulness of literature features for
verification or validation of automated predictions.
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Background
Literature mining has been shown to have substantial
promise in the context of automated function prediction,
although there has been limited exploration to date [2].
The literature is a potentially important resource for this
task, as it is well known that the published literature is
the most current repository of biological knowledge and
curation of information into structured resources has not
kept up with the explosion in publication [3]. A few teams
from the first Critical Assessment of Functional Anno-
tation (CAFA) experiments [1] used text-based features
to support prediction of Gene Ontology (GO) functional
annotations [4].
Wong and Shatkay [5] was the only team in CAFA that

used exclusively literature-derived features for function
prediction. They utilized a k-nearest neighbor classifier
with each protein related to a set of predetermined char-
acteristic terms. In order to have enough training data for
each functional class, they condensed information from
all terms to those GO terms in the second level of the
hierarchy, which results in only predicting 34 terms out
of the thousands in the Molecular Function and Biologi-
cal Process sub-ontologies. Recently, there has been more
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in-depth analysis into how to use text-based features to
represent proteins from the literature without relying on
manually annotated data or information extraction algo-
rithms [6]. This work explored using abstracts along with
unigram/bigram feature representation of proteins.
Another team, Björne and Salakoski [7], utilized

events, specifically molecular interactions, extracted from
biomedical literature along with other types of biological
information from databases; they focused on predicting
the 385 most common GO terms.
The work we presented in the first CAFA [8] is on

a different scale from these previous efforts, and inte-
grates information relevant for predicting protein func-
tion from a range of sources. We utilize as much of the
biomedical literature as possible and are able to make pre-
dictions for the entire Gene Ontology, thanks to a struc-
tured output support vector machine (SVM) approach
called GOstruct [9]. We found in that previous work
that features extracted from the literature alone approach
performance of many commonly used features from non-
literature sources, such as protein-protein interactions
derived from a curated resource. However, we used only
concept co-occurrence features – focusing on simple,
scalable features – leaving open many questions about the
best strategy for representing the literature for the task of
automated protein function prediction.
In this work, we therefore explore a variety of text-

mined features, and different ways of combining these
features, in order to understand better the most effective
way to use literature features for protein function pre-
diction. We have extended our workshop paper [10] by
refining the enhanced GO extraction rules, performing
more extensive analysis of the data at the functional class

level, and extending validation through manual curation
using a “medium-throughput” curation pipeline.We again
explore these questions in the context of the structured
output SVMmodel, GOstruct.

Methods
An overview of our experimental setup can be seen in
Figure 1 with more specific details about each process
following.

Data
We extracted text features from two different literature
sources: (1) 13,530,032 abstracts available from Medline
on October 23, 2013 with both a title and abstract text
and (2) 595,010 full-text articles from the PubMed Open
Access Collection (PMCOA) downloaded on November
6, 2013. These literature collections were processed
identically and features obtained from both were com-
bined. Gold standard Gene Ontology annotations for
both human and yeast genes were obtained from the
Gene Ontology Annotation (GOA) data sets [11]. Only
annotations derived experimentally were considered (evi-
dence codes EXP, IDA, IPI, IMP, IGI, IEP, TAS). Fur-
thermore, the term Protein Binding (GO:0005515) was
removed due to its broadness and overabundance of
annotations. The human gold standard set consists of
over 13,400 proteins annotated with over 11,000 func-
tional classes while the yeast gold standard set consists
of over 4,500 proteins annotated with over 6,500 func-
tional classes. Even though the gold standard sets are
large, only proteins where there is enough training data
will produce predictions. Additionally, to produce mean-
ingful area under the curve (AUC) scores only GO terms

Figure 1 Overview of the experimental setup used for function prediction.
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with at least 10 annotations in the gold standard are con-
sidered as possible prediction targets; this corresponds to
509 Molecular Function classes, 2,088 Biological Process
classes, and 345 Cellular Component classes.

Literature features
Two different types of literature features were extracted
and evaluated, co-mentions and bag of words. Co-
mentions are mentions of both a specific protein and
concept from the Gene Ontology that co-occur with a
specified span of text; they represent a simple knowledge-
directed approach to represent the information contained
within the biomedical literature. Another representa-
tion of biomedical information is to relate proteins to
words mentioned in the surrounding context; this is a
knowledge-free approach because we are not grounding
what we relate to proteins into some ontology, but only
strings.

Text-mining pipeline
A pipeline was created to automatically extract the two
different types of literature features using Apache UIMA
version 2.4 [12]. Whole abstracts were provided as input
and full-text documents were provided one paragraph at
a time. The pipeline consists of splitting the input doc-
uments into sentences, tokenization, and protein entity
detection through LingPipe trained on CRAFT [13], fol-
lowed by mapping of protein mentions to UniProt identi-
fiers through a protein dictionary. Then, Gene Ontology
(GO) terms are recognized through dictionaries provided
to ConceptMapper [14]. Finally, counts of GO terms
associated with proteins, and sentences containing pro-
teins, are output. A modified pipeline to extract pro-
teins, GO terms, or any entity from an ontology file
from text is available at http://bionlp.sourceforge.net/nlp-
pipelines/. Details of the individual steps are provided
below.

Proteinmention extraction
The protein dictionary consists of over 100,000 protein
targets from 27 different species, all protein targets from
the CAFA2 competition (http://biofunctionprediction.
org). To increase the ability to identify proteins in text,
synonyms for proteins were added from UniProt (UniProt
Consortium 2008) and BioThesaurus version 0.7 [15].

Gene ontology term extraction
The best performing dictionary-based system and param-
eter combination for GO term recognition identified
in previous work was used [16]. ConceptMapper (CM)
is highly configurable dictionary lookup system that is
a native UIMA component. CM is highly configurable
through the use of many parameters. The list of parame-
ters used to extract GO terms is in Additional file 1.

Two different dictionaries were provided to CM to
extract Gene Ontology mentions from text: original and
enhanced. Both dictionaries are based on GO from 2013-
11-13. The original directly utilizes GO terms and syn-
onyms, with the exception that the word “activity” was
removed from the end of ontology terms. The enhanced
dictionary augments the original dictionary with addi-
tional synonyms for many GO concepts. Rules were man-
ually created by examining variation between ontology
terms and the annotated examples in a natural language
corpus. This enhanced dictionary improved GO recogni-
tion F-measure performance on CRAFT corpus [13,17]
by 0.1 (from 0.49 to 0.59), through application of term
transformation rules to generate synonyms.
A simple rule deals with the many GO terms of the form

“X metabolic process”, which we have observed often do
not occur literally in published texts. For example, for
term GO:0043705, “cyanophycin metabolic process” syn-
onyms of “cyanophycin metabolism” and “metabolism of
cyanophycin” are generated. It is also noted that most of
the terms in GO are nominals, so it is important to gener-
ate part of speech variants. There are also many “positive
regulation of X” terms; not only will we generate syn-
onyms of “positive regulation of” such as “stimulation”
and “pro”, but if there exist inflectional and derivational
variants of X we can also substitute that in. For example,
“apoptotic stimulation” and “pro-apoptotic” are added for
“positive regulation of apoptosis” (GO:0043065). The ver-
sion of the enhanced dictionary differs from the dictionary
originally used for CAFA2, as described in [10].

Co-mentions
Co-mentions are based on co-occurrences of entity
and ontology concepts identified in the literature text.
This approach represents a targeted knowledge-based
approach to feature extraction. The co-mentions we use
here consist of a protein and Gene Ontology term that
co-occur anywhere together in a specified span. While
this approach does not capture relations as specific as an
event extraction strategy [7], it is more targeted to the pro-
tein function prediction context as it directly looks for the
GO concepts of the target prediction space. It also has
higher recall since it doesn’t require an explicit connec-
tion to be detected between the protein and the function
term.
For these experiments, we considered two spans: sen-

tence and non-sentence. Sentence co-mentions are two
entities of interest seen within a single sentence while
non-sentence co-mentions are those that are mentioned
within the same paragraph/abstract, but not within the
same sentence. The number of co-mentions extracted for
human and yeast proteins using both dictionaries can be
seen in Table 1. For human proteins, the enhanced dic-
tionary identifies 1,500 more GO terms than the original

http://bionlp.sourceforge.net/nlp-pipelines/
http://bionlp.sourceforge.net/nlp-pipelines/
http://biofunctionprediction.org
http://biofunctionprediction.org
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Table 1 Statistics of co-mentions extracted from bothMedline and PMCOA using the different dictionaries for identifying
GO terms

Human

Dictionary Span Unique proteins Unique GO terms Unique co-mentions Total co-mentions

Original

sentence 12,826 14,102 1,473,579 25,765,168

non-sentence 13,459 17,231 3,070,466 147,524,964

combined 13,492 17,424 3,222,619 173,289,862

Enhanced

sentence 12,998 15,415 1,839,360 33,199,284

non-sentence 13,513 18,713 3,725,450 196,761,554

combined 13,536 18,920 3,897,951 229,960,838

Yeast

Dictionary Span Unique proteins Unique GO terms Unique co-mentions Total co-mentions

Original

sentence 5,016 9,471 317,715 2,945,833

non-sentence 5,148 12,582 715,363 18,142,448

combined 5,160 12,819 748,427 21,088,281

Enhanced

sentence 5,063 12,877 414,322 3,853,994

non-sentence 5,160 13,769 901,123 23,986,761

combined 5,167 14,018 939,743 27,840,755

dictionary, which, leads to a 35% increase in the number
of co-mentions identified (∼56 million more).

Bag-of-words
Bag-of-words (BoW) features are commonly used in many
text classification tasks. They represent a knowledge-free
approach to feature extraction. For these experiments,
proteins are associated to words from sentences in which
they were mentioned. All words were lowercased and
stop words were removed, but no type of stemming or
lemmatization was applied.

Feature representation
The extracted literature information is provided to the
machine learning framework as sets of features. Each pro-
tein is represented as a list of terms, either Gene Ontology
or words, along with the number of times the term co-
occurs with that protein in all of the biomedical literature.
An example entry from the co-mention features is as fol-
lows: “Q9ZPY7, co_GO:0003675=6, co_GO:0005623=2,
co_GO:0009986=2, co_GO:0016020=2. . . ”. We utilize a
sparse feature representation and only explicitly state the
non-zero features for both co-mentions and BoW.

Experimental setup
We evaluate the performance of literature features using
the structured output SVM approach GOstruct [9].
GOstruct models the problem of predicting GO terms as
a hierarchical multi-label classification task using a sin-
gle classifier. As input, we provide GOstruct with different
sets of literature features for each protein, as described

above, along with the gold standard GO term associa-
tions of that protein, used for training. From these feature
sets, GOstruct learns patterns associating the literature
features to the known functional labels for all proteins
in the training set. Given a set of co-occurring terms
for a single protein, a full set of relevant Gene Ontology
terms can be predicted. In these experiments, we use
no additional resource beyond the literature to represent
proteins.
GOstruct provides confidence scores for each predic-

tion; therefore, all results presented in this paper are
based upon the highest F-measure over all sets of con-
fidence scores, F-max [1]. Precision, recall, and F-max
are reported based on evaluation using 5-fold cross val-
idation. To take into account the structure of the Gene
Ontology, all gold standard annotations and predictions
are expanded via the ‘true path rule’ to the root node of
GO. The ‘true path rule’ states that ‘the pathway from
a child term all the way up to its top-level parent(s)
must always be true’. We then compare the expanded
set of terms. (This choice of comparison impacts the
interpretations of our results, which is discussed further
below). All experiments were conducted on both yeast and
human.
Note that the ‘true path rule’ is only utilized during the

evaluation of features through machine learning system
(as discussed in Impact of evaluation metric on perfor-
mance). All numbers reported about the performance and
predictionsmade by themachine learning system have the
rule applied, while numbers strictly referring to counts of
co-mentions mined from the literature do not.
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Human evaluation of co-mentions
To support evaluation of the accuracy of the co-mention
features, we sampled a number of them and asked a
human assessor to rate each one as “good” (True Positive)
or “bad” (False Positive), i.e., whether or not it cap-
tures a valid relationship. To assess accuracy of co-
mentions as a whole, 1,500 sentence co-mentions were
randomly sampled from the 33.2 million co-mentions
for annotation. Additionally, three smaller subsets of co-
mentions of specific functional classes, totaling about
500 co-mentions, were selected for annotation to assess
accuracy of sentence co-mentions for specific functional
classes. In total, there were around 3,000 full sentences
annotated.
To enable fast annotation of this rating, we developed

an approach that allows for “medium-throughput”manual
annotation of co-mentions, about 60-100 per hour. The
sentence co-mentions are transformed to brat rapid anno-
tation tool (http://brat.nlplab.org/) format. The annotator
views both the identified protein and functional concept
in differing colors within the context of the entire sen-
tence. The annotator is only required to connect them
with a single relationship, either “Good-Comention” or
“Bad-Comention”. The annotator was instructed to view
the labeled protein and GO concept as correct and to
only annotate “Good-Comention” when there exists a
relationship between the specified entities. While a rela-
tionship may exist between the annotated GO category
and another exact mention of the labeled protein, that
would be considered incorrect for the purposes of this
annotation, i.e., it is a decision relative to individual men-
tions of the protein in a specific textual context. We
utilized these annotations to assess quality of a random set
of co-mentions and also to label subsets of co-mentions
containing particular functional concepts.

Results and discussion
Exploring the use of co-mention features
We mined co-mentions from two different text spans and
explore four different ways to use them.

1. only using sentence co-mentions
2. only using non-sentence co-mentions
3. combining counts from sentence and non-sentence

co-mentions into one feature set in the input
representation

4. using two separate feature sets for sentence and
non-sentence co-mentions

The spans were explained in more detail above, under the
Co-mentions section.
The performance of these four different strategies for

combining the co-mention features for the enhanced
dictionary can be seen in Figure 2. Each branch of GO

is predicted and evaluated separately, but the way to
combine features is the same for all branches. Similar
trends are seen with the original dictionary (data not
shown).
Using the two types of co-mentions as two separate fea-

ture sets provide the best performance on all branches of
GO (see green shapes in Figure 2). These two types of
co-mentions encode different but complementary infor-
mation and the classifier is able to build a better model by
considering them separately.
We utilized our “medium-throughput” human annota-

tion pipeline and curated 1,500 randomly sampled sen-
tence co-mentions; we found that∼30% (441 out of 1,500)
appeared to correctly relate the labeled protein with the
labeled function. From these results it seems that sentence
co-mentions contain a high false positive rate, most likely
due tomanymentions of proteins or GO concepts within a
single sentence. Methods for filtering sentences that con-
tain ambiguous mentions, due to both ambiguous protein
names and many annotations within sentences containing
complex syntactic structure, are still to be explored. Addi-
tionally, more complicated relationship or event detection
would reduce the number of false positives seen and
provide the classifier with higher quality sentence co-
mentions, but significantly reduce the total number of
identified co-mentions. It is unclear which method would
be preferred for function prediction features.
Interestingly, non-sentence co-mentions perform better

than sentence co-mentions. This goes against intuition, as
co-mentions within a sentence boundary act as a proxy to
a relationship between the protein and its function. How-
ever, it was seen in Bada et al. [18] that often function
annotations do not occur within a sentence boundary with
the corresponding protein. While coreference resolution
may be required to correctly resolve such relationships,
capturing function concepts in close proximity to a pro-
tein appears to be a useful approximation. This could be
the reason why non-sentence co-mentions perform bet-
ter. Based upon these results, from now on, when we say
“co-mention features” we are referring to using both sen-
tence and non-sentence as separate feature sets but within
the same classifier.
To establish a baseline we utilized the co-mentions

themselves as a classifier; the co-mentions are used as
the final predictions of the system. We performed eval-
uations using both original and enhanced co-mentions.
Results from combining counts between sentence and
non-sentence co-mentions are presented in Table 2. The
baseline leads to very low precision for all branches but
we do see impressive levels of recall. This signifies that
information from the literature is able to capture relevant
biological information, but because we are able to identify
many different co-mentions the false positive rate is fairly
high.

http://brat.nlplab.org/
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Figure 2 Precision, recall, and F-max performance of four different co-mention feature sets on function prediction. Better performance is to
the upper-right and the grey iso bars represent balance between precision and recall. Diamonds – Cellular Component, Circle – Biological Process,
Square – Molecular Function.

Performance on human proteins
We report performance of all four feature sets on human
proteins in Table 2. Comparing the performance of the
co-mention features, we find that the original co-mention
features produce the better performance on Molecular
Function (MF), while the enhanced co-mentions perform
slightly better on both Biological Process (BP) and Cellu-
lar Component (CC). The most surprising result is that
bag of words performed as well as it did, considering the
complexity of the Gene Ontology with its many thousands
of terms. Many text classification tasks utilize BoW and
achieve very good performance while some have tried to
recognize functional classes from text with BoW models
with poorer results [19,20]. Their applicability to function
prediction has only begun to be studied in this work and
Wong et al. [6]. One explanation for their performance
could be due to their higher utilization of the biomedi-
cal literature; co-mentions only capture information when
both a protein and GO term are recognized together while
BoW only relies on a protein to be recognized. In other
words, the knowledge-based co-mentions are limited by
the performance of automatic GO concept recognition, a
challenging task in itself [16], while the BoW features have
no such limitation. In support of that, we note that on

average, there are 2,375 non-zero BoW features per pro-
tein, whereas there are an average of 135 sentence and
250 non-sentence non-zero co-mention features per pro-
tein. The results reported here are for human proteins; in
Additional file 2 we provide results in yeast exhibiting the
same trends observed in human.
Overall, best performance for all branches of the Gene

Ontology is seen when using both co-mentions and the
bag-of-words features. This suggests that all types of fea-
tures provide complementary information. In view of this
observation, we explored an alternative to using the fea-
tures in combination to train a single classifier, which is
to train separate classifiers and combine their scores. This
approach gave similar results to those reported here (data
not shown). It can be difficult to understand the impact
of each type of feature solely by looking at the overall
performance, since it is obtained by averaging across all
proteins; we dive deeper in the following sections and
provide examples that indicate that using co-mentions
produces higher recall than precision.
Another observation to make is that performance for all

three branches of GO as measured using the macro-AUC
is very similar, indicating that the three sub-ontologies
are equally difficult to predict from the literature. The
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Table 2 Overall performance of literature features on
human proteins

Molecular function

Features F-max Precision Recall macro-AUC

Baseline (Original) 0.094 0.055 0.327 0.680

Baseline (Enhanced) 0.064 0.036 0.322 0.701

Co-mentions (Original) 0.386 0.302 0.533 0.769

Co-mentions (Enhanced) 0.377 0.336 0.447 0.764

BoW 0.394 0.376 0.414 0.768

Co-mentions + BoW 0.408 0.354 0.491 0.790

Biological process

Features F-max Precision Recall macro-AUC

Baseline (Original) 0.134 0.091 0.249 0.610

Baseline (Enhanced) 0.155 0.103 0.311 0.611

Co-mentions (Original) 0.424 0.426 0.422 0.750

Co-mentions (Enhanced) 0.429 0.427 0.430 0.752

BoW 0.461 0.467 0.455 0.768

Co-mentions + BoW 0.459 0.426 0.510 0.779

Cellular component

Features F-max Precision Recall macro-AUC

Baseline (Original) 0.086 0.050 0.305 0.640

Baseline (Enhanced) 0.073 0.041 0.317 0.642

Co-mentions (Original) 0.587 0.590 0.585 0.744

Co-mentions (Enhanced) 0.589 0.583 0.596 0.753

BoW 0.608 0.594 0.624 0.755

Co-mentions + BoW 0.607 0.592 0.622 0.773

Precision, Recall and F-max are micro-averaged across all proteins. Baseline
corresponds to using only the co-mentions mined from the literature as a
classifier. Macro-AUC is the average AUC per GO category. “Co-mentions + BoW”
utilizes original co-mentions and BoW features within a single classifier.

differences in performance as measured by F-max, which
is micro-averaged, are likely the result of the differences
in the distribution of terms across the different levels in
the three sub-ontologies. The similar performance across
the sub-ontologies is in contrast to what is observed
when using other types of data: MF accuracy is typ-
ically much higher than BP accuracy, especially when
using sequence data [1,8], with the exception of network
data such as protein-protein interactions that yields better
performance in BP.

Exploring differences between original and enhanced
co-mentions
Examining Table 1, we see that the enhanced dictionary
finds ∼35% (∼56 million) more unique co-mentions,
makes about 32,000 fewer predictions (Table 3) and
performs slightly better at the function prediction
task (Table 2). To elucidate the differences that GO

Table 3 Description of the gold standard human
annotations and predictions made by GOstruct from each
type of feature

Molecular Biological Cellular
function process component

Feature type # Predictions # Predictions # Predictions

Gold standard 36,349 264,631 79,631

Original 102,486 268,068 76,513

Enhanced 64,919 276,734 81,094

BoW 40,499 268,114 77,753

Combined 62,039 386,267 78,475

All numbers are counts based on the predictions broken down by sub-ontology;
these counts have the ‘true path rule’ applied.

term recognition plays in the function prediction task,
co-mention features and predictions were examined for
individual proteins.
Examining individual predictions it appears that many

of the predictions made from enhanced co-mention fea-
tures are more specific than both the original dictionary
and the gold standard annotations; this is also supported
by further evidence presented in the functional analysis
in the Functional class analysis and Analysis of indi-
vidual Biological Process and Molecular Function classes
sections. For example, in GOstruct predictions using the
original dictionary, DIS3 (Q9Y2L1) is (correctly) anno-
tated with rRNA processing (GO:0006364). Using co-
mentions from the enhanced dictionary, the protein is
predicted to be involved with maturation of 5.8S rRNA
(GO:0000460), a direct child of rRNA processing. There
are 10 more unique sentence and 31 more unique non-
sentence GO term co-mentions provided as features by
the enhanced dictionary. Some of the co-mentions iden-
tified by the enhanced and not by the original dictionary
refer to “mRNA cleavage”, “cell fate determination”, and
“dsRNA fragmentation”. Even though none of these co-
mentions directly correspond to the more specific func-
tion predicted by GOstruct, it could be that the machine
learner is utilizing this extra information to make more
specific predictions. Interestingly, the human DIS3 pro-
tein is not currently known to be involved with the more
specific process, but the yeast DIS3 protein is. We did not
attempt to normalize proteins to specific species because
that is a separate problem in itself. It is probable that if we
normalized protein mentions to specific species or imple-
mented a cross-species evaluation utilizing homology the
results of the enhanced dictionary would show improved
performance.
We expected to see a bigger increase in performance

because we are able to recognize more specific GO
terms utilizing the enhanced dictionary. One possible rea-
son that we don’t is due to increased ambiguity in the
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dictionary. In the enhanced dictionary, for example, a syn-
onym of “implantation” is added to the term “GO:0007566
- embryo implantation”. While a majority of the time this
synonym correctly refers to that GO term, there are cases
such as “. . . tumor cell implantation” for which an incor-
rect co-mention will be added to the feature representa-
tion. These contextually incorrect features could limit the
usefulness of those GO terms and result in noisier fea-
tures. One way to address this may be to create a separate
feature set of only co-mentions based on synonyms so the
machine learner could differentiate or weight them dif-
ferently; this could help improve performance using the
enhanced dictionary co-mentions.

Functional class analysis
We nowmove to an analysis of functional classes to assess
how well different parts of GO are predicted by different
feature sets (Figure 3). We use two separate metrics, depth
within the GO hierarchy and information content (IC) of
the GO term derived from our gold standard annotations.
Because the GO is a graph with multiple inheritance and
depth can be a fuzzy concept [21], we define depth as the
length of the shortest path from the root to the term in the
GO hierarchy. We calculate an annotation-based infor-
mation content(IC) for each GO term based on the gold
standard annotations using the IC statistic described in
Resnik et al. [22].
Figure 3(a) shows the distribution of counts of GO terms

within the gold standard and predictions by both depth
and information content, Figure 3(b) shows the macro-
averaged performance (F-measure) for each feature set by
depth, and Figure 3(c) shows the macro-averaged perfor-
mance for each feature set binned by GO term informa-
tion content. Examining 3(a) we find that terms appear
to be normally distributed with mean depth of 4. Look-
ing at information content, we find that over two-thirds
of the terms have an information content score between
6 and 8, indicating that a majority of terms within the
gold standard set are annotated very few times. Overall,
for all sets of features, performance of concepts decreases
as the depth and information content increases; it is intu-
itive that terms that are more broad, and less informative,
would be easier to predict than terms that are specific and
more informative.
Examining performance by depth (Figure 3(b)) we see a

decrease in performance between depths 1-3, after which
performance levels off. As a function of information con-
tent we obtain a more detailed picture, with a much
larger decrease in performance with increased term speci-
ficity; all features are able to predict low information con-
tent, less interesting terms, such as “binding” (IC=0.20)
or “biological regulation” (IC=0.66) with high confidence
(F-measure > 0.8). Performance drops to its lowest for
terms that have information content between 7 and 9

indicating there still remains much work to be done to
accurately predict these specific and informative terms.
Interestingly, there is an increase in performance for
the most specific terms, especially using the BoW and
combined representations; however, there are very few
such terms as seen in (Figure 3(a)), representing very
few proteins, so it’s not clear if this is a real trend.
Finally, we observe that for both depth and IC analy-
sis the knowledge-free BoW features usually outperform
the knowledge-based co-mentions and that the enhanced
co-mentions usually produce slightly better performance
than the original co-mentions.

Analysis of individual biological process andmolecular
function classes
To further explore the impact of the different features
on predictions, we examined the best (Table 4) and
worst (Table 5) Biological Process andMolecular Function
categories.
Examining the top concepts predicted, it is reinforced

that the enhanced co-mentions are able to make more
informative predictions, in addition to increasing recall
without a loss in precision when compared to the origi-
nal co-mentions. All 12 of the top terms predicted by the
original co-mentions have an information content < 2 as
opposed to only 7 terms from the enhanced co-mentions.
We can compare the performance on specific functional
classes. For example, “GO:0007076 - mitotic chromosome
condensation” is the second highest predicted GO term
by the enhanced co-mentions (F=0.769) while it is ranked
581 for the original co-mentions (F=0.526). Granted, there
will always be specific cases where one performs better
than the other; from these and previous analyses, we find
that the enhanced co-mentions are able to predict more
informative terms for more proteins than the original co-
mention features (Figure 3 and Table 4). This shows that
improving GO term recognition leads to an improvement
in the specificity of function prediction.
Considering the top concepts predicted by the BoW

features, we see a pattern similar to the enhanced co-
mentions. Five out of the top twelve concepts predicted
have an information content score greater than 6; these
informative terms are different between the two fea-
ture sets. For the top functions predicted by all features
the combined classifier of co-mentions and BoW pro-
ducesmore predictions, leading to higher recall and better
F-measure. Even though some of the top terms predicted
are informative and interesting we still strive for better
performance on the most informative terms.
We also analyze the most difficult functional classes to

predict, results can be seen in Table 5. Between all features
we find some similar terms are difficult to predict; “local-
ization” and “electron carrier activity” are in the worst
five from all feature sets. It is interesting to note that
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Figure 3 Functional class analysis of all GO term annotations and predictions. a) Distribution of the depth and information content of GO
term annotations. As IC values are real numbers, they are binned, and each bar represents a range, e.g. ‘[1,2)’ includes all depth 1 terms and IC
between 1 and 2 (not including 2). b)Macro-averaged F-measure performance broken down by GO term depth. c)Macro-averaged F-measure
performance binned by GO term information content.
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Table 4 Top biological process andmolecular function classes predicted by each type of feature

Original co-mentions

GO ID Name # Predictions Precision Recall F-measure Depth IC

GO:0009987 cellular process 6,164 0.812 0.875 0.842 1 0.66

GO:0044699 single-organism process 4,849 0.743 0.765 0.754 1 0.96

GO:0044763 single-organism cellular process 4,295 0.681 0.714 0.697 2 1.20

GO:0008152 metabolic process 3,893 0.644 0.726 0.682 1 1.22

GO:0065007 biological regulation 3,615 0.691 0.629 0.658 1 0.90

GO:0071704 organic substance metabolic process 3,489 0.611 0.677 0.643 2 1.42

GO:0050789 regulation of biological process 3,350 0.668 0.601 0.633 2 0.97

GO:0044238 primary metabolic process 3,337 0.593 0.655 0.623 2 1.56

GO:0044237 cellular metabolic process 3,268 0.590 0.644 0.616 2 1.49

GO:0050794 regulation of cellular process 3,156 0.648 0.583 0.614 3 1.11

GO:0050896 response to stimulus 2,968 0.606 0.590 0.597 1 1.62

GO:0043170 macromolecule metabolic process 2,640 0.548 0.618 0.581 3 1.77

Enhanced co-mentions

GO ID Name # Predictions Precision Recall F-measure Depth IC

GO:0009987 cellular process 6,223 0.816 0.887 0.850 1 0.66

GO:0007076 mitotic chromosome condensation 6 0.833 0.714 0.769 4 8.58

GO:0006323 DNA packaging 6 0.833 0.714 0.769 3 7.81

GO:0044699 single-organism process 4,957 0.744 0.783 0.763 1 0.96

GO:0044763 single-organism cellular process 4,423 0.682 0.736 0.708 2 1.20

GO:0008152 metabolic process 3,887 0.643 0.723 0.681 1 1.22

GO:0065007 biological regulation 3,701 0.683 0.636 0.659 1 0.90

GO:0050789 regulation of biological process 3,453 0.662 0.613 0.637 2 0.97

GO:0071704 organic substance metabolic process 3,491 0.605 0.670 0.636 2 1.42

GO:0043252 sodium-independent organic anion transport 11 0.636 0.583 0.608 7 8.50

GO:0000398 mRNA splicing, via spliceosome 140 0.492 0.697 0.577 10 5.88

GO:0006607 NLS-bearing protein import into nucleus 15 0.533 0.571 0.551 6 8.50

Bag-of-words

GO ID Name # Predictions Precision Recall F-measure Depth IC

GO:0009987 cellular process 6,005 0.820 0.869 0.844 1 0.66

GO:0044699 single-organism process 4,940 0.754 0.799 0.776 1 0.96

GO:0044763 single-organism cellular process 4,449 0.696 0.764 0.728 2 1.20

GO:0043252 sodium-independent organic anion transport 8 0.875 0.583 0.700 7 8.50

GO:0065007 biological regulation 3,865 0.698 0.686 0.692 1 0.90

GO:0008152 metabolic process 3,870 0.647 0.733 0.688 1 1.22

GO:0050789 regulation of biological process 3,597 0.680 0.663 0.671 2 0.97

GO:0006479 protein methylation 13 0.615 0.727 0.666 8 6.52

GO:0051568 histone H3-K4 methylation 13 0.615 0.727 0.666 11 7.94

GO:0007076 mitotic chromosome condensation 5 0.800 0.571 0.666 4 8.58

GO:0050794 regulation of cellular process 3,440 0.657 0.651 0.654 3 1.11

GO:0006497 protein lipidation 9 0.889 0.500 0.640 7 6.79
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Table 4 Top biological process andmolecular function classes predicted by each type of feature (Continued)

Co-mentions + Bag-of-words

GO ID Name # Predictions Precision Recall F-measure Depth IC

GO:0009987 cellular process 6,420 0.813 0.913 0.860 1 0.66

GO:0044699 single-organism process 5,338 0.736 0.834 0.782 1 0.96

GO:0044763 single-organism cellular process 4,862 0.674 0.800 0.731 2 1.20

GO:0065007 biological regulation 4,445 0.669 0.749 0.707 1 0.90

GO:0008152 metabolic process 4,252 0.638 0.785 0.704 1 1.22

GO:0050789 regulation of biological process 4,199 0.650 0.733 0.689 2 0.97

GO:0050794 regulation of cellular process 4,046 0.626 0.723 0.671 3 1.11

GO:0043252 sodium-independent organic anion transport 15 0.600 0.750 0.667 7 8.50

GO:0071704 organic substance metabolic process 3,883 0.602 0.743 0.665 2 1.42

GO:0043170 macromolecule metabolic process 3,007 0.540 0.694 0.607 3 1.77

GO:0051716 cellular response to stimulus 3,176 0.520 0.674 0.587 3 1.89

GO:0006386 termination of RNA polymerase III transcription 12 0.583 0.583 0.583 7 8.18

Table 5 Most difficult biological process andmolecular function classes

Original co-mentions

GO ID Name # Predictions Precision Recall F-measure IC

GO:0051179 localization 28 0.107 0.054 0.072 5.70

GO:0016247 channel regulator activity 115 0.043 0.208 0.071 6.53

GO:0009055 electron carrier activity 108 0.03 0.111 0.055 6.94

GO:0007067 mitosis 23 0.043 0.031 0.036 7.54

GO:0042056 chemoattractant activity 53 0.018 0.067 0.029 7.56

Enhanced co-mentions

GO ID Name # Predictions Precision Recall F-measure IC

GO:0009055 electron carrier activity 102 0.090 0.138 0.109 6.94

GO:0051179 localization 42 0.071 0.055 0.061 5.70

GO:0019838 growth factor binding 44 0.021 0.035 0.027 5.99

GO:0070888 E-box binding 99 0.010 0.066 0.019 7.49

GO:0030545 receptor regulator activity 152 0.007 0.020 0.010 7.63

Bag-of-words

GO ID Name # Predictions Precision Recall F-measure IC

GO:0051179 localization 18 0.277 0.090 0.137 5.70

GO:0009055 electron carrier activity 29 0.103 0.083 0.092 6.94

GO:0016042 lipid catabolic process 26 0.076 0.054 0.063 5.80

GO:0015992 proton transport 15 0.066 0.047 0.055 7.29

GO:0005516 calmodulin binding 14 0.071 0.033 0.045 7.25

Co-mentions + Bag-of-words

GO ID Name # Predictions Precision Recall F-measure IC

GO:0051179 localization 61 0.100 0.109 0.104 5.70

GO:0009055 electron carrier activity 62 0.079 0.138 0.101 6.94

GO:0030545 receptor regulator activity 63 0.064 0.080 0.071 7.63

GO:0042056 chemoattractant activity 24 0.041 0.066 0.051 7.56

GO:0040007 growth 27 0.030 0.066 0.047 7.33

IC represents information content of term.
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the information content of these difficult to predict terms
lies around the median range for all predicted terms. We
might have expected that the most difficult terms to pre-
dict would be those most informative terms (IC around
10). We believe that these terms are difficult to predict
because the ontological term names are made up of com-
mon words that will be seen many times in the biomedical
literature, even when not related to protein function. This
ambiguity likely results in a high number of features cor-
responding to these terms which results in poor predictive
performance. There is still further work needed to address
these shortcomings of literature mined features.

Manual analysis of predictions
Manual analysis of individual predictions
We know that GO annotations are incomplete and there-
fore some predictions that are classified as false positives
could be actually correct. The predictionmay even be sup-
ported by an existing publication, however due to the slow
process of curation they are not yet in a database. We
manually examined false positive predictions that contain
sentence level co-mentions of the protein and predicted
function to identify a few examples of predictions that
look correct but are counted as incorrect:

• Protein GCNT1 (Q02742) was predicted to be
involved with carbohydrate metabolic process
(GO:0006959). In PMID:23646466 [23] we find
“Genes related to carbohydrate metabolism include
PPP1R3C, B3GNT1, and GCNT1. . . ”.

• Protein CERS2 (Q96G23) was predicted to play a role
in ceramide biosynthetic process (GO:0046513). In
PMID:22144673 [24] we see “. . .CerS2, which uses
C22-CoA for ceramide synthesis. . . ”.

These are just two examples taken from the co-
mentions, but there are most likely more, which could
mean that the true performance of the system is underes-
timated. Through these examples we show how the input
features can be used not only for prediction, but also for
validation. This is not possible when using features that
are not mined from the biomedical literature and illustrate
their importance.

Manual analysis of functional classes
In the previous section we explored individual co-
mentions that could serve as validation for an incorrect
GOstruct prediction. In addition to this one-off anal-
ysis, we can label subsets of co-mentions pertaining
to particular functional concepts for validation on
a medium-throughput scale. To identify functional
classes for additional exploration, all GO concepts
were examined for three criteria: 1) their involve-
ment in numerous co-mentions with human proteins

2) numerous predictions made with an overall aver-
age performance and 3) confidence in the ability to
extract the concept from text. The concepts chosen
for further annotation were GO:0009966 – “regulation
of signal transduction”, GO:0022857 – “transmembrane
transporter”, and GO:0008144 - “drug binding”. For each
of these classes all human co-mentions were manually
examined.
We identified 204 co-mentions between a human pro-

tein and “GO:0008144 - drug binding” (IC=6.63). Out of
204 co-mentions, 112 appeared to correctly related the
concept with the protein (precision of 0.554). 61 unique
proteins were linked to the correct 112 co-mentions. Of
these, only 4 contained annotations of “drug binding”
in GOA, while the other 57 are not currently known
to be involved with “drug binding”. When we exam-
ined the predictions made by GOstruct for these pro-
teins, unfortunately, none of them were predicted as “drug
binding”. After further examination of the co-mentions,
most appear to be from structure papers and refer to drug
binding pockets within specific residues or domains of the
proteins. It is unlikely that the specific drug could be iden-
tified from the context of the sentence and many refer
to a proposed binding site with no experimental data for
support.
The concept “GO:0022857 - transmembrane trans-

porter” (IC=4.17) co-occurred with a human protein 181
different times. 69 co-mentions appeared to correctly
relate the concept with the labeled protein (precision of
0.381). A total of 32 proteins could be annotated with
this concept; out of the 32 only 6 are not already anno-
tated with “transmembrane transporter” in GOA. When
we examine the predictions made from the enhanced fea-
tures, only 1 out of the 6 proteins are predicted to be
involved with “transmembrane transporter”.
There were a total of 134 human co-mentions con-

taining “GO:0009966 – regulation of signal transduction”
(IC=3.30). 73 out of 134 co-mentions appeared to cor-
rectly relate the concept with the protein (precision of
0.543). A total of 58 proteins could be annotated based
upon these co-mentions. 21 proteins already contain
annotations conceptually related to “regulation of signal
transduction”, while the other 37 proteins do not contain
annotations related to “regulation of signal transduction”;
the later could represent true but uncurated functions.
When we examine the predictions made by GOstruct
using the enhanced co-mention features, 9 out of those 37
proteins were predicted to be involved with “regulation of
signal transduction”.
When a random subset of 1,500 human co-mentions

were labeled it was found that ∼30% (441 out of 1,500)
correctly related the labeled protein and GO term. By
annotating co-mentions of specific functional concepts
we see that these categories have a higher proportion of
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correct co-mentions than the random sample from all
co-mention; there will also be some categories where per-
formance of co-mentions is quite low. This information
can be used in multiple different ways. If we are more con-
fident that certain categories related to function can be
extracted from co-mentions, we can use this information
to inform the classifier by encoding the information into
the input features. Additionally, we show the importance
and ability of co-mentions to not only be used as input fea-
tures, but also for validation and enhancing the machine
learning results. We show that many of the predictions
made by our system could possibly be correct, but just not
curated in the gold standard annotations.

Impact of evaluationmetric on performance
In our initial experiments, we required predictions and
gold standard annotations to match exactly (data not
shown), but we found, through manual examination of
predictions, that many false positives are very close (in
terms of ontological distance) to the gold standard anno-
tations. This type of evaluation measures the ability of a
system to predict functions exactly, at the correct speci-
ficity in the hierarchy, but it doesn’t accurately represent
the overall performance of the system. It is preferable to
score predictions that are close to gold standard annota-
tions higher than a far distant prediction. We are aware
of more sophisticated methods to calculate precision and
recall that take into account conceptual overlap for hier-
archical classification scenarios [25,26]. For the results
reported in Table 2, to take into account the hierarchy of
the Gene Ontology, we expanded both the predictions and
annotations via the ‘true path rule’ to the root. By doing
this, we see a large increase in both precision and recall
of all features; this increase in performance suggests that
many of the predictions made are close to the actual anno-
tations and performance is better than previously thought.
A downside of our chosen comparison method is that
many false positives could be introduced via an incor-
rect prediction that is of a very specific functional class.
This could possibly explain why co-mentions from the
enhanced dictionary display a decrease in performance; a
single, very specific, incorrect prediction introduces many
false positives.

Conclusions
In this work we explored the use of protein-related fea-
tures derived from the published biomedical literature to
support protein function prediction. We evaluated two
different types of literature features, ontology concept co-
mentions and bag-of-words, and analyzed their impact
on the function prediction task. Both types of features
provided similar levels of performance. The advantage
of the bag-of-words approach is its simplicity. The addi-
tional effort required to identify GO term mentions in

text pays off by offering users the ability to validate pre-
dictions by viewing the specific literature context from
which an association is derived, as demonstrated in our
experiments.
In addition, we compared the value of concept

co-mentions considering two different spans of co-
occurrence: within a sentence (“sentence co-mention”)
and across a sentence boundary (sentence-external, or
“non-sentence co-mention”). Interestingly, we found that
sentence and non-sentence co-mentions are equally use-
ful, and that they are best used in conjunction as separate
feature sets. Combining co-mentions and bag-of-words
data provided only a marginal advantage, and in future
work we will explore ways to obtain better performance
from these features together. We also show that increas-
ing the ability to recognize GO terms from biomedical text
leads to more informative functional predictions. Addi-
tionally, the literature data we used provides performance
that is on par with other sources of data such as network
and sequence and has the advantage of being easy to verify
on the basis of the text.
Our experiment in medium-throughput manual inspec-

tion of protein-GO term co-mentions suggests that this
strategy can be used as a way of speeding up the process
of curation of protein function. The literature contains
millions of co-mentions, and a human-in-the-loop sys-
tem based on the detected co-mentions prioritized by
GOstruct can be a highly effective method to dramati-
cally speed up the rate at which proteins are currently
annotated.

Future work
This work marks only the beginning of incorporating text
mining for protein function prediction. There are always
other more sophisticated or semantic features to explore,
but based upon these results, there are some natural next
steps.
The first would be to incorporate larger spans for a bag-

of-words model due to the surprising performance of the
non-sentence co-mentions. By including words from sur-
rounding sentences, or an entire paragraph, more context
would be en-coded and the model might result in better
predictions.
Secondly, we found that an enhanced dictionary pro-

duced more individual co-mentions and fewer predic-
tions, resulting in slightly increased performance. We
explored several possible explanations as to why there is
not a greater impact. It could be due to a large num-
ber of competing co-mentions that prevent good patterns
from emerging or the possibility of introducing noise
through ambiguous protein mentions. A filter or classifier
that could identify a “good” co-mention would be pro-
viding much higher quality co-mentions as input, which
would in turn likely lead to better predictions. Another



Funk et al. Journal of Biomedical Semantics  (2015) 6:9 Page 14 of 14

way to potentially improve performance is to separate
co-mentions found from synonyms from the original co-
mentions, thereby allowing the classifier to provide them
with different weights.
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