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Abstract

Genotype-phenotype studies aim to identify causative relationships between genes and phenotypes. The International
Mouse Phenotyping Consortium is a high throughput phenotyping program whose goal is to collect phenotype data
for a knockout mouse strain of every protein coding gene. The scale of the project requires an automatic analysis
pipeline to detect abnormal phenotypes, and disseminate the resulting gene-phenotype annotation data into public
resources. A body weight phenotype is a common result of knockout studies. As body weight correlates with many
other biological traits, this challenges the interpretation of related gene-phenotype associations. Co-correlation can
lead to gene-phenotype associations that are potentially misleading. Here we use statistical modelling to account for
body weight as a potential confounder to assess the impact. We find that there is a considerable impact on previously
established gene-phenotype associations due to an increase in sensitivity as well as the confounding effect.
We investigated the existing ontologies to represent this phenotypic information and we explored ways to
ontologically represent the results of the influence of confounders on gene-phenotype associations. With the
scale of data being disseminated within the high throughput programs and the range of downstream studies
that utilise these data, it is critical to consider how we improve the quality of the disseminated data and
provide a robust ontological representation.

Introduction
In genotype-phenotype studies, one approach to iden-
tify abnormal phenotypes is a statistical comparison
of data collected from control and gene-altered ani-
mals. In this paper we use the International Mouse
Phenotyping Consortium (IMPC) statistical analysis
pipeline as a use case study [1]. The goal of the
IMPC is to produce and phenotypically characterise
20,000 knockout mouse strains in a reproducible
manner across multiple research centres. This high-
throughput phenotyping is based on a pipeline con-
cept where a mouse is characterised in a series of
phenotype screens underpinned by standard operating
procedures defined by the IMPC in the International
Mouse Phenotyping Resource of Standardised Screens

(IMPReSS) resource [2]. This pipeline approach char-
acterises seven males and seven females for each
knockout line and results in data for over 200 physio-
logical variables that cover a variety of disease-related
and biological systems. As the scale of the program
requires the statistical analysis to be automated, we
have developed the statistical package PhenStat [3] to
analyse genotype-phenotype associations. In order to
provide a consistent representation of results, area ex-
perts have reviewed the IMPReSS screens and have
associated one or more terms from the Mammalian
Phenotype Ontology (MP) [4] with each variable. For
example, the variable “fasted blood glucose concentra-
tion” is associated to three MP terms: “abnormal-”,
“increased-”, and “decreased-” “-fasted circulating glu-
cose level”. Using this approach, abnormal phenotypes
identified via statistical analysis are summarised as
gene-phenotype associations, easily understood by the
biological community and facilitating dissemination to
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the community (Fig. 1). The current analysis pipeline
only takes sex into consideration when identifying ab-
normal phenotypes. Sharing these gene-phenotype anno-
tations also enables data mining across species and studies
e.g. for disease gene candidate discovery, pharmacogenet-
ics and evolutionary studies [5–7].
During the statistical comparison of control and gene-

altered data, confounding variables associated with both
the genotype change and the phenotype of interest can
lead to an association that is true but potentially bio-
logically misleading. The presence of the confounding
relationship can lead to errors in the estimates of the re-
lationship between the treatment of interest (here the
genotype change) and the variable of interest (here the
phenotype). Good experimental design can manage
many potential confounders using standardisation e.g.
with the potential confounder of age, the study would
only test animals of the same age. An alternative strategy
is randomisation, in which animals of multiple ages are
tested in both control and the experimental knockout
group. Yet another strategy is grouping (blocking) ac-
cording to a confounding variable (e.g. pup or adult).
Depending on the strategy applied, the final annotation
could be specific to one particular age. To minimise the
potential impact of confounders within IMPC, the com-
munity identified critical sources of variation in screens
and used this to develop a standardised operating pro-
cedure which, where possible, minimises variation and
captures potential sources of variation as metadata with

each dataset. Metadata parameters (e.g. X-ray equip-
ment) are included in the IMPReSS protocols and sub-
mitted metadata is used to determine comparison
groups as part of the statistical analysis pipeline.
In many research studies, it is not possible to man-

age confounding variables during the design. For ex-
ample, in many gene knockout studies, the knockout
animals show an abnormal body weight change.
Therefore, any other phenotypic traits (e.g. abnormal
body fat mass MP:0012320) that correlate with body
weight will also be impacted. As the experimenter
cannot control this potential confounder through the
design, it is necessary to consider statistical methods
for non-equivalent groups [8]. These include regres-
sion methods where the confounder is treated as a
covariate, meaning the statistical test will assess the
effect of the genotype on the phenotype after adjust-
ing for the confounder’s relationship. This requires a
dataset to be processed twice, first without and then
with the confounder in the statistical analysis; giving
two sets of results for the test of genotype. This
granularity has a high potential value to improve our
interpretation of the relationship between a gene and
associated phenotypes. However, the vast majority of
MP terms represent absolute phenotype changes in a
variable of interest. The Mouse Genome Informatics
database (MGI) [9] developed MP to manually curate
the scientific literature. However, only in rare, clear
cause and effect cases are confounding variables rep-
resented as part of the ontology. For example, the
term “progressive muscle weakness” (MP:0000748) is
defined as a muscle weakness that increases with
time. Time or age are clearly contributing to the se-
verity of the phenotype and thus represent knowledge
that should be represented in the ontology [10]. How-
ever, in many studies a confounding variable is noted
by authors’ to contribute to a phenotype, but a clear
cause and effect relationship is not established. The
current mechanism employed by MGI is to manage
confounders at the level of annotation by utilising
free text qualifiers. For example, the curator will note
if an author states body weight was a confounder
when associating a phenotype to a genotype. With
the scale of IMPC data and the automated aspect of
statistical analysis and subsequent annotation, we have
the potential to manage these issues in a consistent
way and through standardisation better support
downstream informatic analysis. The interest in in-
cluding body weight as a covariate, in both high
throughput phenotyping studies and small scale stud-
ies, is growing [8, 11–13]. This manuscript aims to
raise awareness of the issues and demonstrate the po-
tential value of addressing the problems. We then
identify adaptations to the existing mechanisms
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Fig. 1 The phenotyping pipeline. The high throughput phenotyping
pipeline integrates a series of screens to assess the impact of the
genotype amendment on a variety of disease-related and biological
systems. Statistical analysis comparing data from the gene altered
and control animals allows the identification of abnormal phenotypes,
assignment of ontology annotation and dissemination of data to
public database for data mining across species and studies. IMPC
represents the International Mouse Phenotyping Consortium web
portal [26] where the data is collected, analysed and annotations
disseminated. Annotations are assigned using the Mammalian
phenotype ontology (MP)
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utilised by the community that could address this
new aspect where we wish to disseminate the out-
come of an analysis that considers body weight as a
confounder.
Data and scripts used to investigate and demonstrate

issues presented within this manuscript are available at
Zenodo [14].

Body weight as a confounder
Body weight is a highly heritable trait and is estimated to
be a potential latent variable in a third of experiments
studying knockout mice [11]. It has been shown that body
weight correlates with many variables, ranging from body
composition to clinical chemistry [15]. Including body
weight in the computational analysis allows the phenotype
to be assessed after adjusting for weight differences (see
Additional file 1: Supplementary Methods).

Dual analysis can lead to annotations that differ de-
pending on the analysis pipeline (Table 1) as one can
then assess whether the phenotype has changed in a
relative and absolute sense. For example, when the ab-
normality is due solely to correlation with a body weight
phenotype, then the inclusion of body weight as a covar-
iate adjusts for this confounding relationship and the
phenotype (as a relative term) would no longer be called
significant (Table 1 row 1). Alternatively, a line may only
have a significant abnormal annotation in the analysis
pipeline when body weight is included. The inclusion of
body weight accounts for more variation in the data, in-
creasing the sensitivity to detect other phenotypes
(Table 1, row 3). Lines can also be significant in both
analysis pipelines (Table 1, row 4), and this can arise
from two scenarios which differ in whether there is a
body weight difference or not. As the difference arises
from presence or absence of a body weight difference, it
could be argued that the interpretation could be driven
by the assessment of whether a body weight phenotype
was also annotated. However, a body weight phenotype
might be the reason statistically, but the abnormal body

weight annotation might not have been made due to low
statistical sensitivity (ability to detect a difference).
For example, consider the Dlg4 knockout mouse line

that has a reduced body weight phenotype (MP:0001262)
where we are also interested in assessing the impact of the
genotype change on body composition. As body compos-
ition variables such as lean mass (MP:00039590) are
dependent on the body weight, we would expect these to
be decreased as an absolute phenotype change (Fig. 2a
and b). When we include body weight in the analysis, we
find that the change in lean mass is as expected for the
change in body weight and determine that the phenotype
relative to body weight is not statistically significant
(Fig. 2c) (Equivalent to row 1 of Table 1). The knockout
gene Akt2 similarly has a body weight phenotype (Fig. 3a).
However, the inclusion of body weight in the analysis finds
that the relative lean mass is still statistically significant
(Fig. 3b-d) (Equivalent to row 4 of Table 1). By adding a
statistical step where we study the phenotype after adjust-
ing for body weight, we gain a more detailed understand-
ing of the impact of the genotype on the phenotype.
Even in cases where it is clear that body weight is truly

acting as a confounding variable and is not just explain-
ing data variance (Table 1, row 1), causality is not deter-
mined. For example, we cannot assess whether the lean
mass is lower in the Dlg4 line because the body weight
is fundamentally lower or because there is less lean mass
leading to a lower body weight. The refinement is there-
fore to consider the data and assess for both relative and
absolute changes and disseminate this richness.

Magnitude of impact and complexity
The Wellcome Trust Sanger Institute’s (WTSI) Mouse
Genetics Project (MGP) is part of the IMPC community
effort to phenotype knockouts for all mouse protein cod-
ing genes [16]. To support the argument that we need to
consider body weight, we provide the results of a sup-
porting analysis of the WTSI MGP data (see Additional
file 1: Supplementary Methods for details). Firstly, we
demonstrate that for the majority of the dataset, weight

Table 1 Possible outcomes of a dual analysis process

Row A1 A2: + weight Conclusion Insight

1 + - Absolute phenotype Δ No longer significant–confounded by BW

2 - - No abnormality

3 - + Relative phenotype Δ Adding weight increases sensitivity to detect Δ

4 + + Absolute phenotype Δ and relative phenotype Δ Two scenarios

1. BW difference: still there is a significant Δ as Δ larger/smaller than
expect for BW difference

2. BW same: a significant Δ. Weight explains variation but does not
lead to phenotype difference.

Possible outcomes when assessing for a genotype effect for a variable of interest when the analysis excludes (A1) or includes body weight as a covariate (A2). In
this table, + indicates a statistically significant genotype effect;−indicates a non-significant genotype effect; Δ indicates change; BW indicates body weight
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is often a significant source of variation (Fig. 4). This is
seen across biological processes and not only includes
screens that assess body composition but also screens
such as plasma chemistry. Secondly, this data allows us
to compare the impact of the dual analysis process
using the standard pipeline (A1) which does not ac-
count for weight, compared to the additional analysis
pipeline (A2) including body weight as a covariate. This
analysis demonstrates that including body weight has a

significant impact on the final abnormality annotations
(Fig. 5). We find that 70 % of the abnormal annotations
from the standard pipeline were also annotated when
we included body weight in the analysis. Furthermore,
we find that 30 % of annotations in the standard pipe-
line (A1) were no longer significant in A2 as they arose
from the confounding impact of body weight (equiva-
lent to row 1 of Table 1). 21 % of the annotations in A2
only occurred when body weight was included and

BA

Analysis Genotype role
p value

Genotype effect p value

Without weight (A1) 5.25e-6

Female*knockout =
-1.26±0.61

0.04017

Male*knockout =
-2.86±0.58

1.35e-6

With weight (A2) 0.29345 -0.44±0.39 0.257

C

Fig. 2 Example line Dlg4, where body weight confounds the phenotype. Body composition data were collected with a dual-energy X-ray
absorptiometry at 14 weeks of age for the Dlg4tm1e (EUCOMM) Wtsi/Dlg4tm1e (EUCOMM) Wtsi knockout line on the C57BL6/N genetic background.
The comparison was based on 249 female and 227 male wildtype mice and 7 female and 7 male knockout mice. a A scatterplot of the
lean mass readings for the control and knockout animals for the males. b A scatterplot of the lean mass readings for the control and
knockout animals for the females. c The genotype estimate with associated standard error and statistical significance when estimated using standard
methodology (A1: Analysis Pipeline 1) and then after inclusion of body weight as a covariate (A2: Analysis Pipeline 2). As there was evidence of sexual
dimorphism in the phenotype in A1, the genotype effect was estimated for male and female knockout mice separately. The scatter plots and analysis
highlight how a body weight phenotype is observed in both sexes of the knockout animals and as the lean mass is associated with body
weight, a statistically significant difference is seen in the lean mass until assessed as a relative abnormality
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arose from the increase in sensitivity from including
body weight (equivalent to row 3 of Table 1).

Challenges applying existing solutions
As demonstrated with the provided analysis, taking con-
founding variables such as body weight into account
may lead to a more comprehensive dataset and should
be further investigated (see Table 1). The dissemination
of the resulting annotation data is achieved through a
collaboration between different communities. IMPC cur-
rently uses MP to annotate genes with phenotypes. MP

is a pre-composed phenotype ontology in which every
concept semantically describes one particular phenotype,
e.g. decreased lean body mass (MP:0003961). While this
paper generalises to gene-phenotype annotations, MGI
distinguishes further the additional data such as the gen-
etic background or the sex if there is a difference be-
tween male and female mice. While the majority of the
annotations contained in MGI do not take confounders
into consideration, sex in the presence of sexual di-
morphism could be regarded as such and is captured at
times in MGI. For example, the gene Dmxl2 [17]

BA

Analysis Genotype 
role p value

Genotype 
effect

Without weight (A1) 0.00e-7 -5.41±0.36

With weight (A2) 4.02e-3 -1.01±0.34

DC

WTAkt2-/-

Fig. 3 Example line Akt2, where body weight confuses the phenotype interpretation. Body composition data were collected with dual-energy
X-ray absorptiometry at 14 weeks of age for the Akt2tm1e (KOMP) Wtsi/Akt2tm1e (KOMP) Wtsi knockout line on the 129S5/SvEvBrd/Wtsi;129S7/SvEvBrd/Wtsi

genetic background. The comparison was based on 71 female and 84 male wildtype mice and 12 female and 14 male knockout mice. a A scatterplot
of the lean mass readings for the wildtype and knockout animals for the males. b A scatterplot of the lean mass readings for the wildtype and
knockout animals for the females. c Representative photograph demonstrating body weight phenotype. d The genotype estimate with associated
standard error and statistical significance when estimated using the standard methodology (A1: Analysis Pipeline 1) and then after inclusion of
body weight as a covariate (A2: Analysis Pipeline 2). The scatterplots of the lean mass against body weight highlight that there is a clear body
weight phenotype and the difference between the knockouts and wildtype mice cannot be fully explained by the association between lean mass and
body weight
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exhibits sexual dimorphism such that the phenotype was
only found to be significant in the females of heterozy-
gous mice and this is recorded as a curator note.
Body weight is not the only variable that could be used

to adjust for the size of the animal; alternatives include
body length or width. Adjustment for body size as a con-
founder has unique challenges (see section ‘Body weight
as a confounder’) and particular issues with determin-
ing causality. Thus, we investigated solutions for the
standardised reporting of phenotypes after considering
body weight as a confounder as a relative phenotype
change within existing semantic frameworks and report
our findings here. Potential solutions were limited to
those we believed could be implemented as they had the
lowest modification requirements on the existing dis-
semination pipelines, such as those maintained by MGI.
We note that the discussed solutions only focus on fu-
ture dissemination but do not include strategies on how
to deal with legacy data.

Use of pre-composed ontologies
As mentioned before, the vast majority of phenotypes
represented in the current version of MP constitute
absolute changes that cannot readily be applied to
confounder-adjusted phenotypes. In order to represent
the results of a confounder-sensitive analysis, additional
MP concepts would be needed that would allow a user
to report relative phenotype changes (see column 2,

Table 1, rows 3 and 4). For example, to represent the
changes in the absolute and relative changes in mouse
line Dlg4, we would need the additional concept “relative
increase in lean body mass after body weight adjust-
ment”. However, pre-composing concepts for relative
phenotype changes would mean that for each phenotype
that is influenced by one or multiple confounders (e.g.
body size or length), multiple concepts for each unique
phenotype-confounder relationship would need to be
added (abnormal/increased/decreased). This would lead
to a vast increase in the number of terms (i.e. term ex-
plosion) that need to be added and maintained within
MP, which would be untenable. This may also be confus-
ing for the user community of curators and annotators
as the number and complexity of terms exposed for
search and/or annotation grows.

Tagging pre-composed terms
An adaption to the pre-composed term is to associate an
attribute to the annotation by addition of free text tags.
This is equivalent to the current implementation used in
literature curation at MGI. For example, a gene could
possess an annotation “increased lean body mass”, with
an annotation or ‘tag’ on this annotation detailing if any/
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Fig. 4 The inclusion of weight as a source of variation. The
distribution of weight inclusion in the PhenStat analysis of 85086
control-knockout datasets which covers 154 variables (average
number datasets = 552) from the high throughput phenotyping
data collected at the WTSI MGP. The PhenStat analysis was completed
using the Mixed Model framework with a starting model that included
weight. The model optimisation process means that the final
model will only include weight if it is statistically significant in
explaining variation in the data (p < 0.05)

- Weight + Weight

Tested: 85086

1703751 521

Fig. 5 The impact of including body weight as a covariate on
abnormal phenotype annotations. The relationship between the
abnormal phenotype annotations made when assessing for a
genotype effect by processing through A1 (standard statistical
analysis pipeline) and A2 (statistical analysis including body
weight as a covariate). The analysis used a mixed model method
implemented within PhenStat [9] on data collected by the WTSI
MGP (for more details see Additional file 1: Supplementary Methods).
Shown in red are those annotations, where the phenotype difference
was due to the confounding effect of body weight (row 1 of Table 1).
Shown in green are those annotations where adding weight to the
analysis has increased sensitivity (row 3 of Table 1). Shown in yellow
are annotations made in common by both pipelines (row 4 of Table 1).
Data available from Zenodo [14]
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which confounder has been used for adjustment, e.g.
“after adjusting for body weight”. However, as the tags
are not standardised this may result in non-comparable
annotations of genes and an increase in curatorial work-
load. Furthermore, informatics tools are not capable of
interpreting tags of gene annotations and may lead to er-
roneous presumptions (in the case of a relative change
after confounder adjustment that would not be reported
with absolute changes only; row 3, Table 1).
In order to disseminate relative phenotype changes to

the broader community using tagged pre-composed
phenotype ontology annotations, existing gene-annotation
databases need to be able to store this additional data and
expose this for query. This may require not only changes
to the database itself, but also to web interfaces as well as
services for data download, in addition to strategies for
handling legacy data.

Standardised qualifiers of pre-composed term
A refinement to the preceding method, is to add stan-
dardised qualifiers to the genotype-phenotype annota-
tion. One ontology that can be used to represent these
standardised qualifiers is the Phenotype And Trait
Ontology (PATO) [18, 19]. The difference between this
solution and the previous is that the free text tag is re-
placed with an ontology term. This suggestion is similar
to how sexually dimorphic associations are currently
treated. For example, Kcne2 knockout mice have a num-
ber of abnormalities that are specific to the male mice
and this is captured as a MP term with associated sex
classification tag [20]. The advantage of this solution is
that the variability that may occur with free-text tags is
reduced to a defined set of ontology concepts. However,
following this solution would need an agreed set of on-
tologies used for the annotation of relative changes and
possibly extension to these to account for all possible
confounders.
Similar to the latter approach, third parties such as

MGI can then choose to add these additional annota-
tions to their data storage to hold the information for
relative phenotype changes. This may mean that data-
base schemes as well as provision and distribution
methods need to be adapted to handle the additional
data and be able to distinguish between absolute and
relative phenotype changes. If these changes were to be
integrated in existing databases, ways of handling legacy
data need to be taken into consideration.

Post-composed phenotypes
An alternative to pre-composed phenotype annotations
is the use of post-composed phenotypes. One method to
post-composed phenotypes are entity-quality statements
[18, 19], where the phenotype is broken down into an af-
fected entity and a quality describing the entity further,

e.g. “increased body weight” (MP:0001260) would be
broken down into the entity “multicellular organism”
(UBERON:0000468, UBERON is a species-agnostic anat-
omy ontology) [21] and the quality “increased weight”
(PATO:0000582). The following example illustrates how
a post-composed ontology-representation could be used
to represent a relative phenotype change:

Entity 1: lean body mass
Quality: relative to
Entity 2: body weight
Qualifier: increased

Applying a post-composed representation to confounder-
adjusted phenotypes may lead to multiple sets of annota-
tions to the same set of data as it still needs to be created
for each confounder. Where required (e.g. Table 1, row 4),
the absolute phenotype change could then be added as it
has been done so far with MP annotations or if desired,
uniformly with post-composed phenotype annotations.

Representation of confounder association with RDF triple
representation
The ‘Standardised qualifiers of pre-composed terms’
approach could be formally represented with the Re-
source Description Framework (RDF) triple model [22].
In an RDF triple, the annotation conforms to the format
of < subject, predicate, object>. In our scenarios this
would be an MP term as the subject which would be re-
lated to the confounder body weight (the object) via the
relationship specified as the “relative to” (the predicate).
The triple representation is only needed in the annota-
tion arising from including the potential confounders as
covariates in the analysis and is a natural extension of
the preceding approach ‘Post composed phenotypes’.
There are multiple advantages of using RDF models.

The first advantage arises from the graphical nature of
ontologies in which the inter-relationships of multiple
tiers are captured with a graph schema. In an ontology,
a class can have multiple parents leading to the inherit-
ance of qualities from different parents, which can be
well and efficiently defined within RDF models. The
alternative of storing this information is to use a Rela-
tional Database Management Systems (RDBMS). In
RDBMS, a table scheme is used which faces the compu-
tational challenges of multiple joins when querying
across many tables and is therefore less scalable. The
second advantage is that RDF is a well-established com-
munity standard recommended by the World Wide
Web Consortium (W3C) [22] and is readily extendible.
For example, the same MP term can be associated to
other confounders (e.g. body length) using the same
predicate. This common structure will lead to a robust
data model which will improve efficiency when searching
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for information. The Ontology for Biomedical AssociatioN
(OBAN) is an example of an RDF implementation and
has been successfully exploited to represent disease-
phenotype associations [23] (Extended version will be
published within this special issue) [24].
RDF triples can be stored within relational as well as

graphical databases and data queries are performed with
the SPARQL query language [25]. In consequence, one
would need to understand the technology and the query
language to work with the data effectively, through
provision of a (non-SPARQL) Application Program
Interface (API) would address this for accessing the data.

Conclusions and future perspectives
In gene-phenotype studies, we have identified challenges
with reporting phenotypes after adjusting for body
weight using currently available semantic data represen-
tation frameworks. Weight is a complex confounder, as
it cannot be controlled within the experiment and caus-
ality cannot be determined. However, analysing the data
with and without body weight returns a richer under-
standing of the phenotypic abnormality. With interest
growing in the impact of body weight on phenotypes
and the scale of projects being conducted by high
throughput phenotyping consortiums, being able to dis-
seminate annotated phenotype data has become an im-
portant issue. We have demonstrated that the impact of
including weight as a confounder in the analysis has sig-
nificant impact on the annotations returned. While this
example focuses on the description of mouse pheno-
types, we perceive that this is a general problem with
accessing phenotypes in all mammals including humans.
The current solution implemented with mouse data has
arisen from adapting the mechanisms developed for cur-
ating literature to a high throughput scenario and use of
the ontology for analyses.
We coordinated our efforts with Medical Research

Council (MRC) Harwell and MGI in discussions on re-
fining annotation in high throughput phenotyping stud-
ies, where MRC Harwell focused on aging studies and
how to manage time course studies [10]. The issues were
determined to be distinct, as the interpretation is more
complex when considering body weight as a confounder.
The complexity arises as we cannot determine causality,
rather we are annotating the outcome of the statistical
analyses.
In the process of this study, we were able to identify

several possible solutions (see ‘Challenges applying
existing solutions’) that could help with applying
confounder-relevant information to gene-phenotype as-
sociations. These options have been limited to what we
believe have the lowest modification requirements on
existing dissemination pipelines, such as those main-
tained by MGI. However, each of these outlined options

have to be assessed now in the broader community to
arrive at a conclusion what is the best to pursue.
In future work, we aim to not only communicate with

the broader community to find the most suitable solu-
tion, but also to assess the impact for other potential
confounders not just body weight. These additional con-
founders will then be verified with what has been deter-
mined as the best solution to see that it can scale with
the demands of the different confounders.
While we have assessed in this study the impact of con-

founders of gene-phenotype associations in mouse, this is
highly likely to be equally relevant in other mammalian
model organisms (e.g. rat). However, we identified
practical solutions based on the mouse annotation-
dissemination pathways and these might not be the
optimal for other model organisms. The discussions
within this manuscript are a good starting point for
managing confounder in their community.

Additional file

Additional file 1: Supplementary Methods. (DOCX 21 kb)
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