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Abstract

Background: The Centre for Therapeutic Target Validation (CTTV - https://www.targetvalidation.org/) was
established to generate therapeutic target evidence from genome-scale experiments and analyses. CTTV aims to
support the validity of therapeutic targets by integrating existing and newly-generated data. Data integration has
been achieved in some resources by mapping metadata such as disease and phenotypes to the Experimental
Factor Ontology (EFO). Additionally, the relationship between ontology descriptions of rare and common diseases and
their phenotypes can offer insights into shared biological mechanisms and potential drug targets. Ontologies are not
ideal for representing the sometimes associated type relationship required. This work addresses two challenges;
annotation of diverse big data, and representation of complex, sometimes associated relationships between concepts.

Methods: Semantic mapping uses a combination of custom scripting, our annotation tool ‘Zooma’, and expert
curation. Disease-phenotype associations were generated using literature mining on Europe PubMed Central abstracts,
which were manually verified by experts for validity. Representation of the disease-phenotype association was achieved
by the Ontology of Biomedical AssociatioN (OBAN), a generic association representation model. OBAN represents
associations between a subject and object i.e., disease and its associated phenotypes and the source of evidence for
that association. The indirect disease-to-disease associations are exposed through shared phenotypes. This was applied
to the use case of linking rare to common diseases at the CTTV.

Results: EFO yields an average of over 80 % of mapping coverage in all data sources. A 42 % precision is obtained
from the manual verification of the text-mined disease-phenotype associations. This results in 1452 and 2810
disease-phenotype pairs for IBD and autoimmune disease and contributes towards 11,338 rare diseases associations
(merged with existing published work [Am J Hum Genet 97:111-24, 2015]). An OBAN result file is downloadable
at http://sourceforge.net/p/efo/code/HEAD/tree/trunk/src/efoassociations/. Twenty common diseases are linked to
85 rare diseases by shared phenotypes. A generalizable OBAN model for association representation is presented in
this study.

Conclusions: Here we present solutions to large-scale annotation-ontology mapping in the CTTV knowledge
base, a process for disease-phenotype mining, and propose a generic association model, ‘OBAN’, as a means
to integrate disease using shared phenotypes.

Availability: EFO is released monthly and available for download at http://www.ebi.ac.uk/efo/.
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Introduction
Drug discovery research involves diverse analytical activ-
ities and integration of many sources of data about di-
verse entities from single nucleotide polymorphisms
(SNPs) to pathways, proteins to populations. The Centre
for Therapeutic Target Validation (CTTV) is a collabor-
ation between the European Bioinformatics Institute
(EMBL-EBI), GlaxoSmithKline (GSK) and the Wellcome
Trust Sanger Institute (WTSI) to develop a knowledge
base of evidence for drug targets based on genomic ex-
periments and bioinformatics analyses. A CTTV goal is
to develop a better understanding of the rare and com-
mon disease relationship via shared phenotypes, genes,
and pathways, as information from rare disease can pro-
vide mechanistic insight to common disease and vice
versa. This requires integration of data generated by
CTTV projects with existing data residing in EMBL-EBI,
WTSI and GSK resources. Data types include variants,
genes, proteins, gene expression, pathways, compounds,
literature and related experimental variables such as dis-
ease and phenotype with data generation on different ex-
perimental platforms such as Genome Wide Association
Studies and next generation sequencing.
The integration of disease and phenotypic information,

where a group of phenotypes are associated with a dis-
ease, becomes increasingly important when considering
rare diseases where research is typically fragmented
across omics types and disease. Rare disease data are not
always compatible with each other as they come from
different resources, e.g., OMIM [1] and ORPHANET
[2], represent different perspectives of the diseases, such
as diagnostics or treatment, and data are typically popu-
lation, or even individual, specific. The sparseness and
heterogeneity of this data therefore introduces a major
challenge in the integration of rare and common disease
information [3].
CTTV uses the Experimental Factor Ontology (EFO)

[4] as its application ontology to provide an integrated
and consistent ontological representation of the CTTV
platform data. EFO provides an integration framework
for ontologies and reuses components of domain-specific
ontologies such as Orphanet Rare Disease Ontology
(ORDO) [5], ChEBI [6], Gene Ontology [7] and Uberon
[8]. Typically a data or use case driven ‘SLIM’ (a subset of
the referenced ontology with MIREOT import closures
[9]) of a source ontology is created, and then imported
into EFO. Figure 1 illustrates the exponential growth of
EFO where a large amount of classes are imported from
externally-sourced ontologies. This presents challenges
representing the imported knowledge in EFO without los-
ing the structural integrity of the original ontologies. We
therefore use MIREOT to import classes, or small sections
of hierarchies from external ontologies to avoid potentially
importing the whole or most of a source ontology into

EFO due to the complexity of class organization. This also
helps ensure amenability of EFO to wider data integration.
For example, rare disease terms are imported from ORDO
and phenotypes from Human Phenotype Ontology terms
as both ontologies are compatible with EFO’s disease and
phenotype design pattern respectively and common dis-
ease terms are defined locally with EFO-namespace URI.
Even though other ontologies exist that aim to describe
disease, there is not one single-origin representation of
common disease in any of the available ontologies that is
compatible with the current design pattern of disease rep-
resentation used in EFO, thus creating common disease
classes in the EFO namespace is currently necessary for
CTTV. Figure 1 shows that despite considerable growth
in EFO-native classes (3992 EFO-native classes in 2015, as
opposed to 2214 classes in 2010), EFO use of imported
classes from external domain ontologies is increasing.
EFO uses common design patterns that are consistent
throughout the EFO ontology development process (e.g.,
term creation, and term importing) to integrate and
organize the ontologies imported. For example, the design
pattern for cell line representation: cell line derives_-
from a cell type, which is part_of an organism, which is
a bearer_of some disease links an EFO’s cell line class
to the Cell Ontology’s cell type class, an NCBI Tax-
onomy class, and EFO’s or ORDO’s disease class. This
cell line design pattern as shown in Fig. 2 is also shared
with the Cell Line Ontology [10]. Webulous [11] (ex-
tended publication in JBMS Bioontologies SIG The-
matic issue), a tool which implements these design
patterns in a Google Sheets add-on, is used to create
new terms (the ‘class’), and to allow users to define new
terms for EFO in spreadsheet format. These are trans-
formed to OWL and imported prior to each monthly
release. The use of design patterns also provides
consistency with other ontology consuming resources
such as the EBI RDF Platform [12]. In order to be inter-
operable with OBO foundry ontologies EFO uses BFO
1.1 [13] upper level classes. For example EFO repre-
sents disease as a child of BFO:Disposition [14]
whereas, following the same process, HP:phenotype is
modelled as a child of BFO:Quality. In EFO, a common
design pattern is such that an EFO:disease has_pheno-
type HP: links EFO disease terms and HP. EFO diseases
are organized utilizing an object property has_disease_-
location using anatomical classes imported from
UBERON.
Data resources integrated into CTTV have local stan-

dards for annotation and many aggregate data from mul-
tiple external sources, where each external resource also
has a resource specific annotation and/or curation
process. They have also historically used different ontol-
ogies and dictionaries for disease and phenotype annota-
tion; examples include Online Mendelian Inheritance in
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Man (OMIM) [15], the Systematized Nomenclature of
Medicine – Clinical Terms (SNOMED-CT) [16], the
Human Disease Ontology (DO) [17], and the Medical
Dictionary for Regulatory Activities (MedDRA) [18] as
seen in Table 1. We note that these resources often do
not differentiate between disease and phenotype when
selecting and applying the vocabularies to their data. We
have standardized this for CTTV, differentiating pheno-
type from disease, and defaulting to HP imported terms
in EFO for the description of phenotypes where possible.
For example, the GWAS Catalog trait myopia is anno-
tated to the HP’s IRI http://purl.obolibrary.org/obo/

HP_0000545 ‘Myopia’. EFO therefore contains pheno-
typic terms that are clearly distinguished from disease
terms for annotation of CTTV data.
Diseases are associated with phenotypes which mani-

fest in the disease with qualifying information about the
nature of the association. The disease-phenotype associ-
ation is established to represent disease connections via
shared phenotypes. For example, the rare disease
Aicardi-Gourtieres syndrome has several associated phe-
notypes affecting the brain, immune system, and skin,
such as microcephaly, hepatosplenomegaly, elevated
blood liver enzymes, thrombocytopenia, and abnormal
neurological response. It is often not observable at birth,
and all phenotypes are unlikely to be present in all pa-
tient presentations. Additionally phenotypes may also
vary by kindred and/or by population in their frequency
and penetrance. The same is true for common disease,
for example, phenotypes of Crohn’s disease may range
from inflammation of any part of the gut (but most
likely ileum or colon), diarrhea, or constipation, but not
all symptoms are necessarily present in one patient.

Fig. 1 There were 2214 EFO-native classes in January 2010, and 3992 EFO-native classes in January 2015. Although EFO has significantly grown in
its number of native classes, the number of imported classes has grown at a much higher rate. Importing more than 6000 rare disease classes
from ORDO in 2012, and axiomatizing them into EFO has resulted in a sudden increase between 2012 and 2013. This reflects the use of EFO as
an application ontology providing interoperability across domain ontologies through semantic axiomatization

Fig. 2 The cell line design pattern in EFO links an EFO class ‘cell line’
to external ontologies via import mechanism. An EFO cell line
derives_from a cell type class from Cell Ontology, which is part_of an
organism – a class imported from NCBI Taxon. EFO cell line class is
also a bearer_of a disease – a class imported from ORDO or class
native to EFO itself

Table 1 An overview of ontologies usage by each CTTV data
source. Cross-reference sources of each CTTV data resource are
normalized to EFO for CTTV data validation process

Database Cross-reference annotation sources

EVA OMIM, SNOMED-CT, MeSH

ArrayExpress GO, OMIM, EFO

UniProt OMIM, Orphanet, MeSH

Reactome OMIM, GO

ChEMBL MedDRA, ATC, GO

GWAS Catalog EFO, DO

Sarntivijai et al. Journal of Biomedical Semantics  (2016) 7:8 Page 3 of 11

http://purl.obolibrary.org/obo/HP_0000545
http://purl.obolibrary.org/obo/HP_0000545


Representation of the disease-phenotype association in
an OWL ontology with the statement ‘disease has_phe-
notype some phenotype’ requires that all instances of a
disease have that specific phenotype and our examples
above illustrate that this representation is problematic
for many cases. We have therefore chosen to represent
disease-phenotype association in a generic association
model ‘OBAN’ (the Open Biomedical AssociatioN),
which allows us to represent both the disease-phenotype
association and qualify the association with evidence,
and, in the future, to represent information such as fre-
quency of association. In order to test this model, and to
populate it with disease-phenotype associations for
Inflammatory Bowel Disease we used a text mining ap-
proach to extract these from the literature, building a
corpus using an expert nominated set of journals as our
experience described in Vasant et al. [19], indicates that
constraining the corpus improves precision on post-hoc
validation by experts. Abstracts were accessed using the
EuropePMC API [20] and the Whatizit text mining
pipeline [21] was usd to mine the corpus using a dic-
tionary comprised of phenotype terms from the Human
Phenotype Ontology [22] and the Mammalian Phenotype
ontology [23].

Methods
Mapping CTTV data sources disease and phenotype terms
to EFO
In order to perform semantic integration of multiple re-
sources for CTTV, the data from each source (listed in
Table 1) was mapped to EFO identifiers. Challenges in
performing such mapping pertain in the non-
standardized use of vocabulary sets by different re-
sources. Some of the resources used an ontology, e.g.,
Disease Ontology, a taxonomy such as MeSH [24], or
cross-referenced another resource such as OMIM. Dis-
eases and phenotypes are often mixed in the same re-
source and sometimes in the same category annotation.
For example, the European Variation Archive (EVA –
http://www.ebi.ac.uk/eva/) [25] trait names’ labeling uses
a mixed set of vocabularies from HP, SNOMED-CT,
OMIM, and non-standardized local identifiers used in-
ternally at source from the ClinVar records. The identi-
fiers of the record’s cross-references for each trait name
are not equivalently represented - e.g., trait name ‘con-
genital adrenal hyperplasia’ in EVA contains identifiers
for SNOMED-CT, HP, but not for OMIM. This trait
name also links to a non-standardized internal identifier
used at the Office of Rare Disease. Another example in-
stance of EVA trait name ‘Epstein syndrome’ only con-
tains a cross-reference to a SNOMED-CT identifier (but
not OMIM, nor HP), and a non-standardized internal
identifier from Genetic Alliance, a submitter of ClinVar
[25]. In EFO, disease classes are cross-referenced to

multiple ontologies and vocabularies such as the
National Cancer Institute Thesaurus (NCIt) [26], MeSH,
OMIM, Anatomical Therapeutic Chemical (ATC) classi-
fication [27], or UMLS [28] via the specific definition_ci-
tation annotation property. These definition_citation
properties are refined in EFO to indicate the specific vo-
cabulary where the term is cross-referenced from, e.g.,
OMIM_definition_citation, SNOMEDCT_definition_ci-
tation, etc. When importing from external ontologies,
additional cross-reference information is absorbed into
EFO from the OBOinOWL property hasDbXref, such as
those used in HP. To conform with EFO’s mechanism of
definition_citation, EFO developers have further added
these imported hasDbXref annotation values to the cor-
responding source-specific definition_citation for better
conformance and coverage when mapping terms by
cross-reference links using EFO customized program-
ming script.
To map CTTV terms to EFO, we exploited EFO’s

cross-references and mapped identifiers supplied for
ontology terms where these were provided and where
mappings were 1:1. For example, in UniProt, the human
protein Catalase http://www.uniprot.org/uniprot/P04040
is annotated with OMIM:115500 acatalasia. EFO con-
tains a cross-reference via OMIM_definition_citation for
EFO_0004144 Acatalasia. This allows us to then map
directly from EFO to Catalase from CTTV via the
OMIM ID. We were able to quickly identify and map
classes for resources which used some semantic identi-
fiers transparently, even when these were not from an
ontology but a resource such as OMIM. In the case of
1-to-many mappings, we programmatically identified the
exact match of synonyms in the cross-reference list, and
avoided broader or narrower synonyms. However, in
other cases, resources such as EVA do not use any se-
mantic identifiers locally and aggregate data from mul-
tiple sources that often contain only textual descriptions
of diseases and phenotypes. We therefore applied man-
ual curation where a standardized URI was not provided
to the data, to carefully map the disease or phenotype
annotation. This process was used in addition to the
manual curation process used to assign disease terms
when the record was initially curated, and serves to
harmonize the data. It also includes examination of
OMIM entries, and Orphanet data (http://www.orpha.net)
to identify mappings that reference genetic and rare dis-
eases where disease and phenotype labeling is not stan-
dardized for consistency across multiple databases. This
step was coupled with literature review to ensure the ac-
curacy of the mapping. For example, the EVA phenotype
term ‘Glucose-6-phosphate transport defect’ was manually
mapped to ‘Glycogen storage disease due to glucose-6-
phosphatase deficiency type b’ in Orphanet. Non-exact
mappings were allowed for the purpose of data
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integration, provided that mappings were supported by
evidence from peer-reviewed literature. Table 2 summa-
rises the coverage of CTTV data mapping to EFO in this
study. If a term cannot be mapped to existing terms in
EFO, external ontologies are examined for (potential) new
terms to import. Failing this, an EFO class is added, and
asserted into an appropriate place in the class hierarchy.
EFO first attempts to create terms by requesting these
from the authoritative reference ontology, for example
request of new rare disease term, synonym or cross-
reference from ORDO. This avoids generating an EFO
term when the scope of work is covered by a reference
ontology. Occasionally EFO temporarily creates the
term and later imports a term from the reference ontol-
ogy if and when it becomes available, to avoid delays in
data releases. Failing all this, a new EFO class is created
under EFO namespace.

Text mining for candidate disease-phenotype associations
To generate the disease-phenotype association know-
ledge base for Inflammatory Bowel Disease (IBD) and
autoimmunity disorders, a two-step process was per-
formed in this pipeline. First, a corpus was identified
using the European PubMed Central web services
[29]. SOAP web services were used to download all
abstracts from journal articles that were annotated
with the diseases that were subclasses of Inflammatory
Bowel Disease in EFO, their preferred label (for example
‘Crohn’s disease’) and all their MeSH synonyms (for ex-
ample, granulomatous colitis, Crohn’s granulitis, etc). In
order to mine for the co-occurrence of disease and pheno-
type terms Whatizit [21], a dictionary-based text mining
tool was used. A dictionary composed of terms from the
Human Phenotype ontology (HP) and the Mammalian
Phenotype ontology (MP) was then used as the reference
for phenotype terms. This dictionary was used as input to
the Europe PMC hosted Whatizit pipeline, which was ap-
plied to the abstracts identified in the first stage. This
process returned a list of candidate disease-phenotype as-
sociations formatted as a spreadsheet containing columns
for Term Frequency, Inverse Document Frequency, asso-
ciated phenotype terms and abstract links (please follow

the links in Additional file 1 and Additional file 2). EBI cu-
rators performed initial cleaning of nonspecific terms –
for example the HP contains the terms ‘All’, ‘Chronic’, or
‘death’. Three GSK clinicians then reviewed and verified
the true positive candidate associations before the final list
of disease-phenotype associations was transformed into
OWL format corresponding to OBAN as described below.

Building an IBD disease-phenotype association know-
ledge base with OBAN
A challenge in modeling disease and phenotype connec-
tions in an ontological framework is that they are typic-
ally considered a ‘sometimes associated’ relationship.
Ontologies expressed in OWL are not well suited to de-
scribe such relationships because when a property is
asserted at the class level, it is interpreted as true at all
times [30, 31] and for all members of that class. There-
fore, an OWL implementation with a probability value
attached to the object property relation between two
classes to describe this ‘sometimes-associated’ relation is
problematic as the condition would be true for some
members of the class. This is particularly problematic
when a probability is unknown or constrained, e.g., to a
small population sample and support for such constructs
is exploratory at best. Exploiting this relationship at the
instance level would introduce another ontology model-
ing complication in EFO, meaning that we would either
lose the information at the class level for the informa-
tion that is always true, or would repeatedly insert that
information into every instance of that class. Neither
represents a sustainable modeling of such relationship.
We have therefore separated the two kinds of relation-
ships. Where connections can be made existentially (the
relationship is always true), they are asserted in the
ontology as class descriptions via object properties. For
example, a disease ‘neoplasm’ is axiomatized in EFO as
having the abnormality in the cell proliferation process
with a syntax (realized_in some (‘disease course’ and
((‘has part’ some ‘cell proliferation’) and (bearer_of some
abnormal)))). This existentially asserts in EFO that a dis-
ease class neoplasm is realized_in a disease course that
bears a quality of some abnormality (bearer_of PATO:ab-
normal) and has_part GO Process:’cell proliferation’.
When reasoning is performed on EFO, this abnormality
of process (i.e., PATO:abnormal of GO:’cell prolifera-
tion’) classification is inferred through this asserted
axiom clause at class level.
For other ‘sometimes true’ relationships, the OBAN

representation has been designed in an attempt to ease
this problem. OBAN (Fig. 3) decouples the relationship
between the disease and phenotype classes, and instead
makes the relationship about an intermediate class of
things – an OBAN association – true for a given disease
and a phenotype (conceptualized as two biological entity

Table 2 Summary of mapping between textual data
annotations and EFO or ORDO ontology classes, following
process outlined in methods section (%)

Database % Annotated to EFO or ORDO

EVA (inc. ClinVar) 89 % of annotations of frequency > 100

ArrayExpress 77 %

UniProt 78 %

Reactome 100 %

ChEMBL 99 %

GWAS Catalog 100 %
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classes; one represents a subject role, and the other rep-
resents an object role in the association). Linkages be-
tween a disease and associated phenotype are
represented as instances of the class ‘OBAN:association’,
which has one or more ‘OBAN:provenance’ instances
(see Fig. 3). An association is an OWL class defined in
the OBAN ontology (https://github.com/EBISPOT/
OBAN) to represent a triple-form entity of subject-
related-to object through the object properties associa-
tion_has_subject and association_has_object. This associ-
ation is supported by an OBAN:provenance class that
instantiates a provenance entity that supports the associ-
ation. In OBAN, provenance is a class that validates the
association statement in the corresponding OBAN:asso-
ciation class instance. One provenance individual can
also be about several associations as the same paper may
provide evidence for multiple disease-phenotype associa-
tions, and each association instance can have several
items of provenance attached to it. In this work, diseases
are typically subjects and phenotypes are modeled as ob-
jects but the association is bi-directional i.e., the associ-
ation class only denotes two entities being associated

with each other without enforcing directionality on the
link. However, to standardize information within the
CTTV, we have elected to customize the use of the
OBAN association to have disease as a subject, and
phenotype as an object; the subject and object relations
are there to enable directionality if required later in the
scope of CTTV. For example, an OBAN association is
constructed via the syntax association_has_subject (EFO:-
disease) ‘Crohn’s disease’, and association_has_object
(EFO:phenotype) diarrhea.
Figure 4 shows there is an association between the dis-

ease ileocolitis and the phenotype malabsorption, where
the provenance is provided via manual curation from a
named clinician validating this candidate association as a
true positive. In the OWL representation of associations
the biological entities are represented using the same
URI as the corresponding OWL class rather than repre-
sented as individuals – a technique known as punning
[32]. Though not crucial, using punning to generate an
instance identifier is preferred as it avoids the need to
create many new URIs for individuals of the same dis-
eases or phenotypes. In addition, OBAN separates the

Fig. 3 An OBAN association links an entity such as a disease to another such as an associated phenotype and retains the provenance information
(e.g., manual curation, published findings, etc). Entities marked with * are required and others are added on per association basis, for instance the
PubMed triple in this figure
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association between entities from its provenance, i.e.,
what/who is used in making the assertion. A similar pat-
tern is used in nanopublications [33] and we extend the
concept here. Provenance is typed using an extension of
the Evidence Code Ontology (ECO) [34] in the OBAN
model to allow for extensible triples to be added, such as
PubMedID, a curator name or a confidence score and
methods for how it was derived as seen in Fig. 3.

Results
Extending the ontology with disease axioms
Connections between rare and common diseases in the
ontology can be formed through class descriptions
where the relation is existentially always true. These re-
lations are hard-coded into EFO by the ontology devel-
opers. EFO has been extended to add such descriptions.
One such relevant description is in connecting rare and
common disease to anatomical organism parts. EFO
models this using a simple existential restriction: disease
has_disease_location some ‘organism part’ where has_di-
sease_location is a sub property of the OBO located_in
object property. EFO version 2.64 (September 2015)
contains 1037 such relationships, connecting 5275
diseases to the anatomical areas where they manifest.
Figure 5 illustrates the overview of these disease-
anatomical parts that cover all anatomical locations,
which are shared between rare and common diseases.
For the zoomable detailed plot, please consult https://
github.com/CTTV/ISMB2015/blob/master/figures/r2c.pdf
and Additional file 3.
In another example, the relation between a disease and

an abnormality in the biological process is modeled with

a class description using the object properties realize-
d_in, where a disease is realized_in a disease course hav-
ing an abnormal quality that has_part a biological
process. For example, cancer is axiomatized with (realize-
d_in some (‘disease course’ and (has_part some ‘cell prolif-
eration’) and (bearer_of some abnormal)))). There were
980 disease classes connected to abnormalities in 56 bio-
logical processes in EFO version 2.64 that were modeled
following the pattern above. EFO is released monthly and
available for download at http://www.ebi.ac.uk/efo.

IBD disease-phenotype associations
Research into Inflammatory Bowel Disease (IBD) is one
of the driving use cases for CTTV and as such has been
an early focus for this work. The process pipeline in
mapping and associating disease-phenotype described in
this study is being expanded to cover other CTTV driv-
ing use cases in autoimmunity, cancer and has been
used for Type 2 diabetes [19]. Over 80 % of all disease
and phenotype annotation in resources used in CTTV
pipeline were successfully mapped to EFO terms. These
resources included ArrayExpress, UniProt, Reactome,
GWAS Catalog, ChEBML, and EVA. The results for IBD
phenotype mining are available as an OBAN association
file at https://sourceforge.net/p/efo/code/HEAD/tree/
trunk/src/efoassociations/ibd_2_pheno_associations.owl.
The file contains 289 disease-phenotype associations for
IBD. After our initial text-mining step, 41.6 % candidate
IBD phenotype associations were deemed correct by
manual review (precision). Determining the statistics in
the error rate for this mining process is challenging as
we lack the denominator (false positive) to calculate the

Fig. 4 An example of connecting a phenotype (malabsorption) with a disease (ileocolitis) using OBAN. Provenance here is manual curation by a
named surgeon (name omitted here)
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false discovery and other error ratios. We identified mul-
tiple causes to those disease-phenotype associations that
were not manually validated. In some cases, the HP/MP
terms that were tagged to the associated disease were
non-informative. For example, ‘chronic’, ‘death’, or ‘sudden
death’ are valid HP and MP terms. While they were cor-
rectly mapped by the mining process, they are not in-
formative enough in establishing the disease-phenotype
association and were discarded. In other cases, the inter-
annotator agreement among the clinician experts, who
specialized in different fields of medicine, varied. A
‘maybe’ or non-verified entry does not signify that the
candidate disease-phenotype pair was incorrectly mapped,
rather that the experts did not unanimously agree. In
those cases, we accepted the association when 2 out of the
3 clinicians agreed.
To facilitate connection to rare disease, we have ex-

tended previous work by the Human Phenotype Ontology
and ORDO [22]. We incorporated a subset of the data
available from the HP group and extended our disease-
phenotype association results with 43,517 individual rare
disease-phenotype associations using literature curation
and clinician validation (documentation available at
http://human-phenotype-ontology.github.io/documentation.
html, last accessed 7th October 2015). For instance,
connecting colon cancer to Crohn’s disease and to
Muir-Torre syndrome (a rare form of colon cancer

manifesting in both gastrointestinal and cutaneous sys-
tems) provides a connection between disorders which
are known to share common phenotypes in cutaneous
system such as skin lesions [35]. The complete listing
of these rare-to-common diseases via phenotypes
are all available in the OBAN model available from
http://sourceforge.net/p/efo/code/HEAD/tree/trunk/src/
efoassociations/ with the summary statistics provided in
Fig. 6. As of September 28th 2015, there were 13,8410
disease-phenotype OBAN associations linked to 1760
provenances in the CTTV knowledge base. By combining
the associations to phenotypes from rare diseases, or com-
mon diseases we can provide another mechanism for inte-
grating rare and common disease. The current set of
associations in this study enables 535 connections be-
tween a phenotype and at least one common and at least
one rare disease. Such connections can reveal new find-
ings, thereby providing new hypotheses for investigation,
or confirm known findings, and providing additional evi-
dence for common mechanisms. Examples from our data
include connections for which publications exist, e.g.,
pruritus which connects both psoriasis and lamella ichthy-
osis [36], and also those for which publications are harder
to find, such as the association between Crohn’s disease
and Bannayan-Riley-Ruvalcaba syndrome via cachexia (a
syndromic group of symptoms describing the combination
of weakness, muscle atrophy, loss of weight, and fatigue).

Fig. 5 A summary of the rare-to-common associations linking diseases via anatomical system through the has_disease_location axiomatization
inside EFO. The high-resolution image is downloadable at https://github.com/CTTV/ISMB2015/blob/master/figures/r2c.pdf blob/master/figures/
r2c.pdf and provided in supplementary materials
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Discussion
The understanding and representation of phenotype and
disease is both context and domain specific and in both
our data mapping and mining experiences, disease and
phenotype overlap. Here we operate in the translational
research domain specifically to characterize drug targets
and to explore phenotypic connections between rare and
common disease. Determining what is a disease or
phenotype is also confounded by the fact that some of
the phenotype terms in HPO are primarily considered
diseases, such as Crohn’s disease, and not phenotypes. In
EFO we have chosen to omit imported terms in this na-
ture as phenotypes from HP, and represent them as dis-
eases using EFO namespace. EFO also includes an
extended range of normal phenotypes, which are out of
the scope of HP’s phenotypic abnormalities. Medical lan-
guage is also multifaceted: a single clinical observation,
either a disease or a phenotype, can be represented mul-
tiple times with multiple alternative terms and we there-
fore observe a long tail of annotations which are
problematic to map to any ontology.
The literature mining process provides a simple and

rapid method to identify ‘candidate’ disease-phenotype
associations, which are then curated by expert clinicians
and transformed into the OBAN model. The current
process could be improved by incorporating aspects of
negation detection [37], and applying advanced natural
language processing algorithms to the text-mining step.
This would also reduce the manual curation effort on
the clinician’s end, though we expect that manual review
of results will need to remain part of this process.
Crowd-sourcing is potentially one approach to help re-
duce the clinicians’ workload on the manual reviews of
the disease-phenotype associations [38]. A phenotypic

dissection of disease provides a mechanism to translate
the biological complexity to a computational representa-
tion to aid in identification and validation of therapeutic
targets. The biological subject and object in the OBAN
association triples exploit the ontology infrastructure
provided in EFO and provide a means to express confi-
dence in annotations using and extending ECO. OBAN
provides a robust ontological infrastructure that is com-
plementary to, but more restrictive and detailed than the
association representation employed by nanopublication
model, which is less ontology-restricted. Nanopublica-
tions provide an overarching and generic framework for
representing a simple unit of knowledge, but leave the
details to each individual publisher. OBAN restricts this
model by providing class types and predicates which are
to be used to mint new OBAN associations. This is crit-
ical when the key aim is immediate data integration,
rather than consolidation of many underlying and dis-
parate models for representing a single publication.
The OBAN association model has been successfully

applied to represent disease-chromosomal location in
the Monarch Initiative [39]. In future work we will in-
clude phenotypic frequencies, and disease stage subdiv-
ision of phenotypes in collaboration with the clinical
community. This will require a revision to the EFO
disease hierarchy, which we hope to achieve with the
wider community and the Human Disease Ontology in
particular.

Conclusions
Capturing disease-phenotype information with ontology
modeling is a multi-step process. Relevant clinical and
experimental information benefits from distinguishing
between disease and phenotype. We have demonstrated

Fig. 6 Summary of the number of associations and provenances in each group of diseases in CTTV as of 28th September 2015
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the pipeline for mapping textual information that come
from various sources to the corresponding ontology dis-
ease or phenotype classes via the mechanism of EFO im-
ports and design patterns. Knowledge of associations
may come from various sources: expert’s knowledge, lit-
erature mining, or clinical/experimental observations,
each with different level of significance. Asserting such
knowledge for ontology reasoning may not be done at
the class level where the association must always be true,
which is often not the case since a disease may have all
or some manifestation of different symptoms (i.e., phe-
notypes). We present an OBAN model that constructs
the triple associations exploiting instances of class ‘asso-
ciation’ where traceable provenance of supporting know-
ledge is asserted per each instance of association. This is
a driving mechanism for identifying the connections be-
tween rare and common diseases via the shared pheno-
types at the Centre for Therapeutic Target Validation.
OBAN can also be applied to represent association in-
formation other than those of disease-phenotype. Evi-
dence types of disease-target hypotheses such as somatic
mutation, genetic association, or affected pathway, once
represented with OBAN model, can exploit the full cap-
ability of graph computation for ontology reasoning.

Availability
The EFO and phenotypic associations will be deployed
in the CTTV platform, which will be freely available at
http://www.targetvalidation.org/ to the community after
release in late 2015. EFO is freely available at http://
www.ebi.ac.uk/efo/, as are the OBAN associations at
https://github.com/EBISPOT/OBAN.

Additional files

Additional file 1: URLs to the supplementary downloadable result files
for text mining results (IBD, Autoimmunity, Skeletal disorders, and
Metabolism disorders). (PDF 18 kb)

Additional file 2: The list of journals mined for disease-phenotype
assocations. (PDF 13 kb)

Additional file 3: A zoomable disease-phenotype association by
system/organ disease locations. (PDF 9 kb)
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