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Abstract

Background: In the United States, 795,000 people suffer strokes each year; 10–15 % of these strokes can be
attributed to stenosis caused by plaque in the carotid artery, a major stroke phenotype risk factor. Studies
comparing treatments for the management of asymptomatic carotid stenosis are challenging for at least two
reasons: 1) administrative billing codes (i.e., Current Procedural Terminology (CPT) codes) that identify carotid
images do not denote which neurovascular arteries are affected and 2) the majority of the image reports are
negative for carotid stenosis. Studies that rely on manual chart abstraction can be labor-intensive, expensive, and
time-consuming. Natural Language Processing (NLP) can expedite the process of manual chart abstraction by
automatically filtering reports with no/insignificant carotid stenosis findings and flagging reports with significant
carotid stenosis findings; thus, potentially reducing effort, costs, and time.

Methods: In this pilot study, we conducted an information content analysis of carotid stenosis mentions in terms
of their report location (Sections), report formats (structures) and linguistic descriptions (expressions) from Veteran
Health Administration free-text reports. We assessed an NLP algorithm, pyConText’s, ability to discern reports with
significant carotid stenosis findings from reports with no/insignificant carotid stenosis findings given these three
document composition factors for two report types: radiology (RAD) and text integration utility (TIU) notes.

Results: We observed that most carotid mentions are recorded in prose using categorical expressions, within the
Findings and Impression sections for RAD reports and within neither of these designated sections for TIU notes. For
RAD reports, pyConText performed with high sensitivity (88 %), specificity (84 %), and negative predictive value
(95 %) and reasonable positive predictive value (70 %). For TIU notes, pyConText performed with high specificity
(87 %) and negative predictive value (92 %), reasonable sensitivity (73 %), and moderate positive predictive value
(58 %). pyConText performed with the highest sensitivity processing the full report rather than the Findings or
Impressions independently.

Conclusion: We conclude that pyConText can reduce chart review efforts by filtering reports with no/insignificant
carotid stenosis findings and flagging reports with significant carotid stenosis findings from the Veteran Health
Administration electronic health record, and hence has utility for expediting a comparative effectiveness study of
treatment strategies for stroke prevention.
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Background
In biomedicine, we define a disease or mutant phenotype
experienced by an individual as observations caused by
interactions between the environment and his/her gen-
ome that differ from the expected, “normal” wild type.
Over the last several years, the biomedical community
has begun to leverage informatics and electronic health
record (EHR) data to define and identify phenotypes for
genetic analyses using genome-wide (GWAS) and
phenotype-wide (PheWAS) association studies [1, 2]. For
instance, PheKB is a knowledgebase that contains phe-
notypes defined using EHR data and subsequently vali-
dated within one or more institutions. This catalogue of
phenotypes was primarily generated by the Electronic
Medical Records and Genomics (eMERGE) network, a
United States (US) National Human Genome Research
Institute-funded consortium, but is also supplemented by
the informatics community at large (https://phekb.org/
phenotypes) [3–5]. Similarly, the Strategic Health IT Re-
search Program for secondary use of EHRs (SHARPn),
funded by the US Office of the National Coordinator for
Health Information Technology, aims to transform het-
erogeneous EHR data from various sites into a standard-
ized form to support high-throughput phenotyping [6].

Phenotyping with electronic health record data
Several phenotypes have been the foci of informatics
studies including cancer, diabetes, heart failure, rheuma-
toid arthritis, drug side effects, cataract, pneumonia,
asthma, peripheral artery disease, and hypertension [7].
EHRs provide a groundbreaking opportunity to define
and identify these complex phenotypes leveraging data
elements from the longitudinal patient record. Specific-
ally, patient phenotypes are often inferred from both
structured EHR data elements (e.g., administrative bill-
ing codes, vital signs, medications, laboratory values
from data fields including dropdown lists and check-
boxes) and unstructured EHR data elements (e.g., symp-
toms, signs, histories, and diagnoses within clinical notes
including progress notes and discharge summaries).
These heterogeneous data elements are then mapped to
logical representations used to classify a patient into one
or more phenotypes [8]. Outstanding challenges remain
for next-generation phenotyping of EHR data including
the need for approaches that address data complexity,
inaccuracy, coverage, and biases [9].

Natural language processing
Traditionally, International Classification of Disease
(ICD-9) billing codes have been leveraged to identify
phenotype risk factors with variable results. Inaccurate
performance can result from poor granularity within
code descriptions and documentation of risk factors in
patient clinical texts [10, 11]. Natural language

processing (NLP) may improve risk factor detection by
identifying missed risk factor mentions (improving sensi-
tivity) and filtering spurious risk factor mentions (improv-
ing positive predictive value) from these clinical texts.
However, extracting risk factors associated with pheno-
types from clinical texts can be challenging due to the
usage of variable lexical expressions (e.g., “occlusion”, “re-
duced arterial diameters”), ambiguous abbreviations (PAD
can stand for “peripheral artery disease” or “pain and dis-
tress”), spelling errors (“diabetes” misspelled as “dia-
beetes”), and telegraphic constructions (e.g., “PHx: HTN”
means “past history of hypertension”) within clinical texts.
Furthermore, multiple mentions of the same risk factor
can be recorded within and across reports. This informa-
tion might be integrated with structured data elements re-
quiring logic to classify a patient with a phenotype. The
success of an algorithm is often defined by performance
metrics of sensitivity (or recall), positive predictive value
(or precision), negative predictive value, and specificity by
comparing the predicted phenotype from the system/algo-
rithm against the coded phenotype from a domain expert
[12].

Extracting stroke risk factors using natural language
processing
NLP has been applied and, at times, integrated with
structured data to successfully identify several stroke risk
factors such as peripheral artery disease [5, 13], diabetes
[4, 14], heart failure [15], and hypertension [16] as part
of large, coordinated research projects. Specifically,
Savova et al. extended the Clinical Text Analysis and
Knowledge Extraction System to extract and classify
positive, negative, probable, and unknown mentions of
peripheral artery disease (PAD) [13]. Kullo et al. then
leveraged this system to encode case–control status,
comorbidities, and cardiovascular risk factors from the
EHR for a GWAS study of PAD cases and controls for
the eMERGE project [5]. Wilke et al. applied the
FreePharma system to extract medication histories and
combine them with diagnoses and laboratory results
to identify a diabetes mellitus cohort as part of the
Marshfield Clinic Personalized Medicine Research Project
(PMRP) [14]. Kho et al. extracted diagnoses, medications,
and laboratory results leveraging NLP to encode variables
from unstructured fields for various sites to identify
type 2 diabetes cases and controls for a multi-institutional
GWAS study also as part of the eMERGE project [4].
Garvin et al. extracted left ventricular ejection fraction as
an indicator for heart failure using the Unstructured Infor-
mation Management Architecture (UIMA) as part of a
Translational Use Case Project and quality improve-
ment project within the Veteran Affairs (VA) Consor-
tium for Healthcare Informatics Research (CHIR) [15].
Finally, Thompson et al. translated the nine algorithms
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for phenotypes including hypertension developed from
the eMERGE project into the Quality Data Model
(QDM) to support EHR-based quality measures [16].
Although NLP has addressed many stroke-associated

risk factors for genotype-phenotype and other studies,
few studies have leveraged NLP to identify these risk
factors specifically for stroke prevention research. Fur-
thermore, to our knowledge, no NLP study has targeted
significant carotid stenosis - a known risk factor for
stroke. Our long-term goal is to develop a comprehen-
sive stroke phenotyping framework that extracts predic-
tors of stroke subtypes e.g., ischemic or hemorrhagic as
well as their precise endotypes e.g., ischemic stroke endo-
types of cardiac embolism, large artery atherosclerosis, or
lacunar infarction, other uncommon causes, from the
EHR powered by NLP. Our short-term goal is to develop
an NLP algorithm for a National Institute of Health
(NIH)-sponsored comparative effectiveness study of
ischemic stroke prevention treatments that automatic-
ally filters carotid reports for patients exhibiting no/
insignificant carotid stenosis of the internal or com-
mon carotid arteries from chart review. In this pilot
study, we completed a qualitative and quantitative
study of where and how mentions of carotid stenosis
findings occur in radiology reports and how this
affects an NLP algorithm’s performance.

Methods
In this Institute Review Board (IRB or Ethics committee)
and Veteran Affairs (VA) approved pilot study, we aimed
to conduct an information content analysis of a major
predictor of stroke, significant stenosis of the internal or
common carotid arteries, for a sample of free-text re-
ports from the Veteran Health Administration. Our goal
is to automatically distinguish reports denoting one or
more sides of significant stenosis (defined as greater

than 50 %, moderate, or severe stenosis) from reports
denoting no/insignificant stenosis (defined as negated,
ruled out, mild, less than 50 % stenosis) from both of
the internal or common carotid arteries. In this study,
we conducted an information content analysis of carotid
stenosis findings with respect to three aspects of docu-
ment composition - location (Sections), format (struc-
tures), and descriptions (expressions). We assessed the
performance of pyConText, an NLP algorithm, at auto-
matically extracting and encoding stenosis findings given
these three document constituents.

Dataset
We selected all reports from the VA EHR for patients
with an administratively documented carotid image pro-
cedure code (CPT code) restricted to those within −1 to
+9 days of the procedure code date and that contained a
carotid term (“carot”, “ica”, “lica”, “rica”, or “cca”). In our
previous study, we leveraged 418 randomly sampled VA
radiology reports for developing our NLP algorithm,
pyConText, to identify mention-level stenosis findings
[17]. We extended this previous study by randomly
selecting a new set of reports to classify document-level
stenosis based on identified mention-level carotid stenosis
findings. This dataset consists of 598 radiology reports
(RAD: mainly ultrasound reports) and 598 text integration
utility notes (TIU: mainly progress notes, carotid duplex
exams, and carotid triplex exams) (see Fig. 1). Because
much of our algorithm development was completed
during our previous study [17, 18] and the prevalence of
stenosis positive reports is low, we chose a larger testing
set for each report type. We also chose to maintain
the natural distribution to give us a better sense of
whether pyConText could correctly retain stenosis
positive reports (high sensitivity) and to extrapolate
the potential chart review savings from filtering

Fig. 1 Sample texts by report type. Each text contains fictional, but realistic information
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stenosis negative reports (high negative predictive
value). The dataset was randomly split into two sets:
200 development reports (100 RAD and 100 TIU
notes) for algorithm knowledge base development
[18] and 996 testing reports (498 RAD and 498 TIU
notes) for information content analysis and algorithm
evaluation. For the information content analysis, three
research associates (domain experts) each independ-
ently and manually annotated the dataset for Sections,
structures, and expressions as well as classified the
report at the document-level as stenosis positive (if
the report contained one or more mention of signifi-
cant carotid stenosis) or stenosis negative (if the re-
port contained only mentions of no/insignificant
carotid stenosis). For the algorithm evaluation, the
RAD reports were extracted from the VA EHR as two
separate parts, Findings and Impressions. For the TIU
reports, we parsed the Findings and Impressions
using regular expressions written as a python script.
We assessed pyConText’s performance when provided
the Findings only, Impressions only, and the full
report.

Information content assessment
We aimed to characterize mentions of carotid sten-
osis findings according to Sections, structures, and
expression types. Each report could have zero, one,
or more relevant carotid stenosis findings recorded
with zero, one, or more Sections, structures, and
expression types.

Sections
RAD and TIU reports can be structured using
canonical sections e.g., Indication, Findings, and
Impression sections. We evaluated information con-
tent in the Findings (including Comments) versus
Impressions (including Interpretations and Conclusions)
sections [19].

Structures
VA notes can be generated using narrative or boilerplate
templates in which the contents are saved as unstruc-
tured or semi-structured texts, respectively. For example,
findings may be present in a variety of structures includ-
ing: prose, lists, tables, headings, and other (Table 1). We

evaluated information content according to these struc-
ture types [20].

Expressions
We have identified three types of expressions describing
carotid stenosis findings: category, range, or exact. We
characterized the information content according to these
expression types [21] (Table 2).

pyConText algorithm
pyConText is a regular expression-based and rule-based
system that extends the NegEx [22] and ConText [23]
algorithms. NLP developers can train pyConText to
identify critical findings and their contexts by defining
regular expressions for these targeted findings and their
desired modifiers within its knowledge base, respectively
[24]. These modifiers can be used to filter spurious
finding mentions that would otherwise generate false
positives if generating a cohort based on simple keyword
search. For example, a negation modifier can reduce
false positives by filtering denied findings e.g., “no
carotid stenosis”. Furthermore, a severity modifier may
reduce false positives by filtering insignificant findings
e.g., “slight carotid stenosis”. In a previous study, pyCon-
Text identified pulmonary embolism from computed
tomography pulmonary angiograms by filtering spurious
mentions using modifiers of certainty, temporality, and
quality with high sensitivity (98 %) and positive predict-
ive value (83 %). The pyConText pipeline is composed
of three main parts: named entity recognition, assertion
detection, and document-level classification.

Named entity recognition and assertion detection
Specifically, we adapted pyConText’s knowledge base of
findings and modifiers to filter no/insignificant carotid
stenosis findings using regular expressions. These ex-
pressions contain “lexical variants” including synonyms,
acronyms, abbreviations, and quantifications commonly
documented in clinical text to represent carotid stenosis
findings, semantic modifiers of severity, neurovascular
anatomy, and sidedness, and linguistic modifiers of exist-
ence, temporality, and exam [25]. In Fig. 2, we provide
the schema representing findings and each modifier as
well as the possible normalized values. We represent
these mentions and their normalized values using the
following syntax: finding/modifier(‘lexical variant’: nor-
malized value). For example, in Fig. 3, “Moderate plaqueTable 1 Structure types with example sentences

Example sentence

Prose “30–45 % stenosis in the right ICA.”

List “1. Both ICAs are occluded.”

Table “95 % RICA 50 % LICA 75 % LECA”

Heading “Right: ICA: stenosis >70 %.”

Other Any structures not listed above

Table 2 Expression types with example sentences

Example sentence

Category “severe stenosis”

Range “stenosis ranging from 40 to 70 %”

Exact “60 % stenosis”
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in the right ICA” is encoded as finding(‘plaque’: carotid
disease), severity(‘Moderate’: critical value), neurovascular
anatomy(‘ICA’: internal carotid artery), sidedness(‘right’:
right), and existence(default: definite existence) using the
knowledge base. pyConText leverages these normalized
modifier values to determine whether a mention of a
carotid finding(carotid disease) in the neurovascular
anatomy(internal carotid artery, common carotid artery,
carotid bulb or carotid bifurcation) represents no signifi-
cant stenosis (stenosis with existence: definite negated
existence), insignificant stenosis (stenosis with severity:
non-critical value e.g., values less than 50 % stenosis), or
significant stenosis (stenosis with severity: critical values
e.g., values equal or greater than 50 % stenosis).

Document classification
For document-level classification, if either side or both
sides of the internal or common carotid artery are deter-
mined to have significant stenosis, pyConText classifies
the reports as stenosis positive; otherwise, it classifies it
as stenosis negative. For RAD report example 1, in Fig. 3,
the report would be classified as stenosis positive
because two mentions of significant stenosis in the right
internal carotid artery were identified. Figure 4 depicts
RAD report example 1 fully processed by pyConText.

pyConText evaluation
pyConText applies a simple processing approach of
segmenting and tokenizing sentences to process reports.
The algorithm does not make use of Sections and
structures. Therefore, we quantified how frequently

complex document composition - Sections, structures,
and expressions - are utilized to report carotid stenosis
findings to gauge whether document decomposition pro-
cessing such as section or structure tagging is needed to
accurately extract findings. We evaluated the frequency
of errors by Sections, structures, and expressions by
comparing the predicted report classifications by pyCon-
Text to those generated by our domain experts.
Specifically, we defined a true positive when a report is

correctly classified by pyConText as stenosis positive
and a true negative when a report is correctly classified
by pyConText as stenosis negative. In contrast, we
defined a false positive when a report is spuriously
classified by pyConText as stenosis positive and a false
negative when a report is spuriously classified by pyCon-
Text as stenosis negative [12]. We assessed pyConText’s
performance by each Section and the full report using
standard performance metrics of sensitivity, positive
predictive value (PPV), specificity, and negative predictive
value (NPV) as follows:

1. sensitivity ¼ true positive
true positiveþfalse negative

2. positive predictive value ¼ true positive
true positiveþfalse positive

3. specificity ¼ true negative
true negativeþfalse positive

4. negative predictive value ¼ true negative
true negativeþfalse negative

Results
Our testing set was comprised of 498 radiology reports
(RAD) ultrasounds and 498 TIU notes. At the
document-level, for RAD reports, 353 (71 %) were
stenosis negative and 145 (29 %) were stenosis positive;

Fig. 2 Schema representing findings as well as semantic and linguistic modifiers and their possible normalized value sets
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for TIU reports, 396 (80 %) were stenosis negative and
102 (20 %) were stenosis positive. The RAD training set
distribution of 68 % stenosis negative and 32 % stenosis
positive was comparable to the RAD testing set distribu-
tion. The TIU training set distribution of 87 % stenosis
negative and 13 % stenosis positive reports differed
slightly from the RAD testing set distribution.

Information content assessment
Of the 498 RAD reports, we observed most carotid
mentions occur within the Impressions (488), are re-
corded using prose (706), and are expressed as categor-
ical expressions (713). Carotid mentions occurred often
within both Findings and Impressions (359) (Table 3).
In contrast, of the 498 TIU reports, we observed that
most carotid mentions did not occur in either the Find-
ings or Impressions (286). However, similarly to RAD
reports, carotid mentions were recorded using prose
(294), and were expressed as categorical expressions
(344) (Table 3).

Fig. 4 The resulting RAD report example 1 processed by pyConText
from Fig. 3

Fig. 3 Illustration of pyConText’s pipeline encoding a sentence and classifying the document from Fig. 1 RAD report example 1. Some modifiers
e.g., temporality and exam are not displayed for brevity. Blue mentions indicate templated mentions classified as no/insignificant stenosis; red
mentions indicate templated mentions classified as significant stenosis
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For RAD reports, within Findings, most carotid men-
tions were recorded as prose (306) followed by headings
(66); within Impressions, most carotid mentions were
recorded as prose (352) followed by lists (127) (Table 4).
In contrast, for TIU reports, within Findings, most
carotid mentions were recorded as headings (43)
followed by tables (33); as Impressions, most carotid
mentions were recorded as prose (88) followed by headings
(48) (Table 4).
For RAD reports, of the carotid mentions reported

within both Finding and Impression (n = 359 reports;
379 paired mentions), there was repetition of structure
types between sections (239 paired mentions, 63 %)

(diagonals in Table 5). In cases where a different struc-
ture was used between sections (140 paired mentions,
37 %), the most frequent cases were Finding: prose/Im-
pression: list, and Finding: heading/Impression: prose
(discordants in Table 5). For TIU reports, of the carotid
mentions reported within both Finding and Impression
(n = 67 reports; 53 paired mentions), there was repetition
of structure types between sections (22 paired mentions,
41 %) (diagonals in Table 5). In cases where a different
structure was used between sections (31 paired mentions,
59 %), the most frequent cases were Finding: table/Im-
pression: prose followed by Finding: heading/Impression:
list and Finding: heading/Impression: heading (discordants
in Table 5).
For RAD reports, both Findings and Impressions,

most carotid mentions were expressed as category (330
and 381, respectively) followed by range (73 and 178,
respectively) (Table 6). We observed similar trends for
TIU reports: category (73 and 116, respectively)
followed by range (59 and 110, respectively) (Table 6).
For RAD reports, of the carotid mentions reported

within both Findings and Impressions (n = 359 reports;
526 paired mentions), there was repetition of expression
types between sections (345 paired mentions, 66 %)
(diagonals in Table 7). In the cases where a different
expression type was used between sections (181 paired

Table 3 According to report type, overall frequency of at
least one carotid mention within sections, types of structures
for all carotid mentions, and types of expressions for all
carotid mentions

Information type Information subtype Report types

RAD TIU

Sections

Findings Total 368 106

Impressions Total 488 173

Findings Only 9 39

Impressions Only 129 106

Both 359 67

Neither/Not Applicable 1 286

Structures

Prose 706 294

List 256 76

Table 0 36

Heading 46 152

Other 2 6

Expressions

Category 713 344

Range 254 314

Exact 48 19

Findings Total = Findings only + Both; Impressions Total = Impressions
only + Both. Neither = report has Findings and Impressions, but does not contain
carotid mentions; Not Applicable = report does not have Findings
and Impressions

Table 4 Structure type usage according to sections and report
type

Prose List Table Heading Other

RAD

Findings 306 3 0 66 3

Impressions 352 127 0 22 0

TIU

Findings 25 6 33 43 0

Impressions 88 21 13 48 0

Table 5 Structure type usage between Findings (rows) and
Impressions (columns) for repetitive mentions by report type

Prose List Table Heading Other

RAD

Prose 233 (61 %) 73 (19 %) 0 (0 %) 1 (<1 %) 0 (0 %)

List 1 (<1 %) 1 (<1 %) 0 (0 %) 0 (0 %) 0 (0 %)

Table 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %)

Heading 35 (9 %) 27 (7 %) 0 (0 %) 5 (1 %) 0 (0 %)

Other 2 (<1 %) 1 (<1 %) 0 (0 %) 0 (0 %) 0 (0 %)

TIU

Prose 12 (23 %) 4 (7 %) 0 (0 %) 3 (6 %) 0 (0 %)

List 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %)

Table 15 (28 %) 0 (0 %) 1 (2 %) 0 (0 %) 0 (0 %)

Heading 0 (0 %) 9 (17 %) 0 (0 %) 9 (17 %) 0 (0 %)

Other 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %) 0 (0 %)

Table 6 Expression type usage by sections and report type

Category Range Exact

RAD

Findings 330 73 25

Impressions 381 178 23

TIU

Findings 73 59 8

Impressions 116 110 5
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mentions, 34 %), the most frequent cases were Finding:
category/Impression: range and Finding: range/Impres-
sion: category (discordants in Table 7). For TIU reports,
of the carotid finding mentions reported within both
Findings and Impressions (n = 67 reports; 105 paired
mentions), there was repetition of expression types
between sections (45 paired mentions, 43 %) (diagonals
in Table 7). Similar to RAD reports, in the cases where a
different expression type was used between sections (60
paired mentions, 57 %), the most frequent cases were
Finding: category/Impression: range and Finding:
range/Impression: category (discordants in Table 7).

pyConText evaluation
For RAD reports, pyConText achieved the highest posi-
tive predictive value (80 %) and specificity (93 %) when
provided Impressions only (Table 8). However, the
algorithm performed with lower sensitivity (74 %) and
negative predictive value (90 %) compared to perform-
ance when provided the full report performing with
higher sensitivity (88 %) and negative predictive value
(95 %). For TIU reports, we observed a similar trend.
pyConText achieved the highest positive predictive value
(76 %) and specificity (98 %) when provided Impressions
only, but higher sensitivity (73 %) and negative predict-
ive value (92 %) when provided the full report (Table 8).

For RAD reports, given the full report (including Find-
ings and Impressions), pyConText generated 128 true
and 56 false positive, and 297 true and 17 false negatives.
The 73 reports were misclassified due to non-mutually
exclusive errors of 96 prose, 42 list, 0 table, 12 headings,
and 0 other. These non-mutually exclusive errors were
the result of missed cues or erroneous scoping for 91
category, 50 range, and 16 exact expressions. In terms
of locality of errors, 53 mentions were in both section
types, 1 mention was in Findings only, 19 mentions were
in Impressions only, and 0 mentions were in neither
section. For TIU reports, given the full report (including
Findings and Impressions), pyConText generated 74 true
and 53 false positive, and 343 true and 28 false negatives.
The 81 reports were misclassified due to non-mutually
exclusive errors of 58 prose, 10 list, 8 table, 50 headings,
and 0 others. These non-mutually exclusive errors were
the result of missed cues or erroneous scoping for 74
category, 85 range, and 2 exact expressions. In terms of
locality of errors, 14 mentions were in both sections, five
mentions were in Findings only, 21 mentions were in Im-
pressions only, and 41 mentions were in neither section.

Discussion
We conducted a pilot study evaluating information
content of internal or common carotid finding mentions
in terms of Section, structure, and expression usage. We
also assessed pyConText’s performance given these
three factors.

Information content assessment
For RAD reports, most carotid mentions occurred in
both Impressions and Findings with a substantial por-
tion occurring in both sections. Overall mentions were
recorded mainly as prose structure using category ex-
pressions. When carotid mentions were reported in
Findings and Impressions, they were most often encoded
in prose. For these cases, pyConText’s simple text pro-
cessing can accurately extract most of these mentions.
In many cases, carotid mentions are repeated between
Finding and Impressions, mainly as prose. In the case of
discordant structure usage, this redundancy can be a
processing advantage. Specifically, one of the most
frequent cases was Finding: heading/Impression: prose.
Therefore, if given the full report, pyConText can still
correctly extract carotid mentions from the Impressions
when it incorrectly extracts mentions from the Findings
due to more complex structures like headings. Most
mentions were found in Impressions composed mainly
using expressions of category. In cases of repetitive
descriptions between Findings and Impressions, most
are Finding: category/Impression: category and men-
tions with discordant structure usage were Finding: cat-
egory/Impression: range. These observations suggest

Table 7 Expression type usage between Findings (rows) and
Impressions (columns) for repetitive mentions by report type

Category Range Exact

RAD

Category 278 (53 %) 108 (20 %) 14 (3 %)

Range 35 (7 %) 53 (10 %) 2 (<1 %)

Exact 16 (3 %) 6 (1 %) 14 (3 %)

TIU

Category 30 (29 %) 23 (22 %) 1 (<1 %)

Range 26 (25 %) 13 (12 %) 3 (3 %)

Exact 3 (3 %) 4 (4 %) 2 (2 %)

Table 8 pyConText performance according to report type

Sensitivity PPV Specificity NPV

RAD

Findings 57 67 88 83

Impressions 74 80 93 90

Full report 88 70 84 95

TIU

Findings 60 55 88 89

Impressions 19 76 98 82

Full report 73 58 87 92

For each metric and report type, the highest metric value is bolded
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that most severity descriptions can be extracted lever-
aging lexical, qualitative (e.g., “severe”) regular expres-
sions rather than quantitative (e.g., “70–99 %”) regular
expressions.
For TIU reports, in contrast to RAD reports, most

carotid mentions occurred in neither Findings nor
Impressions, suggesting localized processing of reports
for extracting carotid mentions would be suboptimal.
In the few cases when carotid mentions were reported
in Findings, they were most often headings followed
by table structures. Similar to RAD reports, carotid
mentions were reported in Impressions using prose,
but also using headings, suggesting that complex docu-
ment processing could be useful. Additionally, most
mentions were found in Impressions composed mainly
using expressions of category and exhibited the similar
distributions of repetitive expression descriptions between
Findings and Impressions.
For both RAD and TIU reports, we observed several

mentions with two or more expressions or structures.
For example, “55 % moderate ICA stenosis” contains
two expressions: exact (55 %) and category (moderate).

pyConText evaluation
We aimed to optimize the number of flagged positive
cases for review (high sensitivity), while minimizing the
loss of positive cases due to filtering (high negative
predictive value); therefore, we conclude that pyConText
performed best with the full report rather than with only
the Finding or Impression sections. We hypothesize that
providing pyConText with the full report resulted in the
highest sensitivity because carotid mentions occurred
with variable prevalence within Findings and Impres-
sions (RAD) or within neither section type (TIU).

Error analysis
A detailed error analysis of pyConText’s outputs revealed
several areas of improvement to reduce false positives and
negatives. For each error described, we provide an
example and potential solution to boost performance
within pyConText’s processing pipeline.
Error 1: For both RAD and TIU reports, some false

positives were due to missing category or range expres-
sions for semantic modifiers. For instance, in Example 1,
although we had “small” as a non-critical value for sever-
ity and “moderate” as a critical value for severity, we did
not have “small to moderate” in our knowledge base due
to mixing of quality (small) and quantity (moderate)
descriptors. In these cases, our domain experts used the
lower bound (small) to classify the severity value and
assert the carotid mention as insignificant stenosis.
However, pyConText did not recognize this as a range
expression and the upper bound (moderate) was

incorrectly used to classify the severity value and assert
the finding as significant stenosis.
Example 1. “small to moderate amount of calcified

plague in the left carotid bulb”.
Potential solution 1: To improve assertion detection,

we can add missed cues and expand upon existing regu-
lar expressions for the severity modifier. We could also
add a rule that classifies ranges by the lowest bound for
a severity value range by selecting the non-critical value
over the critical value.
Error 2: In some cases, false positives were due to

missing lexical variants for linguistic modifiers. In
Example 2, we did not have a regular expression for
“fails to demonstrate” for existence: definite negated
existence; therefore, the algorithm classified the finding
as significant stenosis.
Example 2. “examination of carotid arteries fails to

demonstrate significant stenosis”.
Potential solution 2: To improve assertion detection,

again, we can add missed cues and expand upon existing
regular expressions to identify linguistic modifiers from
the text.
Error 3: Sometimes, the expressions were correct, but

spuriously attributed to flow velocities that were not
used to assert stenosis findings as in Example 3.
Example 3. “diameter reduction.. cca with velocity of

82.
Potential solution 3: To improve assertion detection

and scope, we could have created another modifier
velocity to correctly scope the severity modifier and filter
this mention from classification.
Error 4: Our results suggest that we achieved lower

performance for TIU reports than RAD reports due to
more frequent usage of complex document structures
such headings and tables rather than less complex
document structures of prose and lists. In Example 4,
“ICA” was correctly attributed to “Left 40 % stenosis”,
but not associated to “Right 30 % stenosis”.
Example 4. “ICA: Left 40 % stenosis.” “Right 30 %

stenosis”.
Potential solution 4: To improve assertion detection

and scope, we could boost pyConText’s performance by
integrating outputs from a section tagger to identify
mentions of neurovascular anatomy from headings/sub-
headings and associate them to all subsequent sentences
within that section with relevant findings.
Error 5: In few examples, the algorithm generated a

false negative due to its failure to identify co-referred
findings of plaque. For Example 5, we observed two
consecutive, long sentences. The first sentence contains
a finding and neurovascular anatomy, but the second
sentence contains its severity modifier. To link the
severity in the second sentence to the finding and its
neurovascular anatomy in the first sentence, we would
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need to resolve that the finding plaque in the second
sentence co-refers to the finding plaque in the first
sentence and merge their templates.
Example 5. “..calcified plaque in the left ica”…” “…

data are consistent with between 50 and 80 % stenosis
by plaque”.
Potential solution 5: To improve named entity rec-

ognition and assertion detection, we could handle co-
reference, by identifying co-referring expressions and
either merging or resolving conflicting values for each
finding template.
Error 6: Not all failures resulted in a document mis-

classification. In Example 6, the finding is not given, but
implied by the checkbox and associated modifiers of
sidedness, neurovascular anatomy, and severity so
pyConText did not extract a stenosis finding. However,
if this statement represented a significant stenosis mention,
a false negative would have resulted.
Example 6. “Left ICA [x]: 0–15 %”.
Potential solution 6: To improve named entity recogni-

tion and assertion detection, we could integrate outputs
from document decomposition software [26] that readily
identifies checkbox and question/answer constructs
based on characters within the text. We could leverage
these patterns to predict when and how these constructs
should be used to extract assertions and correctly assert
their scope when a finding is not explicitly mentioned.
Error 7: Similarly, although pyConText did not classify

a finding mention in one sentence due to a missing
modifier, it was able to identify and extract a finding
mention from another sentence to correctly classify the
report. In Example 7, pyConText does not find a neuro-
vascular anatomy modifier for the second sentence, so it
ignores it, but correctly classifies the report by correctly
extracting information from the first sentence.
Example 7. “Right ICA occluded”… “1) occlusion on

the right”.
Potential solution 7: To improve document classifica-

tion, we could classify sentences without a neurovascular
anatomy modifier, but this strategy would have caused a
significant increase in the number of false positives when
the mention represents an irrelevant neurovascular anat-
omy such as the external carotid artery, increasing the
number of reports for chart review by abstractors.
Error 8: Finally, false positives could be attributed to a

lack of topical context. In Example 8, the sentence does
not contain an actual finding, but rather guidelines for
classifying mentions as significant stenosis.
Example 8. “definitions: 70–99 % = significant stenosis”
Potential solution 8: To improve document classifica-

tion, we could exclude extracted findings and assertions
detected from all sentences that occur in the context of
known guidelines e.g., documented NASCET legends by
filtering these mention with a semantic modifier

guidelines and regular expressions with guideline-
associated keywords like “definitions”, “legend” or
“NASCET”.
Although many of these solutions could prove useful,

they may add significantly to pyConText’s processing
time and complexity. For this study, it was only neces-
sary to identify about 6,000 Veterans for cohort inclu-
sion; therefore, we applied the system to the greater set
of patient records based on these results. Because our
goal is to retain as many stenosis positive cases as pos-
sible while filtering as many stenosis negative cases as
possible, we provided pyConText the full report rather
than only processing Impressions. To date, we have
encoded over 150,000 RAD and 200,000 TIU reports.
Given these results, we estimate that we have reduced the
chart review task for study abstractors to about 85,000
(~25 %) of the possible reports. The manual review of this
filtered set was completed in 4 months by three ab-
stractors rather than 12 months without the NLP
filtering.

Limitations
Our study has a notable limitation. We only address
reports from the VA EHR; therefore, pyConText’s
performance may or may not generalize to reports from
other institutions. However, if the reports contain
similar Sections, structures, and expressions, we would
expect similar results. We will evaluate pyConText’s
generalizability on University of Utah Healthcare System
reports for both genotype-phenotype association and stroke
risk assessment studies in the near future.

Future work
Although for this study, we developed a sensitive NLP algo-
rithm to identify high risk patients for stroke to support a
comparative effectiveness review study, we plan to extend
our algorithm to extract additional stroke risk factors for
precise stroke subtype phenotyping e.g., ischemic and
hemorrhagic stroke subtypes and endotypes e.g., ischemic
stroke endotypes of cardiac embolism, large artery athero-
sclerosis, and lacunar infarction, other uncommon causes
for genotype-phenotype association studies. We are actively
generating a pipeline with our knowledge base authoring
system, Knowledge Author, to leverage existing vocabular-
ies such as the Unified Medical Language System (UMLS)
[27] and Radiology Lexicon (RadLex) as well as ontologies
such as our Modifier Ontology to encode these stroke risk
factors in a more streamlined manner [28, 29].

Conclusions
We conclude that an information content analysis can
provide important insights for algorithm development and
evaluation including understanding information redun-
dancy and challenges when processing clinical texts to
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identify stroke risk factors. Our study demonstrates that,
in spite of these challenges, a simple NLP algorithm, can
be leveraged to reduce chart review efforts by filtering
reports with no/insignificant carotid stenosis findings and
flagging reports with significant carotid stenosis findings
from Veteran Health Administration clinical reports
to support a comparative effectiveness study of stroke
prevention strategies.

Availability of the supporting data
The supporting annotated dataset contains protected
health information and is stored in the Veteran Affairs
Informatics and Computing Infrastructure (VINCI). It is
not available to researchers outside of the Department of
Veteran Affairs. However, pyConText is available through
https://github.com/chapmanbe/pyConTextNLP. Additional
study information and collaborative development for
pyConText can be found at http://toolfinder.chpc.utah.edu/
content/pycontext.
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