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Abstract

Background: The biomedical community has now developed a significant number of ontologies. The curation of
biomedical ontologies is a complex task and biomedical ontologies evolve rapidly, so new versions are regularly and
frequently published in ontology repositories. This has the implication of there being a high number of ontology
versions over a short time span. Given this level of activity, ontology designers need to be supported in the effective
management of the evolution of biomedical ontologies as the different changes may affect the engineering and
quality of the ontology. This is why there is a need for methods that contribute to the analysis of the effects of
changes and evolution of ontologies.

Results: In this paper we approach this issue from the ontology quality perspective. In previous work we have
developed an ontology evaluation framework based on quantitative metrics, called OQuaRE. Here, OQuaRE is used as
a core component in a method that enables the analysis of the different versions of biomedical ontologies using the
quality dimensions included in OQuaRE. Moreover, we describe and use two scales for evaluating the changes
between the versions of a given ontology. The first one is the static scale used in OQuaRE and the second one is a
new, dynamic scale, based on the observed values of the quality metrics of a corpus defined by all the versions of a
given ontology (life-cycle). In this work we explain how OQuaRE can be adapted for understanding the evolution of
ontologies. Its use has been illustrated with the ontology of bioinformatics operations, types of data, formats, and
topics (EDAM).

Conclusions: The two scales included in OQuaRE provide complementary information about the evolution of the
ontologies. The application of the static scale, which is the original OQuaRE scale, to the versions of the EDAM
ontology reveals a design based on good ontological engineering principles. The application of the dynamic scale has
enabled a more detailed analysis of the evolution of the ontology, measured through differences between versions.
The statistics of change based on the OQuaRE quality scoresmake possible to identify key versions where some
changes in the engineering of the ontology triggered a change from the OQuaRE quality perspective. In the case of
the EDAM, this study let us to identify that the fifth version of the ontology has the largest impact in the quality
metrics of the ontology, when comparative analyses between the pairs of consecutive versions are performed.
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Background
In recent years the biomedical community has increased
its effort in the development of ontologies and this is
likely to continue [1]. Ontology developers tend to pub-
lish their ontologies on the Web and they are accessi-
ble from different sources. BioPortal [2], for instance,
contains more than 500 ontologies at the time of writ-
ing and new content is published frequently. BioPortal
enables updates by user submissions of new versions,
which are accessible via web browsers and through web
services [2].
The curation of ontologies is often a complex task

because of their high level of activity and rapid evolution
[3]. For this reason, the number of versions of an ontology
may grow rapidly. The evolution process turns the devel-
opment of an ontology into a dynamic process. Each of
the different versions of an ontology constitutes a snap-
shot of this process. The analysis of versions was intro-
duced by [4], in which ontology versioning was defined
as the ability to handle changes in ontologies by creating
and managing different variants of it and which pointed
out the importance of highlighting differences between
versions. Later, [5] claimed that a versioning system for
ontologies must compare and present structural changes
rather than changes in text representation or source
files. They described a version-comparison algorithm
that produces a structural difference between ontologies,
which was presented to users through an interface for
analysing them [6]. As mentioned in [7], there is no dis-
tinction between versioning and evolution in ontologies
since both account for the management of changes in
ontologies.
If we approach ontology changes from a logical perspec-

tive those changes are usually materialised by modifying
the axioms of a given ontology. Those modifications may
imply the addition or removal of classes, properties, indi-
viduals or constraints, as well as modifying the charac-
teristics, domains and ranges of properties. Such number
and types of changes have been the inputs for different
approaches that have tried to understand the evolution of
ontologies:

• Bubastis [3, 8] analysed the degree of activity in
biomedical ontologies by considering 5 major types
of ontology changes between two consecutive
versions: added or removed axioms to an existing
named class (NC), NCs added, NCs made obsolete
and edited annotation properties.

• Copeland et al. 2013 [9] focused on changes in
asserted and inferred axioms taking into account
reasoning capabilities in ontologies [10].

• In [11] a web application providing an interactive and
user-friendly interface to identify (un)stable regions
in large life science ontologies is proposed. A method

that computes change intensities for regions based on
changes between several succeeding versions of an
ontology within a specific time interval is used.

It makes sense to think that the changes made to
an ontology across its different versions should have an
impact on its quality. In addition, assuming that the
changes in an ontology should have a positive impact on
the quality of that ontology is also reasonable. In this con-
text, the main contribution of this work is to the study of
the evolution of ontologies from the perspective of ontol-
ogy quality, since, to the best of our knowledge, this aspect
has not been significantly researched to date. The analy-
sis of quality in ontologies has been addressed in different
ways in the ontology evaluation community, such as in the
following works:

• Gangemi et al. 2006 [12] approached it as a diagnostic
task based on ontology descriptions, using three
categories of criteria (structural, functional and
usability profiling).

• Rogers 2006 [13] proposed an approach using four
qualitative criteria (philosophical rigour, ontological
commitment, content correctness, and fitness for a
purpose).

• Yao et al. 2005, Tartir and Arpinar 2007 [14, 15]
presented metrics for evaluating structural properties
in the ontology.

• Duque-Ramos et al. 2011 [16] proposed OQuaRE,
which adapts the SQuaRE standard for software
quality evaluation for defining a qualitative and
quantitative ontology quality framework.

Our proposal is based on the OQuaRE Framework [16],
which is a qualitative and quantitative ontology quality
framework. The OQuaRE is based on the standard for
Software product Quality ISO/IEC 25000:2005 (SQuaRE)
[17]. The application of SQuaRE (1) provides a compre-
hensive specification and evaluation model for software
product quality; (2) makes quality evaluation reproducible
and objective, based on observations; and (3) allows for a
common language for specifying user requirements that
is understandable by users, developers and evaluators. All
these properties are desirable for an ontology quality eval-
uation approach. Ontologies, conceived as a special kind
of information object or computational artifact [18], have
a series of shared notions with Object Oriented Design
[19]. For example, the existence of classes, individuals
and properties can be exploited to adapt Object Ori-
ented Programming metrics to ontologies. This leads us
to believe that the principles of SQuaRE can be adapted
to ontologies. Thus, the main goal of OQuaRE is to pro-
vide an objective, standardised framework for ontology
quality evaluation, applicable to different ontology evalu-
ation scenarios, in which the ontologies are evaluated as
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final products. For this, OQuaRE includes a generic scal-
ing function that transform metrics values into quality
scores.
In this work, we adapt OQuaRE for the purpose of

measuring the impact of the evolution of ontologies in
their quality. In [20], we described how OQuaRE could
be used to evaluate the quality of the different versions of
the ontology of Bioinformatics operations, types of data,
formats, and topics (EDAM) [21]. The standard quality
model and metrics defined in OQuaRE were used and the
method was able to detect changes in the measured qual-
ity of the different versions of the EDAM. The present
work is an extension of [20], presenting methodologi-
cal evolution and progress. First, we further formalise
the method to measure differences between versions of
the same ontology based on the OQuaRE performance.
Second, we take advantage of such a formalisation for
proposing a more sensitive scaling function to be able to
detect small differences between consecutive versions of
an ontology from the quality metrics perspective. This
will let OQuaRE to have two different scaling functions;
one for evaluating ontologies and final products and one
for evaluating the different versions of a given ontology.
The latter is used as feedback to adjust or define new
profiles of the static scale. Third, a statistical analysis
of the relation of changes in OQuaRE with the profile
of activity of the ontology is included. This extension
of the OQuaRE framework will allow a better under-
standing of the evolution of ontologies from a quality
perspective and will contribute to demonstrating how
ontology quality methods can be used to study ontology
evolution.

Methods
OQuaRE
OQuaRE is adapted from SQuaRE [17]. SQuaRE defines
a quality model and the process for software product
evaluation through five divisions: Quality Model, Qual-
ity Measurement, Quality Requirements, Quality Evalua-
tion and Quality Management. First, quality requirements
are identified. Second, the requirements are measured
using a quality model, which is quantified through qual-
ity metrics. These three divisions are used by the qual-
ity evaluation division, which is managed by the quality
management division. The usage of SQuaRE requires the
definition of these five divisions. OQuaRE defines all
the elements required for ontology evaluation: evalua-
tion support, evaluation process and metrics. OQuaRE
structures the evaluation of the quality of an ontology
using the four levels proposed by SQuaRE: quality require-
ments, quality characteristics, subcharacteristics andmet-
rics. OQuaRE uses the six quality characteristics proposed
by SQuaRE for measuring quality: functional adequacy,
reliability, operability, maintainability, compatibility, and
transferability. Besides, OQuaRE defines a new charac-
teristic, ‘structural’, which accounts for the quality of the
structure of the ontology (see Table 1). Each quality char-
acteristic has a set of associated quality subcharacteris-
tics, which are measured through quality metrics. The
quality metrics are the units of measurement of qual-
ity evaluation. The current version of OQuaRE has 49
subcharacteristics and 14 metrics. Some OQuaRE sub-
characteristics are reused and adapted from SQuaRE,
but some others are specific to ontology evaluation. For
example, the functional adequacy subcharacteristics are

Table 1 OQuaRE characteristics and subcharacteristics used in our method

Characteristic Description Associated subcharacteristics

Structural Formal and semantic relevant ontological properties that
account for: the correct use of formal properties, clarity of
cognitive distinctions and appropriate use of ontology
modelling primitives and principles

“formalisation”, “formal relations support”, “redundancy”,
“consistency”, “tangledness”, “cohesion”

Functional
Adequacy

Capability of theontologies to be deployed fulfilling functional
requirements, that is, the appropriateness for its intended
purpose according to state-of-the art literature [22]

“reference ontology”, “controlled vocabulary”, “schema and
value reconciliation”, “consistent search and query”, “knowledge
acquisition”, “clustering and similarity”, “indexing and linking”,
“results representation”, “text analysis”, “guidance and decision
trees” and “knowledge reuse and inferencing”

Reliability Capability of an ontology tomaintain its level of performance
under stated conditions for a given period of time

“recoverability” and “availability”

Operability Effort needed for the ontology use. Individual assessment of
such use, by a stated or implied set of users

“learnability”

Compatibility Capability of two ormore ontologies to exchange information
and/or to perform their required functions while sharing a
hardware/software environment

“replaceability”

Maintainability Capability of ontologies to be modified for changes in
environments, in requirements or in functional specifications

“modularity”, “reusability”, “analysability”, “changeability”,
“modification stability” and “testability”

Transferability Degree to which the ontology can be transferred from one
environment (e.g., operating system) to another

“adaptability”
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extracted from the intended uses for ontologies identi-
fied in [22]. Following a bottom-up approach, OQuaRE
metrics are combined in order to compose the subchar-
acteristics, and the subcharacteristics are grouped by the
characteristics. Tables 2 and 3 describe respectively how
the 14 OQuaRE metrics are calculated and how some of
the metrics are associated with the subcharacteristics. We
have not included all of them for simplicity, but they are
available at [16, 23].
The evaluation of an ontology comprises a score for

those requirements measured through the quality model.
OQuaRE metrics reuse and adapt a set of well known
metrics from both ontology evaluation and software engi-
neering communities [14, 22, 24]. The quality metrics
provide quantitative values in different ranges, which are
called raw quality metrics values. OQuaRE applies a scal-
ing method recommended in SQuaRE that assigns values
in the range [1,5] (5 levels):

• 1 - “Not Acceptable”
• 2 - “Not Acceptable - Improvement Required”
• 3 - “Minimally Acceptable”
• 4 - “Acceptable”
• 5 - “Exceeds Requirements”

Table 2 OQuaRE metrics and a brief description of how we
calculate them

OQuaRE metric Description

ANOnto Mean number of annotation properties per class

AROnto Number of restrictions of the ontology per classes

CBOnto Number of superclasses divided by the number of class

minus the subclasses of Thing

CROnto Mean number of individuals per class

DITOnto Length of the largest path from Thing to a leaf class

INROnto Mean number of subclasses per class

NACOnto Mean number of superclasses per leaf class

NOCOnto Mean number of the direct subclasses per class minus

the subclasses of Thing

NOMOnto Mean number of object and data property usages

per class

LCOMOnto Mean length of all the paths from leaf classes to Thing

RFCOnto Number of usages of object and data properties and

superclasses divided by the number of classes minus

the subclasses of Thing

RROnto Number of usages of object and data properties divided

by the number of subclassof relationships and properties

TMOnto Mean number of classes with more than 1 direct ancestor

WMCOnto Mean number of properties and relationships per class

Let us suppose that a user wants to evaluate the ontol-
ogy requirement “Multiple inheritance of an ontology”,
which might require to evaluate the “Structural” char-
acteristic. This characteristic has 9 subcharacteristics,
but only two will be used in this example (see Fig. 1)
for simplicity, namely, “Tangledness” and “Formal rela-
tion support”. The traceability from the OQuaRE quality
metrics to the quality requirements is shown in Fig. 1.
“Tangledness” depends on the TMOnto metric, whose
value depends on the mean number of classes with more
than 1 direct ancestor, so two primitive measurements
(number of classes and number of direct ancestors) are
used for computing the raw value of the metric, which
in this example is 1.28. Raw values are transformed
into quality scores using a scaling function. The scaling
method (see Table 4) is based on the recommendations
and best practices of the Software Engineering commu-
nity for software metrics and ontology evaluation met-
rics. For TMOnto, the scaling function transforms this
value into the quality score 5 because the raw value is
in the range [1, 2]. Given that “Tangledness” has only
the TMOnto metric associated, this is also its score.
In case one subcharacteristic has more than one met-
ric associated, its score would be the weighted mean of
the quality scores of the metrics. In Fig. 1 we can see
that quality score for “Formal relation support” is 2, so
the score of the “Structural” characteristic is 3.5, that is,
(5+2)/2.

Adapting OQuaRE for ontology evolution
Definitions
In this section, we define a series of concepts related to
ontology evolution from the OQuaRE perspective.

Definition 1 Versioned corpus of an ontology (vCθ ): is
a list of versions {vi} of the same ontology θ , where i
represents the chronological position of vi in vCθ .

The comparison of different versions of the same ontol-
ogy highlights changes and commonalities between the
versions [5]. The comparison can be done using metrics of
different nature (real-valued metrics, factor, ordered fac-
tors, etc.). In order to include all of them in a common
context, the method requires the adaptation of the met-
rics, because they need to satisfy the constraints described
in Definition 2.

Definition 2 Comparison criteria (fθ ): is a discretisation
framework that, for every version vi ∈ vCθ , provides a vec-
tor si of integers that can be used to rank those versions in
vCθ .

The number of components of the vector si is r. For
example, if we use TMOnto as a unique comparison
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Table 3 Summary of the associations between the characteristics, subcharacteristics and the associated metrics

OQuaRE characteristic OQuaRE subcharecteristic OQuaRE metric

Structural Formal relations support RROnto

Tangledness TMOnto

Cohesion LCOMOnto

. . . . . .

Functional adequacy Controlled vocabulary ANOnto

Inference RROnto, CROnto

Consistent search and query ANOnto, RROnto, AROnto, INROnto

Knowledge acquisition and representation ANOnto, RROnto, NOMOnto

. . . . . .

Maintainability Modularity WMCOnto, CBOOnto

Analysability WMCOnto, DITOnto, RFCOnto, NOMOnto, LCOMOnto, CBOOnto

Modification stability WMCOnto NOCOnto RFCOnto LCOMOnto CBOOnto

. . . . . .

Reliability Recoverability WMCOnto, DITOnto, NOMOnto, LCOMOnto,

Availability LCOMOnto

. . . . . .

Operability Learnability WMCOnto, LCOMOnto, RFCOnto, NOMOnto, CBOnto, NOCOnto

. . . . . .

The associations of the reminding 36 subcharacteristics with metrics can be found at http://miuras.inf.um.es/oquarewiki

criterion, fθ discretises its real-value, using the quality
score, to the range [1,5]. Moreover, in this case these inte-
gers are related to the different qualitative levels defined
by OQuaRE, although different levels could be used.
Then, given two versions vi and vj, if fθ produces the scores
5 and 1 respectively, that means that vj is more tangled
than vi. Similarly, the remaining 13 metrics can be added
to the comparison criteria, and this is what we propose as

a means to analyse the evolution of ontologies. Therefore,
the application of fθ to vi generates a vector si of 14
components. The more components the vector si has, the
harder it is to compare and interpret the changes. For this
reason we provide the user with some definitions whose
aim is to describe different types of changes. Hence, given
two consecutive versions vi−1, vi ∈ vCθ , with i > 1, and
given the vectors si−1 and si obtained by the application of

Fig. 1 OQuaRE example that represents the traceability from the OQuaRE quality requirement to quality metrics divisions

http://miuras.inf.um.es/oquarewiki
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Table 4 OQuaRE static scale with [1-5] values, where 1 means not acceptable, 3 minimally acceptable and 5 exceeds the requirements

Metric\Score 1 2 3 4 5

LCOMOnto >8 (6-8] (4, 6] (2, 4] <=2

WMCOnto >15 (11, 15] (8, 11] (5, 8] <=5

DITOnto >8 (6, 8] (4, 6] (2, 4] [1, 2]

NACOnto >8 (6, 8] (4, 6] (2, 4] [1, 2]

NOCOnto >12 (8, 12] (6, 8] (3, 6] [1, 3]

CBOnto >8 (6, 8] (4, 6] (2, 4] [1, 2]

RFCOnto >12 (8, 12] (6, 8] (3, 6] [1, 3]

NOMOnto >8 (6, 8] (4, 6] (2, 4] <= 2

RROnto [0, 20] % (20, 40] % (40, 60] % (60, 80] % >80 %

AROnto [0, 20] % (20, 40] % (40, 60] % (60, 80] % >80 %

INROnto [0, 20] % (20, 40] % (40, 60] % (60, 80] % >80 %

CROnto [0, 20] % (20, 40] % (40, 60] % (60, 80] % >80 %

ANOnto [0, 20] % (20, 40] % (40, 60] % (60, 80] % >80 %

TMOnto >8 (6, 8] (4, 6] (2, 4] (1, 2]

Those metrics adapted from object oriented programming have been scaled based on the best practices for object oriented programming and the metrics whose result is a
relative value are scaled in percentage

the comparison criteria fθ , a change in scale of version vi
from version vi−1 is described in Definition 3.

Definition 3 Change in scale: vector of change associ-
ated with different values of the components of the vector
si with respect to si−1. The vector li, which is calculated as
si − si−1, represents the levels in size and direction of the
changes from vi−1 to vi version, with i > 1.

It should be pointed out that the change in scale applies
to all the versions of an ontology except to the first one,
which corresponds to i = 1 in vCθ . Since the OQuaRE
quality scores are the comparison criteria the level ranges
from [-4, 4], so the direction can be positive or negative.
For example, let us suppose a vCθ that contains six ele-
ments v1, . . ., v6. The application of fθ to vCθ generates a
matrix with 6 rows, like the one shown in Expression 1.
The row i represents the vector si and has 14 components,
with i = 1,. . . ,6.

1 . . . . . . . . . . . . 14(r)
s1
s2
s3
s4
s5
s6

⎛
⎜⎜⎜⎜⎜⎜⎝

5 4 2 1 . . . .
5 4 2 1 . . . .
4 3 2 1 . . . .
3 4 5 1 . . . .
1 5 5 2 . . . .
5 1 4 3 . . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

(1)

Using as input the matrix in Expression 1 we apply the
Definition 3 and obtain a matrix with 5 rows, like the one
shown in Expression 2. The row i represents the change
in scale by the vector li, with i = 2, . . . , 6. In the context
of quality scores, a negative component in li represents

a decreasing level in the corresponding quality score of
vi from vi−1, a positive one means the opposite and 0
indicates that the metric score remains invariant.

1 . . . . . . . . . . . . 14(r)
l2
l3
l4
l5
l6

⎛
⎜⎜⎜⎜⎝

0 0 0 0 . . . .
-1 -1 0 0 . . . .
-1 1 3 0 . . . .
-1 0 0 1 . . . .
4 -4 -1 1 . . . .

⎞
⎟⎟⎟⎟⎠

(2)

We propose to use a summarised representation of the
change in scale of the r metrics and between vi and vi−1
by using the frequency distribution Fi associated with the
change in scale li, which is defined in the following way:

Definition 4 Frequency distribution of the chase in scale
(Fi): it is an ordered list of the frequencies fl associated with
the different change levels l in the vector li.

The change levels range between lmin and lmax. In the
context of OQuaRE quality scores, lmin and lmax are −4
and 4 respectively. Therefore, in this case the frequency
distribution Fi has 9 components, which represent the
frequencies fl of the ranks l from -4 to 4. For example,
Expression 3 shows the frequency distributions of our
running example. The interpretation of F2 is: there are 4
out of r metrics that have not suffered any change in scale
between v1 and v2. The change is larger between v2 and v3
(F3) as there are 2 metrics that have decreased one scale
and other 2 remain unchanged.
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f−4 f−3 f−2 f−1 f0 f1 f2 f3 f4
F2
F3
F4
F5
F6

⎛
⎜⎜⎜⎜⎝

0 0 0 0 4 0 0 0 0
0 0 0 2 2 0 0 0 0
0 0 0 1 1 1 0 1 0
0 0 0 1 2 1 0 0 0
1 0 0 1 0 1 0 0 1

⎞
⎟⎟⎟⎟⎠

(3)

Hence the frequency distribution Fi can be used for
describing different types of changes between two con-
secutive versions vi−1 and vi with respect to the set of
OQuaRE quality scores. Next, we define some associated
statistics such as weighted means.

Definition 5 Forward Mean Change: weighted mean of
the positive change levels l, calculated as:

∑lmax
1 l × fl∑lmax

1 fl

Definition 6 Backward Mean Change: weighted mean
of the negative change levels l, calculated as:

∑−1
lmin

l × fl∑−1
lmin

fl

To avoid possible undefined values of the forward or
backward means, we also use the size of the forward and
backward changes defined as the numerator of the pre-
vious definitions, but considering absolute values |l| in
backward mean changes. Now, Definition 7 provides the
definition for the global mean change.

Definition 7 Mean change: weightedmean of the change
levels l, calculated as:

∑lmax
lmin

l × fl∑lmax
lmin

fl

In our running example, the frequency distribution F3
does not provide a determined finite value for the forward
mean change, whereas the backward mean change is −1
and the mean change is−0.5. The sizes of the forward and
backward changes are 0 and 2, respectively.
The value of the mean change can be interpreted as

follows:

• It takes a positive value when the forward mean
change is greater than the backward one and negative
when the opposite.

• It becomes zero when forward and backward mean
changes take equal and finite values.

• It becomes zero if vi and vi−1 are identical. In this
case forward and backward mean changes do not
take a determined finite value (undefined value).

The mean change provides information about changes
in quality scores. For analysing the number of metrics that
have changed regardless of the direction of the change, we
define next the conceptmagnitude of change.

Definition 8 Magnitude of change: percentage of metrics
with change in scale, which is calculated as follows:

∑
l �=0 fl∑lmax
lmin

fl

In our example, the magnitude of change of version
v2 is 50 %. The largest number of metrics with changes
happens in v6 (see F6 in Expression 3), having a magni-
tude of change of 100 %, but the mean change is 0.0. The
major increase in quality scores happens in v4 (see F4 in
Expression 3) withmean change 0.75.

A dynamic scaling function for ontology evolution
We propose to take advantage of the information available
in the vCθ to derive a dynamic scaling function. For this
purpose, each ontology in such a corpus is processed with
OQuaRE, so calculating the raw values of the 14 qual-
ity metrics. These original values are used for generating
a scale in k categories determined by k-means clustering
[25], which groups similar values into the same category
by minimising the intra-class variance and emphasises
the differences among categories maximising the inter-
class variance. In this paper, the number of categories is
k = 5 because the OQuaRE scale is [1,5]. This is illus-
trated using Fig. 2. The metric RROnto measures the
richness of relations and it is calculated using the mean
number of usages of object and data properties divided
by the number of subClassOf relationships and object
properties. The standard scale for RROnto is shown in
Table 4.
The RROnto raw values obtained for all the versions

within a vCθ are represented in the x-axis of Fig. 2. The
static scale is represented in the upper-part of the figure,
and the dynamic scale obtained using k-means is shown
in the bottom-part. While the raw RROnto value 0.74
is matched with the quality score 4 in the static scale,
it is matched with 5 in the dynamic scale. It should be
pointed out that the dynamic scale forces data to be cat-
egorised between 1 and 5, 1 being the lowest raw value
found in vCθ and 5 the highest. If the amount of different
data is not enough to generate 5 categories the algorithm
does not include any value in the lowest categories of
the scaling function (see for example the solid line for
DITOnto metric in Fig. 3). Therefore, the application of
the dynamic scale should help users to study the evolution
of the observed quality metrics values for all the versions
within a vCθ .
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Fig. 2 Example of the static and dynamic scale for RROnto metric. The x-axis represent the observer raw values of the metric for a vC.
Semi-transparent rectangles shows the limits of the levels of the scale. While the static scale remains constant, the dynamic will depends of the
observer raw values of RROnto in a vC

The ontology of Bioinformatics operations, types of data,
formats, and topics (EDAM)
We are going to study the evolution of the EDAM ontol-
ogy [21, 26]. The EDAM is an ontology of well established
and familiar concepts that are prevalent within bioinfor-
matics. The EDAM includes types of data, data identifiers,
data formats, operations and topics. We have chosen this
ontology as an example because:

• It is well documented and its developers use a control
version system (CVS) [27] so that we can trace
changes.

• Its source files are accessible online. The latest
version (v1.9) is published in the official project web
page. Links to old versions can be found in BioPortal
(18 versions) and in the CVS (13 versions).

• It has received 900 mean visits per month since
Oct-2013 to Apr-2014 and 6 declared projects use the
EDAM.

• The number of versions (18) makes it an ontology of
interest for studying its evolution. Its size (2 597

classes as mean) is intermediate, which facilitates the
analysis of the results in this first application of the
method.

Results and discussion
Experimental setup
The versioned corpus comprised the 18 EDAM versions
in BioPortal as CVS content, which was processed using
a software tool developed in house that implements the
OQuaRE framework. This framework and tool are pub-
licly accessible at http://sele.inf.um.es/oquare as a web
form and a web service. The framework uses the OWL
API [28] and Neo4j [29] for the calculation of OQuaRE
metrics. We carried out the computation of the dynamic
scaling by using the function bin.var of the package
RcmdrMisc of R [30].
We applied a normalisation process to the 18 versions.

In the normalisation, we removed deprecated classes and
checked the consistency of the ontology. Before applying
the normalisation, 4 out of 18 versions were discarded by
the tool: one could not be processed by the OWL API,

Fig. 3 Graphical representation of the static and dynamic scaled metrics along the versions

http://sele.inf.um.es/oquare
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and the other three were found to be inconsistent by the
reasoner Hermit [31]. Therefore, the versioned corpus
contained 14 ontologies. In the remainder of this paper,
we label each version according to its original id version. It
should be pointed out that the statistics of change of a cer-
tain version vi were calculated with respect to the previous
processed version. For example, the change in v16 was cal-
culated with respect to v12 because v13, v14 and v15 could
not be processed.
The normalisation process made consistent v13 and

v14 and, therefore, they were included in the study. We
decided to perform two types of experiment: one with
the deprecated classes (14 consistent ontologies) and one
without the deprecated classes (16 consistent ontologies)
with the goal of studying the impact of the obsolete classes
in the structure of the ontology. We applied the tool to
obtain the scores of the metrics, subcharacteristics and
characteristics for all the versions. Such measurements
were the comparison criteria, which allowed the scores
to be obtained by using both the static scaling function
and the dynamic one. After presenting those results, we
will discuss the evolution of the EDAM in terms of qual-
ity scores and analyse the advantages and disadvantages of
both scaling methods. The whole set of results is available
at http://miuras.inf.um.es/oquare/jbsm2016.

Analysis of quality characteristics with the static scale
Table 5 shows the results obtained at the quality character-
istics level. Two quality scores are shown for each quality
characteristic: original (org) and normalised (nrm). Bold
numbers highlight changes in scale. Next, we discuss the
changes observed in the quality characteristics.
We can observe in Table 5 that the mean quality score

ranges from 3.99 in the first version to 3.85 in the last
one, so its quality scores have always stayed between 3
and 4. A quality score higher than 3 reveals that good
ontological engineering principles have been applied by
the EDAM developers. However, this difference has not
produced a change in scale in global terms. Despite this
fact, investigating why the quality score decreased is rel-
evant because lower OQuaRE levels provide users with
more fine grain information. For example, those decisions
made during the construction or modification of large and
complex ontologies may have collateral effects in their
engineering, which may have different implications from
a quality perspective. For example, reducing the usage of
properties might benefit the maintainability of the ontol-
ogy but fewer queries might be asked. Therefore, a lower
value in OQuaRE metrics related to the usage of proper-
ties would contribute positively to the “Maintainability”
of the ontology but negatively to the “Formal relations
support”. Understanding how different changes influence
different quality aspects is difficult to study if we use only
the mean quality score. This is why the analysis at the level

of characteristics, subcharacteristics and even metrics is
recommended.
First, we describe which characteristics have changes in

scale. The analysis of the evolution of quality scores of
the characteristics (between the first version and last one)
shows that 6 out of the 7 quality characteristics had a
change in scale: 4 positive and 2 negative. In the remain-
ing case, there was no change in scale for “Functional
Adequacy”. The score of the “Reliability” characteristic
decreased from 3 to 2 in v2; and the “Structural” one
decreased from 4 to 3 in v11. The scores for “Operabil-
ity”, “Compatibility”, “Maintainability” and “Transferabil-
ity” increased from level 3 to 4 in v5. Moreover, the
ontology has maintained the score at this level since
then. This behaviour happened for all their associated
sub-characteristics. The scores for the whole set of sub-
characteristics can be found at http://miuras.inf.um.es/
oquare/jbsm2016.

Analysis of the quality metrics with the static scale
Next, we describe the changes observed at the level of
OQuaRE metrics because this enables us to focus on con-
crete structural changes, which can help us to discuss and
explain the variations obtained in higher levels. Figure 3
(dashed lines) shows the quality scores of the static scale
for the 14 OQuaRE metrics. It can be observed that 9
OQuaRE metrics did not change for any version. The 5
metrics that have changed are LCOMOnto, NOMOnto,
RFCOnto, TMOnto and RROnto. Next, we discuss the
impact of the changes in these metrics at the level of
OQuaRE characteristics and sub-characteristics.

• RROnto had 3 changes in scale. The first 2 changes
were consecutive and due to the usage of properties,
which decreased 86 % between v4 and v6. Refactoring
towards a common set of properties can often be a
sign of good ontology engineering practise, however
the usage measures the number of times that a
property is linked with an entity through an axiom.
For example, while v4 defines 16 properties with
6 734 usages, v5 and v6 define the same number of
properties but with 1 979 and 937 usages respectively.
The usage of properties also decreased 8 % between
v10 and v11. This variation is smaller than the previous
one but, together with an unusual increase in the
number of relations (18 %), it triggered the change in
scale of RROnto. This increase in the number of
relations is a consequence of a structural change in
v11: deprecated classes were grouped as descendants
of an ontology class in the first taxonomic level and
this increased the number of relations.

• RFCOnto and NOMOnto had 1 change in scale
growing from 4 to 5 in v4. This behaviour was also
related to the usage of properties. However, for these

http://miuras.inf.um.es/oquare/jbsm2016
http://miuras.inf.um.es/oquare/jbsm2016
http://miuras.inf.um.es/oquare/jbsm2016
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Table 5 OQuaRE characteristics metric values for eighteen versions of the EDAM ontology

V. Date Status
Struct. F. Adeq. Reliab. Operab. Compat. Maint. Transf. Mean

Org. Nrm. Org. Nrm. Org. Nrm. Org. Nrm. Org. Nrm. Org. Nrm. Org. Nrm. Org. Nrm.

1 2010-05-14 beta 4.67 4.67 4.61 4.61 3.25 3.25 3.83 3.83 3.75 3.75 4.10 4.10 3.75 3.75 3.99 3.99

2 2010-05-28 beta 4.50 4.50 4.60 4.60 2.88 2.88 3,67 3.67 3.75 3.75 3.99 3.99 3.75 3.75 3.88 3.88

3 2010-08-18 beta 4,50 4.50 4.60 4.60 2.88 2.88 3.67 3.67 3.75 3.75 3.99 3.99 3.75 3.75 3.88 3.88

4 2010-10-07 beta 4,50 4.50 4.60 4.60 2.88 2.88 3.67 3.67 3.75 3.75 3.99 3.99 3.75 3.75 3.88 3.88

5 2010-12-01 beta 4.17 4.17 4.46 4.46 2.75 2.75 4.00 4.00 4.00 4.00 4.23 4.23 4.00 4.00 3.94 3.94

6 2011-01-22 beta 4.00 4.00 4.28 4.28 2.75 2.75 4.00 4.00 4.00 4.00 4.23 4.23 4.00 4.00 3.90 3.90

7 2011-06-17 beta 4.00 4.00 4.28 4.28 2.75 2.75 4.00 4.00 4.00 4.00 4.23 4.23 4.00 4.00 3.90 3.90

8 2011-12-05 beta 4.00 3.83 4.28 4.27 2.75 2.38 4.00 3.83 4.00 4.00 4.23 4.12 4.00 4.00 3.90 3.78

10 2012-12-10 beta 4.00 3.83 4.28 4.27 2.75 2.38 4.00 3.83 4.00 4.00 4.23 4.12 4.00 4.00 3.90 3.78

11 2012-12-14 release 3.83 3.83 4.11 4.27 2.75 2.38 4.00 3.83 4.00 4.00 4.23 4.12 4.00 4.00 3.85 3.78

12 2014-02-18 update 3.83 3.83 4.11 4.27 2.75 2.38 4.00 3.83 4.00 4.00 4.23 4.12 4.00 4.00 3.85 3.78

13 2014-09-26 update - 3.83 - 4.27 - 2.38 - 3.83 - 4.00 - 4.12 - 4.00 - 3.78

14 2014-11-14 update - 4.00 - 4.28 - 2.75 - 4.00 - 4.00 - 4.23 - 4.00 - 3.90

16 2014-12-08 update 3.83 4.00 4.11 4.28 2.75 2.75 4.00 4.00 4.00 4.00 4.23 4.23 4.00 4.00 3.85 3.90

17 2014-12-16 update 3.83 3.83 4.11 4.11 2.75 2.75 4.00 4.00 4.00 4.00 4.23 4.23 4.00 4.00 3.85 3.85

18 2015-02-02 update 3.83 3.83 4.11 4.11 2.75 2.75 4.00 4.00 4.00 4.00 4.23 4.23 4.00 4.00 3.85 3.85

These values are scaled from 1 to 5, where 1 is not acceptable and 5 exceeds the requirements. Bold numbers highlight changes in scale between two consecutive versions
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metrics such a primitive metric influences positively
the quality score because, in the case of NOMOnto,
the lower the mean number of property usage per
class is the easier the maintainability of the ontology
is. This behaviour triggered the change in scale for
the characteristics “Operability”, “Compatibility” and
“Transferability” in v5.

• TMOnto measures the distribution of the parents in
the ontology. 10 % of the classes had more than 1
direct parent in v4, while this value grew up to 24 % in
v5. This metric has a negative effect across the
ontology because of the multiple inheritance,
although this might be needed to reflect some aspects
within the ontology. This fact influenced the decrease
in the “Tangledness” subcharacteristic, which also
contributed to the decrease of the the “Structural”
characteristic. However, for this metric this change
did not trigger by itself a change in scale, which was
produced in v11 with the collaboration of RROnto.

• LCOMOnto uses the number of paths in the
ontology in its calculation and it suffered one change
in scale in v2. This metric is used in the
subcharacteristics “Cohesion”, “Knowledge reuse”,
“Learnability ”, “Recoverability” and “Availability”.
Moreover, this metric is the unique used to measure
“Cohesion” and “Availability”, so it has a deeper
impact for these two subcharacteristics than for the
others. On the one hand the lowest score for the
“Structural” characteristic was for “Cohesion” but this
did not trigger a change in scale for v2. On the other
hand, the “Recoverability” and “Availability” are
grouped in the “Reliability” characteristics and for it,
the behaviour of the LCOMOnto metric triggered
the change in scale in v2.

Influence of deprecated classes
The presence of deprecated classes grew from 3.51 %
(v1) to 29.58 % (v18). Deprecated classes caused incon-
sistencies in v13 and v14. Table 5 shows that there were
no significant changes at the characteristic level between
the ontologies with (Org) and without the deprecated
classes (Nrm), but some changes happened at the met-
ric level. The change in the Structural characteristic with
deprecated classes anticipated the drop of RROnto to v11,
whereas it happened in v17 in the normalised version.
Besides, LCOMOnto temporarily descended to score level
2 between v8 and v13 in the normalised version. This effect
on LCOMOnto could not be appreciated in the ontologies
with the deprecated classes. Deprecated classes remain in
the ontology, so they are influencing the OQuaRE results.
For example, RROnto uses the number of subClassOf
relations in the denominator, to which deprecated classes
(see Table 2) contribute. The removal of the deprecated
classes had an impact on this metric, which produced this

effect of anticipating or delaying changes in scale. More-
over, the scaling function cushioned smaller changes such
as the one produced by LCOMOnto.

Application of the dynamic scale
We have obtained a dynamic scale using the EDAM ontol-
ogy versions composing the experimental vCθ . The values
obtained after applying the k-means clustering are shown
in Table 6. Moreover, Fig. 3 shows the evolution of the
values of the metrics for both the static (dashed lines)
and dynamic scales (solid lines). It can be seen that the
dynamic scale is able to capture more changes in those
values than the static one. This is an expected result as
the [1,5] scale limits for each metric is derived from the
raw values of the metrics for the different versions of
the ontologies. This means that both scales reflect differ-
ent aspects and, therefore, are complementary in helping
to understand the engineering and the evolution of the
ontologies. Next, we discuss how changes are detected by
both scales.
The changes in some metrics were detected by both

scales. In the case of RROnto, although the first version
starts in 4 for the static scale and in 5 for the dynamic
scale, both scales detected changes between the same
pairs of versions, except for v17. However, this did not hap-
pen for RFCOnto, TMOnto, NOMOnto or LCOMOnto.
The dynamic scale is more sensitive so it detected more
changes between pairs of versions for these 4 character-
istics. The static scale did not detect changes for nine
metrics, but the dynamic one did. For example, while the
DITOnto value remained in 1 in the static scale, in the
dynamic scale it started in 5 and ended in 4. Moreover, it
decreased to 2 in v7.
The value of DITOnto remained in 1 with the static scale

for all the versions of the EDAM ontology. DITOnto mea-
sures the depth of the ontology. The raw values obtained
for our corpus were (11, 11, 11, 11, 13, 13, 14, 13, 13,
13, 13, 12, 12, 12). All of them are greater than 8, which
is scaled to the quality score 1, according to the best
practice applied. However, in the field of ontologies an
appropriate value for DITOnto might depend on many
factors, and it is here where the dynamic scale can com-
plement the static one. According to [32], well-structured
OO systems have a forest of classes rather than one
large inheritance lattice. However, whether a high or low
value is desired from a metric for better code quality
still must exercise judgement when determining the best
approach for the task at hand. According to [32], the lower
the DITOnto the better, so the OQuaRE scaling method
matches DITOnto “low values” to 5 and “high values” to 1.
Then, the dynamic scale uses the lowest and highest val-
ues observed for the versions of the ontology to assign
the scores 5 and 1, respectively. With this scale, the high-
est quality scores were reached from v1-v4, then it went
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Table 6 Coordinates of the dynamic scale obtained after applying the k-means algorithm using the versions of the EDAM within the
experimental vC

Metric\Score 1 2 3 4 5

LCOMOnto [5.646945, 5.782834] [5.505317, 5.505317] [5.158599, 5.190406] [5.072177, 5.093400] [3.874391, 4.109421]

WMCOnto [4.123580, 4.176131] [1.931285, 1.931285] [1.536827, 1.559519] [1.401986, 1.478964] [1.334862, 1.347192]

DITOnto [–, –] [14, 14] [13, 13] [12, 12] [11, 11]

NACOnto [1.275837, 1.279578] [1.261488, 1.264644] [1.245146, 1.245352] [1.228666, 1.230561] [1.099615, 1.104098]

NOCOnto [1.332252, 1.342622] [1.276790, 1.286796] [1.263569, 1.263569] [1.229043, 1.230952] [1.103604, 1.108706]

CBOnto [1.602873, 1.637277] [1.559101, 1.559101] [1.404925, 1.456697] [1.230693, 1.281911] [1.143644, 1.152976]

RFCOnto [4.364891, 4.383669] [2.306886, 2.306886] [1.900142, 2.022841] [1.541327, 1.564187] [1.438217, 1.475449]

NOMOnto [3.068605, 3.115014] [0.799515, 0.799515] [0.3790453, 0.3790453] [0.2754958, 0.3078338] [0.2071335, 0.2423935]

RROnto [0.144421, 0.144694] [0.164751, 0.180672] [0.2195698, 0.2562910] [0.4139807, 0.4139807] [0.7441604, 0.7459092]

AROnto [4.14, 5.00] [7.0, 7.0] [14.0, 14.0] [16.0, 16.0] [21.0, 21.0]

INROnto [1.037050, 1.061705] [1.094152, 1.099919] [1.13177, 1.13177] [1.227018, 1.228871] [1.261331, 1.277758]

CROnto [0.0, 0.0] [0.35285e−3, 0.36778e−3] [0.40420e−3, 0.40453e−3] [0.45433e−3, 0.45433e−3] [0.47103e−3, 0.48123e−3]

ANOnto [1.097413, 1.102329] [1.114493, 1.117287] [1.131656, 1.131656] [1.144306, 1.144975] [1.150423, 1.153622]

TMOnto [0.2556087, 0.2599199] [0.2461048, 0.247064] [0.2400970, 0.2436178] [0.2171334, 0.2173766] [0.09961501, 0.10456901]

down from v4-v5 and again from v6-v7, then it remained
stable until v12, where it again increased one level. As we
have explained previously, it should be pointed out that
the dynamic scaling method for DITOnto did not span
the range [1. . .5] because there were only 4 raw values
observed.

Analysis of major changes between versions
The graphical representation of the frequency distribu-
tions Fi is shown in Fig. 4. The left-half of the Figure shows
the frequency distributions Fi obtained with the static
scale, on the right-half the ones obtained with the dynamic
scale. For each box, the y-axis represents the components
from the levels lmin to lmax; it should be pointed out that
this figure just represents in the y-axis those components
with at least one observed frequency fl distinct than 0
for any version in vCθ ). Finally, the x-axis represents the

frequency of each component. For example, with the static
scale and for v8 (Fi = 8) the frequency of l0 is 13 because
the value of 13metrics did not change in scalewith respect
to the previous version; similarly, with the dynamic scale
and for v2 (F2) the frequency of l−1 is 1 because 1 metric
(LCOMOnto) decreased one level.
Now we describe how to use the magnitude and mean

change to analyse major changes between consecutive ver-
sions. This will be done by discussing the data shown in
Table 7, where rows 2–5 show the values of the four statis-
tics of change using the static scale, and rows 6–9 show
those statistics for the dynamic scale.

Analysis of magnitude of change
The magnitude of change with the static scale was dif-
ferent than 0 for v2, v5, v6 and v11 (see Table 7 row 2).
For example, the largest magnitude of change happened

Fig. 4 Frecuency distributions of the changes in scale
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Table 7 Statistics for static and dynamic scales:magnitude of change,mean change forward,mean change backward, andmean change

Change v2 v3 v4 v5 v6 v7 v8 v10 v11 v12 v16 v17 v18

Sta. Magnitude 7 % 0 % 0 % 28 % 7 % 0 % 0 % 0 % 7 % 0 % 0 % 0 % 0 %

Mean. For 1 - - 1 - - - - - - - - -

Mean. Back - - - 1 1 - - - 1 - - - -

Mean -0.07 0.00 0.00 0.00 -0.07 0.00 0.00 0.00 -0.07 0.00 0.00 0.00 0.00

Dyn. Magnitude 7 % 0 % 7 % 79 % 42 % 71 % 36 % 56 % 56 % 21 % 64 % 14 % 0 %

Mean. For - - - 1.25 1.33 1.00 1.50 1.50 1.75 1.00 1.38 - -

Mean. Back 1.00 - 1.00 1.67 1.33 1.12 1.00 1.25 1.75 - 1.00 1.00 -

Mean -0.07 0.00 -0.07 -0.71 0.00 -0.50 0.36 0.07 0.00 0.21 0.71 -0.14 0.00

The symbol “-” in this table represents the undefined value

for v5, 28 %, and this was a consequence of the changes
in RFCOnto, NOMOnto, TMOnto and RROnto; these
changes in the OQuaRE quality metrics can be observed
in Fig. 3 (dashed lines). For v2, v6 and v11, the magnitude
of the change is 7 % because only one metric had a change
of level. There were no changes in the quality scores for
the rest of the versions. The magnitude of change with
the dynamic scale was different than 0 for 11 out of 13
versions. This is a consequence of the higher sensitivity
of the dynamic scale. This scale enabled the identifica-
tion of versions like v3 or v18 to be very similar with
respect to their previous one, because the magnitude and
mean changewere 0 % and 0.00 respectively. By similar we
mean that there were not enough changes between them
that produced a change in scale for any of the OQuaRE
metrics.
In order to analyse pairs of consecutive versions, we are

going to use the median (Me) of the absolute difference
between the values of the 14 metrics, and the Wilcoxon
test for contrasting the alternative hypothesis Me > 0.
Table 8 sorts the versions by increasing critical value and
p-value associated with the null hypothesis (Me = 0) for
each test performed. These results show that:

• We reject the null hypothesis (Me = 0) in all the
comparisons, so we can interpret that all the changes
are significant.

• We have evaluated the magnitude of change using
the quality scores (scaled metrics). The critical value
shows the magnitude from which the difference
median (Me) is significantly higher at the 0.05 level of
significance. Using this criterion for sorting the
changes between versions we obtain that the largest
change happens in v5.

• The four versions with the largest changes according
to this analysis are also the four versions with the
highest magnitude of change for the dynamic scale,
as shown in Table 7 row “Magnitude”. This shows the
goodness of the criteria used in the dynamic scaling
function.

Analysis of mean changes
Themean change using the static scale is negative because
the score of one metric decreased for v2, v6 and v11
(see Table 7 row 6). However, the magnitude of change
had a different evolution. The largest magnitude hap-
pened for v5, but the mean change for v5 was 0.0,
because the number of positive weighted changes was
equal to the number of negative ones. For this partic-
ular case, two metrics increased 1 level (RFCOnto and
NOMOnto) and 2 exactly the opposite (TMOnto and
RROnto) (see dashed line in Fig.3). The higher sensitiv-
ity of the dynamic scale is also observed in the mean
change values, because more changes were detected. For
example, if we focus on v5, the “Mean. Back” (1.67) was
higher than the “Mean. For” (1.25) regardless of the num-
ber of metrics that had changed. Therefore, the “Mean” is
-0.71, so there were more negative changes than positive
ones.

Table 8 Versions sorted from less to high critical value and
p-value associated with the null hypothesisMe after applying the
test of Wilcoxon using the difference in absolute values of the
median of 14 OQuaRE metrics and consecutive pairs of versions

Version Critical_value P_value

18 0.0001825782 1.263087e−3

2 0.0013102421 1.263087e−3

3 0.0020865871 1.263087e−3

4 0.0021207897 1.263087e−3

17 0.0044867447 1.263087e−3

8 0.0072293707 6.103516e−5

12 0.0113504041 1.263087e−3

10 0.0119625746 8.308472e−4

6 0.0259642025 8.308472e−4

11 0.0303236313 8.308472e−4

16 0.0324480617 8.308472e−4

7 0.0420278822 6.103516e−5

5 0.1587347761 8.308472e−4
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As a complement, the graphical representation of the
backward and forwardmean change size is shown in Fig. 5.
The upper-half of this figure (“size forward”) stands for
the positive changes, whereas the lower-half (“size back”)
represents the negative ones. The largest positive change
happened for version v16, and the largest negative one was
for v5.

Profile of change in quality scores
Regardless of the scale used, the information provided
by the mean change can be used to calculate a profile
of quality based on the OQuaRE framework. This profile
takes into account the accumulativemean changes during
the whole life-cycle of the ontology. Figure 6 shows the
evolution of the quality scores using both scales:

• The use of the static scale shows a trend of negative
mean change. The accumulative mean change value
remained negative for all the versions and all the
pairs, which is also reflected in the decrease of the
quality scores of the characteristics as mean from
3.99 to 3.85, which was discussed previously.

• The complementary use of the dynamic scale allows a
different evolution to be observed. The mean change
for the first 7 versions was negative, whereas it was
positive for the next 9 versions. As a consequence,
the accumulative mean change growed from -1,35 to
1,63. Finally, it decreased until 1.49 for v17 and
remained constant for v18.

Finally, if we take into account the status used to define
each version in BioPortal: they are considered beta from
version 1 to 10. Using the dynamic scale, we observe that

the quality scores decreased until v7, and in particular
in v5 with the lowest mean change (see Fig. 6). Having
such changes during the beta stage makes sense. Once the
ontology is considered released, the increase of the quality
scores was over the mean.

Relation between quality scores and the level of activity in
an ontology
So far, we have analysed aspects related to variability in
the quality scores. Now, we study the possible relation
between these changes and the level of activity in an ontol-
ogy. The level of activity has beenmeasured in [3] in terms
of changes in ontology classes, namely, number of classes
that have been added, deleted or modified. These three
variables are calculated by Bubastis [8], so we call them
the Bubastis variables.
In http://miuras.inf.um.es/oquare/jbsm2016, several

Principal Component Analysis (PCA) studies can be
found. Here, we use the three statistics related to mean
change (using the dynamic scale) and the Bubastis
variables for performing a PCA, with the objective
of obtaining the relation between these two different
ontology aspects, as well as obtaining a bi-dimensional
representation of the changes between two versions.
The coordinates of the variables for the new axis are

shown in Table 9, and they are graphically represented
in Fig. 7 upper half. The variable representation of Fig. 7
suggests the presence of two normalised uncorrelated
factors:

• The Bubastis variables have the largest positive
correlations (0.88, 0.80 and 0.85, for ‘new’, ‘changed’

Fig. 5 Statistics of size for static and dynamic scales: forwardmean change size and backwardmean change size

http://miuras.inf.um.es/oquare/jbsm2016
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Fig. 6 Graphical representation of the accumulativemean change using the static and dynamic scales

and ‘deleted’ classes respectively) with Factor 1
(represented in the x-axis), so we interpret this factor
as a gradient representing the increasing volume of
activity associated with the Bubastis activity. We call
this factor Bubastis Activity.

Table 9 Representation in 2-dimensions of the coordinates of
the variables for the new axis

(x-axis) Factor 1 (y-axis) Factor 2

Number.New.Classes 0.8862 0.3539

Number.Changed.Classes 0.7970 0.3300

Number.Deleted.Classes 0.8458 0.4253

Dynamic.Backward.Size 0.6883 −0.4895

Dynamic.Forward.Size 0.3823 0.6623

Dynamic.Mean.Change −0.3557 0.9186

Factor Name Bubastis Activity OQuaRE Dynamic Quality

Three statistics related tomean change (using the dynamic scale) and the Bubastis
variables have been used for performing a PCA, with the objective of obtaining the
relation between these two different ontology aspects. The variable representation
of Fig. 7 suggests the presence of two normalised uncorrelated factors: Bubastis
Activity and OQuaRE Dynamic Quality. The representation of these coordinates can
be found in Fig. 7 above

• The Dynamic mean change has the largest positive
correlation (0.92) with Factor 2 (represented in the
y-axis), whereas dynamic backward size has a
negative correlation with this factor. Those facts
allow us to interpret this second factor as a gradient
from lower OQuaRE quality scores to higher ones.
We call this factor OQuaRE Dynamic Quality.

According to the previous comments, the versions rep-
resented in the first diagonal will be relevant in activity
and quality, the more the farther from the origin they
are.
The two previous factors explain more than 80 % of

the information contained in the six variables shown in
Table 9; and the first factor explains roughly 48 % of
such information. Apart from the two factors, in Fig. 7
we also observe the next correlations using the Pearson
test: (1) the number of classes deleted and new classes
(0.99, p-value 0.0000); and (2) the dynamic mean change
is almost independent of new (-0.01, p-value 0.9650) and
deleted classes (0.07, p-value 0.8137) and (3) the dynamic
forward size is almost independent of the number
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Fig. 7 Principal Component Analysis: factors and principal components plots

of changed classes (0.01, p-value 0.9808). Those pairs
whose p-value is lower than 0.05 indicate a significant
correlation.
Figure 7 bottom represents the principal components

of the changes between consecutive versions in our vCθ ,
where four changes can be highlighted:

• The Bubastis activity of v16 was below the mean
value. However, this activity produces a remarkable
increment in the OQuaRE quality scores using the
dynamic scale.

• The Bubastis activity of v10 and v11 was atypically
high with respect to the rest of the versions.

Moreover, the OQuaRE quality scores using the
dynamic scale are over the mean value.

• The Bubastis activity of v5 was over the mean,
producing a decrease in the OQuaRE quality scores
using the dynamic scale and a high level in the
number of classes changed.

• The Bubastis activity of v18 was the lowest and
around the mean value in OQuaRE quality scores
using the dynamic scale.

The most relevant changes obtained by this representa-
tion are the same as those obtained by the mean change
statistics shown in Fig. 5, where v5 and v16 had the highest
value of back and forward size respectively.
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A view on the evolution of the EDAM ontology
In this section we discuss how the application of our
method enables some insights about the EDAM ontology
and its evolution in terms of quality scores as well as the
benefits of using the static or dynamic scales.
If we analyse the quality of the EDAMontology from the

OQuaRE perspective, we can identify different strengths
and flaws, driving our attention to those quality scores
obtained for the latest version analysed v18 (see Table 5).
According to the OQuaRE static scale, the mean value
3.85 reveals that good ontological engineering principles
have been applied. The analysis of the characteristics and
sub-characteristics gives us more information. Next, we
comment on the results for the highest and lowest score:
maintainability, functional adequacy and reliability (4.23,
4.11 and 2.75 respectively).

• The highest quality score is obtained for
maintainability (4.23). All its subcharacteristics
associated have quality score over 4 (see values at
http://miuras.inf.um.es/oquare/jbsm2016). This
reveals some strengths of the EDAM, such as the
reduced rate of negative side-effects due to changes
in the ontology (modification stability 4.60) and the
possibility to validate the ontology and detect flaws
on it (testability 4.00).

• The second highest quality score applies to
functional adequacy (4.11). For example, the EDAM
is good for use as a controlled vocabulary to avoid
heterogeneity of terms because all their classes have
labels expressed in natural language. However, not all
its subcharacteristics obtain high scores. For
example, one weakness of the EDAM is elucidated by
the score of the inference subcharacteristic. Its score
is 1.0 due to the low usage of properties, despite the
fact it is defined using a formal language. The absence
of instances also contributed to this score.

• The lowest score is obtained for reliability (2.75),
whose subcharacteristics are recoverability (2.50) and
availability (3.00). The recoverability score is below 3,
so it can be considered as a weakness of the EDAM
because in case of inconsistency, incompleteness or
redundancy of the content of the ontology, that
would be difficult to re-established and to recover the
ontology’s performance.

There is only another subcharacteristic with a qual-
ity score under 3, formal relation support, whose score
is 1. The formal relations support measures the capabil-
ity of the ontology to represent relations supported by
formal theories different from taxonomy. This is calcu-
lated by analysing the usage of properties (RROnto). As
we have shown in previous sections, RROnto has a score
of 1 in the latest versions whereas the value of the first

version was 4, which makes it a potential weakness of the
ontology in the latest versions. The previous discussion
about RROnto comes from the comparison of different
versions, so it is done in terms of evolution. Continuing
with the analysis of the evolution of the EDAM ontology
from the OQuaRE perspective, we can draw the following
conclusions:

• v5, v2, v7 and v11 were the versions with the highest
magnitude of change, that is, number of metrics with
changes. The analysis of the characteristics using the
static scale has revealed that, as mean, there are no
changes in scale in the EDAM ontology. This is also
observed in the negative trend of the accumulative
mean change when the static scale is used (Table 6).
Interestingly, the dynamic scale has revealed the
observation that the accumulative mean change
trend is positive from v7 to v18.

• At the characteristics level, the application of the
static scale to the EDAM ontology has revealed that
the evolution of the ontology has produced higher
quality scores for four characteristics, and lower ones
for two of them, as can be observed in Table 1.

• The analysis of changes at the OQuaRE metrics level
helps us to identify that the usage of properties is the
reason that has triggered the major descend in quality
scores between v4-v6, and again between v10-v11.
Moreover, an unusual increment of the number of
relations in v11 triggered this change in scale. It
should be pointed out that the application of our
method can draw out these types of
suggestions.

Discussion about the method
In the previous sections we have described the main
results of our work, as well as provided some discussion
about the application of the method to the EDAM. Next,
we provide some discussion about different aspects of the
method.
In our previous work, the application of the standard,

static scaling function used by OQuaRE proved its useful-
ness to detect strengths and flaws of ontologies and even
to detect changes between versions of the same ontol-
ogy. However, we believed that the use of more precise
and sensitive methods for detecting changes would allow
OQuaRE to be more supportive of ontology evolution
processes. This is whywe have proposed the dynamic scal-
ing function, which should be used in conjunction with
the static one, because they provide complementary infor-
mation. Hence, this does not mean that the static scaling
function cannot be used on its own for ontology evolution.
It can be used to measure how the different versions have
changed across their history, taking into account fixed
criteria. For example, here we have evaluated the EDAM

http://miuras.inf.um.es/oquare/jbsm2016
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using the static function using as reference the current
configuration that evaluates the ontology from an engi-
neering point of view. This static scaling approach enables
users to measure the quality of ontologies using a com-
mon framework, but, of course, this framework can be
extended or fit to certain contexts in case that the con-
text is clearly identified. Nevertheless, the dynamic scal-
ing function should provide more useful information for
ontologies for which new versions are frequently released
or that do not constitute major changes with respect to the
previous ones.
The development a common reference framework that

can be used for those different requirement scenarios is a
challenging task. An open question is whether the ranges
can be universally set for the static scaling method. The
dynamic scaling function tries to overcome this uncer-
tainty by performing an evaluation based on the behaviour
of the ontology during its evolution. It should be pointed
out that the goal of the dynamic scale is not to replace
or substitute the static one. In fact, the dynamic function
does not discretise the raw values of the metrics using a
continuous function, but the limits are set on the observed
values (see Fig. 2). However, the dynamic scale result could
be used to define new profiles based on re-adjusted static
scales.
As future work, we propose to use the lessons learned

in this experiment to analyse a larger set of ontolo-
gies. From our experience, reaching a community agree-
ment for certain aspects of ontologies is not always
an easy task, such as to what extent axiomatic rich-
ness is needed in biomedical ontologies [33]. On the
one hand, those biomedical ontologies used as sim-
ple plain taxonomies or controlled vocabularies do not
need a complex axiomatisation. On the other hand,
those biomedical ontologies used as domain ontolo-
gies should be as rigorous and axiomatically rich as
possible.
This debate is also related to the OQuaRE quality

model. For example, the static scaling of the metric
NOMOnto (see Table 4) could be interpreted as favouring
more plain taxonomies over heavily axiomatised ontolo-
gies, because it would not be very difficult for ontolo-
gies with low axiomatisation to obtain a high quality
score for NOMOnto. Another example, ontologies with-
out instances have lower scores for some metrics, but
sometimes the absence of instances is a design criterion
for such ontologies. In such cases, the metrics that take
into account instances should not be applied, or not con-
sidered relevant.We are currently working on enabling
OQuARE profiles, which would allow users or commu-
nities of users to customise the associations between
OQuaRE metrics, subcharacteristics and characteristics.
The future OQuaRE users will be able to include newmet-
rics or to define the scaling functions. The new metrics

will have to be associated with current sub-characteristics.
This solution is useful for users and communities with
particular needs.
We consider that we could extend the idea of the

dynamic scale and obtain a repository-based scale by
using a repository like Bioportal [2] or AberOWL [34]
as reference. The repository-based scale would be the
result of applying the dynamic scaling method proposed
in this paper but considering a vCθ where θ represents
the ontologies and versions within the repository. This
repository-based scale would provide users some feed-
back to determine the ranges of the static scaling function
based on a large set of existing ontologies. However, work-
ing with large repositories that can contain hundreds or
thousands of versions for some ontologies can be chal-
lenging. We plan to use a “sliding window” approach,
which would include the last 10-20 versions of an ontol-
ogy, or x versions that cover the whole life-cycle of the
ontology and having them equally separated across the
time period. Such representative sample of versions would
be used for creating the dynamic scaling function. Finally,
the inclusion of new unsupervised clustering algorithms
that automatically decide the number of categories of
quality scores for each metric based on the raw data is also
in our future work.

Conclusions
We have developed a method that combines the analysis
of versions with an ontology quality evaluation frame-
work. The main objective of this paper was to study how
the OQuaRE framework can support ontology evolution
processes by informing, from the perspective of ontology
quality, about the changes observed across the different
versions of an ontology.
The two scaling functions proposed in this work should

be jointly used for a better understanding of the engi-
neering and the evolution of an ontology. The static scale
is more useful when a single version of an ontology
needs to be inspected and evaluated from an engineer-
ing point of view, or when there are significant dif-
ferences between consecutive versions. However, when
the different versions of an ontology are less distinct
and evolution-oriented studies are our goal, the dynamic
scale is able to provide more information. If we assume
that the scaling function normalises the values regard-
less of the type of scale used, the values can be grouped
and compared as done in this work with the magnitude
of the change or the mean change between versions. It
should be noted that judging the evolution of an ontol-
ogy in terms of how its content conforms to the domain
that is to be represented by the ontology are beyond
the scope of this work. That would be the main objec-
tive of complementary methods such as realism-based
ones [35, 36].
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The application of themethod to the EDAM reveals that
good ontological engineering principles were applied in its
development. The analysis of changes in the quality scores
at both subcharacteristic andmetric levels have shown the
capability of the OQuaRE framework to identify weak-
nesses and strengths of the ontology. The OQuaRE met-
rics are capable of identifying changes in the engineering
of the different versions of the ontology. The design deci-
sions of the developers of the ontology have produced 18
versions of the EDAM ontology, and we have been able to
describe the impact of such decisions from the quality per-
spective provided by OQuaRE: the scores for four charac-
teristics increased, one characteristic remained invariant,
and the scores for two characteristics decreased. Further-
more, our study has found relations between the level of
class activity and the variability of quality scores for the
EDAM ontology. Evaluating the relation between these
changes in the quality scores and the design decisions
of the ontology developers is beyond the scope of the
present work. Our method provides the developers with
data they can use for evaluating whether their decisions
have the expected impact on the quality scores of the
ontology.
In summary, we believe that the OQuaRE framework

contributes to the engineering of the analysis of the evolu-
tion of ontologies and that provides relevant information
for developers about the evolution of their ontologies.
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