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Abstract

Background: Current state-of-the-art approaches to biological event extraction train statistical models in a
supervised manner on corpora annotated with event triggers and event-argument relations. Inspecting such corpora,
we observe that there is ambiguity in the span of event triggers (e.g., “transcriptional activity” vs. ‘transcriptional’),
leading to inconsistencies across event trigger annotations. Such inconsistencies make it quite likely that similar
phrases are annotated with different spans of event triggers, suggesting the possibility that a statistical learning
algorithm misses an opportunity for generalizing from such event triggers.

Methods: We anticipate that adjustments to the span of event triggers to reduce these inconsistencies would
meaningfully improve the present performance of event extraction systems. In this study, we look into this possibility
with the corpora provided by the 2009 BioNLP shared task as a proof of concept. We propose an Informed
Expectation-Maximization (EM) algorithm, which trains models using the EM algorithm with a posterior regularization
technique, which consults the gold-standard event trigger annotations in a form of constraints. We further propose
four constraints on the possible event trigger annotations to be explored by the EM algorithm.

Results: The algorithm is shown to outperform the state-of-the-art algorithm on the development corpus in a
statistically significant manner and on the test corpus by a narrow margin.

Conclusions: The analysis of the annotations generated by the algorithm shows that there are various types of
ambiguity in event annotations, even though they could be small in number.

Background
Current state-of-the-art approaches to biological event
extraction train statistical models in a supervised learn-
ing manner on annotated corpora, where event triggers, or
the expressions indicative of events, and event-argument
relations, or relations between events and their partici-
pant, are annotated (e.g., [1, 2]). The readers are referred
to [3] if the tasks are not familiar. Inspecting such corpora,
we observed some cases where there is residual ambi-
guity in the span of event triggers (e.g., “transcriptional
activity” vs. ‘transcriptional’). Because of the ambiguity,
these gold-standard corpora would manifest inconsisten-
cies across the span of event triggers. That is, there would
be similar phrases where the span of their counterparts of
event triggers is differently annotated, and as a result, such
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event triggers are syntactically characterized in a differ-
ent way, suggesting a possibility that a statistical learning
algorithm is hard to generalize from such event triggers
that are similar, but differently annotated in a training cor-
pus. We anticipate that adjustments to event annotations
to reduce such inconsistencies would lead to a meaning-
fully improved performance of even the state-of-the-art
event extraction systems. In this study, we look into this
possibility with the corpora provided by the 2009 BioNLP
shared task [3]. We note that this paper reports an exten-
sion of our previous work [4] with detailed discussions and
more experimental results.
For example, consider sentence (1) from the training

corpora, where the annotated event triggers are set in
bold-face.
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(1) ... express either decreased or increased numbers
of VDR. (PMID:9783909)

The phrases ‘decreased’ and ‘increased numbers’ are
annotated as event triggers of Negative and Positive Reg-
ulation events, respectively, that take a Gene Expression
event with the event trigger ‘express’. These annota-
tions are justifiable with respect to the meaning of these
phrases, but there are alternatives, including one where
the phrase ‘increased’ becomes the trigger of the Positive
Regulation event. Despite the semantic similarity between
these two events, their event-argument relations to the
Gene Expression event are syntactically different (Fig. 1),
in that the event trigger ‘decreased’ is the adjectival mod-
ifier (AMOD) of the direct object (DOBJ) of the phrase
‘express’, while the event trigger ‘increased numbers’ is
the direct object (DOBJ) of the phrase ‘express’. However,
if these event triggers are slightly adjusted, for example
by dropping the word ‘numbers’ from the event trig-
ger ‘increased numbers’, these event triggers and event-
argument relations will come to have similar to share the
similarity also in syntactic characteristics with respect to
phrasal categories and shortest dependency paths. The
inconsistencies would provide a valuable opportunity for
improving the performance of event extraction, but the
current state-of-the-art approaches have not seriously
addressed them yet.

Note that one may still find that sentence (1) indicates
a Regulation event, not these Positive and Negative Reg-
ulation events, but we can leave the identification of the
Regulation event to an inference engine that would be
deployed after event extraction systems, since the exact
nature of an event can be inferred from the disjunction
of these Positive and Negative Regulation events indicated
by the syntactic construction “either A or B”.
The only reported effort would be to normalize multi-

word event triggers into single-word event triggers with
the help of the Head-Word rule, or a rule of taking the
syntactic head word of an event trigger (e.g., [2, 5]), even
though the rule often makes an apparently bad choice, as
in the example above, where it picks out the constituent
word “numbers” from the event trigger “increased num-
bers”, which does not have any meaning relevant to Pos-
itive Regulation events, and furthermore, is inconsistent
with the event trigger “decreased”.
In this paper, as a proof-of-concept study, we

examine the benefits of reducing inconsistencies
across event annotations as follows. First, we use the
Expectation-Maximization (EM) algorithm with Viterbi
approximation, where latent variables encode events.
Our experimental results show that the unmodified EM
algorithm is defeated by our baseline algorithm, which
is a learning algorithm that successfully trained state-
of-the-art event extraction systems [2], in part because

Fig. 1 Dependency Graphs of Example Sentences. The graphs are basic Stanford dependency analyses by the Charniak-Johnson parser with a
self-trained biomedical parsing model. In (1) and (4), dashed arrows indicate inferred dependency relations based on conjunctions. In (3), dashed
arrows indicate that corresponding dependency relations are naturally expected dependency relations, but are missed in the analysis generated by
the parser
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the EM algorithm adjusts the models to extract similar
but unintended events. To overcome this problem, we
use a posterior regulation technique of consulting the
gold-standard annotations in the form of constraints.
We come up with four constraints on the possible event
annotations to be explored by the EM algorithm. The
resulting algorithm, to be called the informed EM algo-
rithm, turns out to outperform our baseline algorithm
on the development corpus in a statistically significant
manner (p−value =9.59 E-12) and on the test corpus by
a narrow margin (51.6 % vs. 51.3 %). Thus, we found it
beneficial to make proper adjustments to event trigger
annotations. An analysis of the annotations generated
by the algorithm shows that there are various types of
ambiguity in event annotations including ambiguity in
the span of event triggers, even though the algorithm
finds only a small number of such cases.
To the best of our knowledge, this would be the first

study where adjustments to the gold-standard annotations
are made, even though there are NLP studies on a similar
use of posterior regularization techniques including the
one by Okita and colleagues [6], where partial annotations
of alignment links are incorporated as prior knowledge
into the word alignment process.
The rest of this paper is organized as follows. This

Background section ends with the following short subsec-
tion “Biological Event Extraction Task”, which defines the
task of biological event extraction. The Methods section
develops our statistical models and learning algorithms.
The Results section presents and analyzes experimental
results. The Conclusion section presents possible future
research directions and concludes this paper.

Biological event extraction task
As a case study, we addressed the event extraction task
as defined in the 2009 BioNLP shared task 1 [3], which
was later renamed as GENIA Event Task 1 and extended
to cover full papers in the 2011 BioNLP shared task [7],
where biological events are used to refer to the changes
of a state of one or more biological macromolecules.
The task is to extract structured information on events
from sentences in the biological literature, which con-
sists of their event type and participants encoded with
a controlled vocabulary that consists of nine event type
terms (e.g., Gene Expression) and two role type terms (i.e.,
THEME and CAUSE).
The nine event types are divided into three groups

according to their participants. The first group is plain
protein-taking events that must take a single protein as
THEME (e.g., Gene Expression). The second one ismulti-
ple protein-taking events, or events that take one or more
proteins as THEME (e.g., Binding events). The third one
is event-taking events that must take a single protein and
event as THEME and may take a single protein and event

as CAUSE (e.g., Positive Regulation and Negative Reg-
ulation). The events of the first group may be viewed
as binary relations between event triggers and protein
mentions, but those of the last two groups are differ-
ent from binary relations, in that multiple protein-taking
events take more than one argument and event-taking
events allow nested event structures. Thus, the extrac-
tion of events poses challenges other than those of the
extraction of binary relations, which have been exten-
sively studied in the biomedical information extraction
community.

Methods
Following Björne and colleagues [5], we viewed the event
extraction task as constructing directed graphs, where
event triggers and event-argument relations are encoded
with labeled nodes and edges, respectively. We con-
structed these directed graphs with the help of various
resources including syntactic analyses. In this section, we
first describe these resources used in our event extraction
system and then develop graph representations, statistical
models and learning algorithms, in this order.

Resources
We used lexical and syntactic analyses to encode tokens
and the relation between tokens into statistical mod-
els. As for lexical analyses, we used the baseforms and
part-of-speech (POS) tags of the tokens included in the
analyses by the Enju parser, which are available in the
official website of BioNLP shared tasks (http://weaver.
nlplab.org/~bionlp-st/BioNLP-ST/downloads/support-
downloads.html). As for syntactic analyses, we use basic
Stanford dependency analyses by the Enju parser with the
GENIA model [8] together with those by the Charniak-
Johnson parser [9] with a self-trained biomedical parsing
model [10], since the Enju parser fails to generate analyses
for a few sentences. These syntactic analyses are also
available in the official website of BioNLP shared tasks.
As for protein mentions, we used their gold-standard

annotations available on the official website of BioNLP
shared tasks, which were given to the participants in
the BioNLP shared tasks. The annotations contain multi-
word protein mentions. Since most of them correspond to
syntactic units (i.e., single words and phrases), we can eas-
ily combine tokens in multi-word protein mentions into
single tokens and redirect their dependency relations.
Following Miwa and colleagues [1] and Kilicoglu and

Bergler [11], we developed an event trigger lexicon for each
event type for the purpose of identifying apparently incor-
rect candidates for event triggers as follows. Constituent
words within annotated event triggers in the training cor-
pus are scanned one by one. Each scanned constituent
word is put into the lexicon that corresponds to the
type of events anchored at the event trigger. When the

http://weaver.nlplab.org/~bionlp-st/BioNLP-ST/downloads/support-downloads.html
http://weaver.nlplab.org/~bionlp-st/BioNLP-ST/downloads/support-downloads.html
http://weaver.nlplab.org/~bionlp-st/BioNLP-ST/downloads/support-downloads.html
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constituent word contains hyphens, it is split by hyphens
and the resulting components of the word are put into
the lexicon together with the original constituent word.
In a similar manner, we also constructed the stemmed
version of each event trigger lexicon using Porter
Stemmer.
The automatically constructed lexicons would contain

a number of entries not helpful for checking if a token
is part of an event trigger. To identify and remove such
entries, we computed the reliability score Rw,e of each
entry w in the lexicon for each event type e, as defined by
Kilicoglu and Berger [11]:

Rw,e = Cw,e
Cw

(1)

where Cw,e is the number of times the entry w appears
within the event trigger of events of type e and Cw is the
number of times the entry w appears. Finally, we removed
entries with reliability scores below 1 %.
After this removal, these lexicons still have either a part

or the whole of 98 % of the annotated occurrences of event
triggers in the training corpus, and can be used to identify
candidate pairs of words w and event types e indicating
that w might be part of an event trigger for event type e,
where around 11 % of them are actually part of annotated
event triggers.

Graph representations
Let us consider how to encode multi-word event trig-
gers. We came up with the following four possible forms
of multi-word event triggers and manually searched the
training corpus for cases corresponding to each possibil-
ity with the help of syntactic analyses by the Charniak-
Johnson parser [9] with a self-trained biomedical parsing
model [10], as shown in Fig. 1.
The first is that some event triggers are inherently multi-

word expressions, as exemplified in (2), where words
within the bold-faced event trigger “negative regulatory”
of a Negative Regulation Event fully describe the nature of
the event only together each other:

(2) ... contains a novel negative regulatory element ...
(PMID:10359895)

Second, some words in multi-word event triggers are
adjacent to one another, but have no dependency rela-
tions among them, suggesting that at least the first and last
words of each event trigger should be marked. Returning
to sentence (2), the two words ‘negative’ and ‘regulatory’
are adjacent to each other and have no dependency rela-
tions between them in the generated dependency graph.
The third is that some words within multi-word event

triggers are not consecutive to one another but have
dependency relations among them, suggesting that depen-
dency relations combining words within event triggers

should be encoded. As an example, consider sentence (3),
where the bold-faced word ‘expression’ is annotated as
the trigger of Transcription and Gene Expression events,
which produce the mRNAs and proteins of the gene
E-selectin, respectively.

(3) ...mRNA and surface expression of E-selectin. ...
(PMID:10202027)

Our intuition is that the word ‘expression’ in combi-
nation with the word ‘mRNA’ describes the nature of
Transcription events more fully than the word ‘expression’
alone, but only that the words ‘and’ and ‘surface’ appear
in-between. That is, the words ‘mRNA’ and ‘expression’ in
sentence (3) are not consecutive, but have a dependency
relation NN between them.
Fourth, some words in multi-word event triggers might

not be consecutive to one another and might not have
dependency relations among them either. The effort to
manually find such a case was not successful but we found
a similar case. In sentence (4), the words ‘positive’ and
‘regulatory’ indicate together the presence of Positive Reg-
ulation events (not annotated on the training corpus), but
these two words are not consecutive to each other and are
not linked to each other through dependency relations in
the generated dependency graph where these two words
have the dependency relation AMOD to ‘elements’.

(4) ... several positive and negative regulatory elements.
... (PMID:1429562)

Since these four different types of multi-word event trig-
gers would make it complicated to represent the span of
event triggers in the graphs, and since our focus here is
not on exactly identifying the span of event triggers, we
mark only single words within event triggers and encode
the context of these marked words into statistical models
to exploit other words within the span of event triggers in
sensing the presence of the event triggers including them.
For example, we may mark the word ‘regulatory’ as the
anchor word of the event trigger “negative regulatory” in
sentence (2) and encode its contextual features including
the fact that the word ‘regulatory’ is adjacent to the word
‘negative’.
One natural candidate for words to be marked is the

constituent words of an event trigger that we can use
to encode syntactic relations between the event trigger
and other words since we need them anyway, but this
decision did not help to uniquely determine which word
should be marked. Another conceivable decision, to be
pursued in this article, is that a marked word can be used
in describing as many syntactic relations between event
triggers and participants as possible so that it is possi-
ble to easily find regularities in these syntactic relations
only from a small number of instances. Henceforth, we
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will call such words meeting these decisions and being
marked as anchor words. Of course, the choice of anchor
words would be dependent on the way for describing
syntactic relations between words and the training cor-
pus, but there are predictable characteristics of anchor
words.
First, when an event trigger corresponds to a phrase

(e.g., the first and third observations above), the natural
choice for the anchor word of the event trigger would be
the head word of the phrase, since the dependency paths
between the head word and words outside the phrase
do not have other constituent words in the event trig-
ger so that the located dependency paths can be used for
different event triggers with the same head words. As a
result, in sentence (3), ‘expression’ is preferable to ‘mRNA’.
Second, when an event trigger does not correspond to

a phrase (e.g., the second and fourth observations above),
the natural choice for the anchor word of the event trig-
ger would be the word frequently occurring in various
event triggers for the same event type. Since seven Positive
Regulation event triggers contain ‘positive’ in the train-
ing corpus but only one Positive Regulation event trigger
(‘positive regulatory role’) contains ‘regulatory’, ‘positive’
is preferable to ‘regulatory’ in sentence (4).
Now let us define the desirable output labels of tokens in

the training corpus for trigger identification. All the words
except for anchor words will be given the label ‘negative’.
Anchor words will be labeled with more than one event
type, since some event triggers indicating two different
types of events share an anchor word as shown in sentence
(3), where the word ‘express’ would be preferable anchor
words for Transcription and Gene Expression events.
When turning to the label of edges, a question arises

whether edges can be labeled with more than one role
type, that is, whether an event takes a protein or another
event both as THEME and CAUSE. To answer this ques-
tion, we constructed graphs for sentences in the training
corpus of 800 annotated abstracts with the Head-Word
rule. There are only six edges labeled with more than
one role (of around 8,200 edges labeled with one or more
roles), suggesting that they are likely to be annotation
noise. As a result, we allow edges to be labeled with at
most one role type.
The issues we have discussed so far are also relevant to

relations, but there are issues specific to events, includ-
ing the one that graphs with cycles and loops may lead
to an infinite number of event-taking events with distinct
event participants. As an example, consider Fig. 2, where
the word in bold-face is the annotated event trigger of
a Gene Expression event and a Positive Regulation event
that takes the Gene Expression event as THEME. It would
be straightforward to derive these Gene Expression and
Positive Regulation events from the graph. The problem is
that there is no principled way to rule out another Positive

Fig. 2 Event Graph with a Loop

Regulation event with the derived Positive Regulation
event as THEME.
One way is to disallow graphs with cycles and loops.

Constructing graphs for the training sentences, we could
discard graphs with cycles and remove loops with some
exceptions, since some of the loops would be justifiable.
Upon analyzing such loops, however, we came up with
a possible explanation for their presence, which is that
the annotators might have failed to find the appropriate
type for some events in sentences in the limited controlled
vocabulary and would have attempted to use the com-
bination of more than one component event to present
the event (merged events). In Fig. 2, Gene Expression and
Positive Regulation events with the event trigger ‘overex-
pressed’ exemplify such merged events. Most of the other
loops would be due to words hyphenating protein men-
tions and event triggers (e.g., ‘IFNgamma-induced’). We
identified the pairs of Gene Expression and Positive Reg-
ulation events making loops and then replace them with
single merged events.
Finally, we point out two differences between our graph

representation and the widely used one proposed by
Björne and colleagues [5]. One is that their represen-
tation allows only predefined labels of combined event
types (e.g., Gene Expression/Positive Regulation), but that
our representation allows any possible labels of combined
event types. Another is that they do not use merged
events, while we evaluate the consequences of these dif-
ferences, as shown in the Results and Discussion section.

Statistical model
Given a sentence x = (x1 . . . xn), we constructed graph
representations of events by finding the most reliable
assignment of labels in a complete directed graph with the
words as nodes and removing edges labeled as irrelevant
from the graph. We measured the reliability of assign-
ments of labels in terms of output scores of a modified
version of a state-of-the-art model proposed by Riedel and
McCallum [2], since their model does not allow words
withmore than one event type. They proposed threemod-
els ranging from the simplest one, Model 1, to the most
complex one, Model 3. Model 3 was ranked the second
in the GENIA Event subtask of the 2011 BioNLP shared
task and its variant was ranked the first [12]. However,
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we developed our model from Model 1 for convenience
of experiments, since Model 3 was reported to be much
slower than Model 1 in training and predicting.
Given an assignment L, our model M first checks if the

assignment L satisfies the following two conditions. One
is that identified anchor words (i.e., constituent words of
event triggers) have at least one edge labeled with THEME
starting from them. Another is that all edges labeled with a
role type come from identified anchor words. If the assign-
ment satisfies the conditions, our model assigns scores
Mi,e(Li,e|x) to all the pairs of an event type e and a word
xi (i.e., vertices) and scores Mi,j(Li,j|x) to all the pairs of
words xi and xj (i.e., edges) and take the sum of these
scores as the scoreM(L) of the assignment L as follows:

M(L) =
∑

(i,e)
Mi,e(Li,e|x) +

∑

i,j
Mi,j(Li,j|x) (2)

where Li,e takes on a value of either ‘positive’ or ‘nega-
tive’, while Li,j takes on a value of either ‘THEME’, ‘CAUSE’
or ‘negative’. Now the extraction of events can be viewed
as finding the assignment with the highest score. To find
the optimal assignment for a given sentence, we use a
modified version of the dynamic programming algorithm
proposed by Riedel and McCallum [2]. One may suppose
that valid assignments should satisfy other constraints,
such as the one that the edge labeled with role types goes
to either anchor words or protein mentions. However,
such constraints make it hard to efficiently find the opti-
mal assignment of graphs. For this reason, the system first
finds the optimal assignment without such constraints,
and if the resulting assignment does not contain any
cycles, we attempt to refine the assignment so that it satis-
fies all the constraints. For example, the label ‘negative’ is
reassigned to all the incoming edges of a word other than
the identified anchor words and protein mentions. When
the resulting assignment has a cycle, it does not generate
any events for the input sentence.
We scored pairs of a word xi and an event type e using a

weight vector we as follows:

Mi,e(positive|x) = we · �(xi), (3a)
Mi,e(negative|x) = −we · �(xi), (3b)

where �(xi) is the feature vector of words xi. To define
the feature vectors of words, we used their lexical and lin-
ear/syntactic contextual information. Lexical information
about words is encoded with their surface form, base-
form, POS tag and the reliability scores of the entries
derivable from them in each event trigger lexicon. The
reliability scores are encoded as real-valued features.
The linear contextual features of a word (e.g., the word
‘decreased’ in sentence (1)) include center-marked n-
grams of words centered around the word (n = 2-4)
and made out of pairs of baseforms and POS tags (e.g.,

“decrease:VBN”) and a special symbol ‘PROTEIN’ for pro-
tein mentions. For example, the center-marked trigram
“either:CC [decrease:VBN] or:CC” is used as a feature for
the word ‘decreased’ in sentence (1). They also include
the distance from the word to proteins (e.g., “Protein-
Distance:5” for the word ‘decreased’ and the protein ‘VDR’
in sentence (1)) and the distance from the word to poten-
tial anchor words within the sentences relative to them
(e.g., “Trigger-Distance:2” for the word ‘decreased’ and the
word ‘increased’ in sentence (1)). The distances of protein
mentions are encoded as binary features (i.e., taking either
0 or 1), but features for the distances of potential anchor
words take on the maximal reliability score of the corre-
sponding entries in the lexicons. As syntactic contextual
features, we encoded their syntactic governors and mod-
ifiers (e.g., “number:NNS-MOD(amod)-decrease:VBN”
and “numbers:NNS-GOV(dobj)-express:VBP” for the
word ‘numbers’ in sentence (1)). Note that these contex-
tual features are intended to exploit words other than
anchor words in sensing the event triggers including them.
We also scored the label L of a word pair (xi, xj) using a

weight vector wL as follows:

Mi,j(L|x) = wL · �(xi, xj), (4)

where �(xi, xj) is the feature vector of a word pair (xi, xj).
To define the feature vector of a word pair (xi, xj), we
used the following features based on the features used
in [1]. Our feature vector consists of the lexical and
linear/syntactic contextual features of each of them as
defined above, the length of the shortest paths between
them and various representations of substructures of
paths between them as defined below. First, from a short-
est path, we generated the token sequence of the pairs
of baseforms and POS tags (e.g., “decrease:VBN num-
ber:NNS express:VBP” for the word ‘decreased’ and the
word ‘express’ in sentence (1), the dependency sequence of
pairs of the types and directions of dependency relations
(e.g., “MOD(amod) GOV(dobj)” for the word ‘decreased’
and the word ‘express’ in sentence (1), and the token-
dependency sequence of the pairs of baseforms and POS
tags and pairs of the types and directions of depen-
dency relations (e.g., “decrease:VBN MOD(amod) num-
ber:NNS GOV(dobj) express:VBP” the word ‘decreased’
and the word ‘express’ in sentence (1). From the result-
ing sequences, we generated n-grams of these sequences
(n = 2-4).
For efficiency, we assign the label ‘negative’ to those

words that do not contain any entry in our event trig-
ger lexicons. We also assigned the label ‘negative’ to edges
other than those edges whose starting word contains any
entry in the lexicons and whose ending word either refers
to a protein or contains an entry in the lexicons for
events that take proteins. Since about 98 % of the anno-
tated occurrences in the training corpus contain an entry
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in the lexicons, this does not incur a large performance
penalty but greatly reduces the size and complexity of the
problem.

Learning algorithms
As a baseline algorithm, we used the online prediction-
based Passive-Aggressive algorithm [13] with the cost
function of penalizing false negative event triggers and
edges 3.8 times more heavily than false positive ones as
in [2], since the algorithm with this setting successfully
trained Model 1 in [2], the one similar to our statistical
model. The pseudo-code of this algorithm is shown in
Fig. 3. It begins with an initial model with all weights set
to 0 (line 1). It takes several passes over the training cor-
pus D = ((x1, y1), ..., (xN , yN )), where xi and yi are the i-th
sentence and the gold-standard graphs that are automat-
ically derived from the gold-standard event annotations
using the Head-Word rule, respectively (line 2). Given a
sentence xj, it constructs a graph y (line 6) with the help
of the current interimmodelmt,i−1. When it makes a mis-
take (i.e., the predicted graph y is not the same as the
gold-standard graph yj), we constructed the next interim
model mt,i, whose output score of yj goes beyond that of
yj by at least the cost c incurred by the mistake, by making
a few modifications to the current interim model mt,i−1
to keep the knowledge learned so far as much as possible.
We take a total of 20 passes over the training corpus, sav-
ing the average Mt of the interim models’ weight vectors
after each pass (line 15), since the average Mt of interim
weight vectors is less likely to over-fit to the training cor-
pus than the individual interim weight vectors as shown
by Collins [14]. Here, the total number of passes, that is,
20, was arbitrarily chosen, but it turns out that the number
is sufficiently big for learning a statistical model.

Fig. 3 Baseline algorithm

With a modified version of the baseline algorithm as the
M step, we developed the Informed EM algorithm, or the
EM algorithm with a posterior regularization technique
as shown in Fig. 4, where sentences x and event annota-
tions z are observed and assignments y of labels to words
and word pairs are missing. Since it would be intractable
to enumerate all the possible assignments producing the
gold-standard event annotations z, we use the Viterbi
approximation to the EM algorithm under the unreason-
able assumption that the most probable assignment has
a remarkably higher probability than the second probable
assignment. This case may also have the counterpart of
the Inside-Outside algorithm, or the efficient implemen-
tation of the EM algorithm widely used in learning PCFGs
in an unsupervised manner, but we leave the design of
such an algorithm for future research. To incorporate
the gold-standard annotations into the EM algorithm, we

Fig. 4 Informed EM algorithms



Baek and Park Journal of Biomedical Semantics  (2016) 7:55 Page 8 of 12

impose constraints on possible assignments, which are
derived from the gold-standard annotations.
Now we describe the pseudo-code of this algorithm as

shown in Fig. 4. We constructed the adjusted annota-
tion set D′, where the adjusted graphs yi are initially their
corresponding gold-standard graphs (line 1). It takes sev-
eral rounds (line 6), but behaves like the conventional
EM algorithm of alternatively applying the E and M steps
after the first five rounds (line 7). Here, the number of
rounds for initialization, that is, five, was arbitrarily cho-
sen. Since the EM algorithm may converge models into
local optima, we need to take care of initial models with
which the EM algorithm begins. During the first five
rounds, we trained the model by applying only the M
step in a supervised learning manner similar to that of
the baseline algorithm, since the resulting model would
be closer to the true model, if it exists, than randomly
constructed models. In the E step, it predicts a graph y
for a sentence xi with the current interim model Mt (line
8). It sets the adjusted graph yi to the prediction y if the
prediction y is not matched with the current adjusted
graph yi and satisfies predefined constraints (lines 10 and
11). To enforce models to predict anchor words other
than the head words of the annotated event triggers,
we modify the cost function to penalize errors for sen-
tences with updated graphs 10 times more severely than
for the others as in domain adaptation studies (e.g., [15])
(lines 24-26).
We came up with the following constraints. One is the

basic constraint that the adjusted graph should encode
the same event types and argument types as the gold-
standard graphs. For example, if a Positive Regulation
event with a Gene Expression event as THEME appears
in the gold-standard annotations, this constraint requires
that one or more Positive Regulation and Gene Expres-
sion events appear in the adjusted graphs and that the
Positive Regulation events should take a Gene Expres-
sion event, but does not take care of their event trig-
gers. Another is the confidence constraint such that the
percentage difference in output scores between can-
didate graphs y for next adjusted graphs and current
adjusted graphs yj should be equal to or greater than
the confidence constraint constant α. To reflect the gold-
standard annotations more faithfully, we come up with
the non-overlapping constraint (NOC for short) that two
event triggers with the same event type in gold-standard
graphs cannot be mapped into a single word in their
corresponding adjusted graphs. For example, consider
sentence (5).

(5) The c-jun mRNA, which is constitutively expressed
in human peripheral-blood monocytes at relatively
high levels, was also slightly augmented ...
(PMID:1313226)

The words “high levels” and ‘augmented’ indicate the
presence of two distinct Positive Regulation events with
the same Gene Expression event with the event trigger
‘expressed’ as THEME. Since they indicate the presence
of events of the same type with the same participants,
those assignments where only one of the words is labeled
with ‘Positive Regulation’ violate the non-overlapping
constraint, but not the first two constraints.
Since there might be cases when the event triggers of

more than one event of the same type can be merged
without any problems but when the non-overlapping con-
straint prohibits any merging, we came up with a more
relaxed constraint, or the distance constraint that the dis-
tance between event triggers in candidate graphs y for
next adjusted graphs and event triggers with the same
event type in current adjusted graphs yj (e.g., the dis-
tance between ‘levels’ and ‘augmented’ is four) should be
equal to or less than the distance constraint constant β .
In sentence (5), those graphs without any one of the event
triggers of these two Positive Regulation events would also
violate the distance constraint with β ≤ 3.

Results and Discussion
We used the baseline and informed EM algorithms to
train our statistical models and evaluated the models on
the development corpus with respect to standard evalua-
tion metrics, such as recall, precision and F-score.

Evaluation of proposed graph representations
To measure the consequence of the substitution of single
merged events for Positive Regulation and Gene Expres-
sion events sharing single words, we reconstructed train-
ing event annotations by converting the gold-standard
annotations into graphs and the resulting graphs into
event annotations, since events that cannot be encoded in
graphs cannot survive in the reconstruction process. The
substitution may decrease the number of events removed
after the reconstruction process but may increase the
number of incorrect events generated by the graph-
to-event conversion algorithm after the reconstruction
process, leading to changes of the F1-score of the recon-
struction event annotations on the original event anno-
tations. We measured the F1-score of the reconstructed
event annotations twice, one with the substitution and
another without the substitution. We found that the sub-
stitution leads to an increase in the F1-score of the
reconstructed event annotations by 1.13 % points, and in
particular for Positive Regulation events by 3.14 % points,
though the F1-score for Gene Expression events is slightly
decreased by 0.06 % points.
We also measured the consequences of allowing words

with more than one event type. We used the baseline
algorithm to train multi-label and single-label statistical
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models. We found that the multi-label models outper-
form the single-label models most of the time as shown
in Fig. 5. To evaluate the statistical significance of the
superiority of the multi-label models over the single-label
models, we carried out the one-tailed paired Student’s t-
test for the pairs of the two points with the same x value.
The reason for the use of the one-tailed test, but not
the two-tailed test, is that only one direction (multi-label
models’ scores > single-labeled models’ scores) is consid-
ered to be against the null hypothesis that the multi-label
models are not superior to the single-labeled models.
According to the test, the superiority of the multi-label
models over the single-label models is shown statisti-
cally significant with a p-value of 0.0013. After the first
five rounds, the more rounds we took to train models
the lower performance the resulting models showed. This
would be because the models trained by taking many
rounds are likely to over-fit to the training corpus. We
suggest to stop the learning process of models when
the models’ performance on a held-out corpus starts to
decrease.
Table 1 shows the summary of the performance of the

models of each type. Since the Informed EM algorithm
applies the E step after the first five rounds, to be fair with
the Informed EM algorithm, we calculate averages and
sample standard deviations of the F-scores of the models
trained by taking more than five passes.
The single-label models are in fact our implementa-

tion of Model 1 of Riedel and McCallum [2], which
was reported to have the F1-score of 56.2 % for the
development corpus, and the best has a similar F-
score of 55.1 %, where the difference may be due
to implementation details regarding the feature vector
construction.

Table 1 Performance of multi-label and single-label statistical
models. These models are trained using the baseline algorithm

Single-label (R/P/F) Multi-label (R/P/F)

BEST 46.8/67.0/55.1 47.3/67.7/55.7

AVG. 46.2/66.6/54.6 46.6/67.1/55.0

(STD.) (0.36/0.41/0.32) (0.23/0.21/0.30)

Evaluation of the informed EM algorithm
To examine the effect of the posterior regulation, we first
use the Informed algorithm without any constraints (the
pure EM algorithm) to train models. It is again unsur-
prising that the more rounds we took to train models the
lower performance the resulting models showed as shown
in Fig. 6. As a result, the best one is the model it took six
passes to train, which shows a recall of 47.12 %, a precision
of 67.04 % and an F-score of 55.34 %.
At the first E step, more than a thousand of adjusted

graphs were updated and at subsequent E steps, fewer
than half a hundred graphs were updated, suggesting that
the models are converging (the total number of sentences
is about seven thousands) and the pure EM algorithm
would have trained models to predict similar but unin-
tended graphs.
We evaluated our Informed EM algorithm with various

constraint sets, all of which include the basic constraint,
as shown in Tables 2 and 3. The comparison between
Table 1 on the one hand and Tables 2 and 3 on the
other shows that most models outperformmodels trained
by the baseline algorithm in terms of both the best and
averaged F-scores. To assess the statistical significance of
their superiority over the models trained with the base-
line algorithm, we calculate p-values with respect to the

Fig. 5 Comparison Between Multi-Label and Single-Label Statistical Models. Each point (x, y) indicates that a model trained by taking x rounds has
an F-score of y. These models are trained using the baseline algorithm
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Fig. 6 Comparison Between the Baseline and Pure EM Algorithm. Each point (x, y) indicates that a model trained by taking x rounds has an F-score
of y

one-tailed paired Student’s t-test for the pairs of models
trained by taking the same number of rounds, as shown in
Table 4.
We analyzed the effect of the choice of constraints on

the performance of models. The high confidence con-
straint constant α reduces the number of updates in the
adjusted graphs, making the resulting models similar to
models trained by the baseline algorithm as shown in
Table 5. The distance constraint (β = 2) reduces the num-
ber of updates in the adjusted annotation set and for most
times increases the best F-scores but not the averaged F-
scores. The non-overlapping constraint also reduces the
number of updates but not always increases the best and
averaged F-scores. Note that, even though our best model
is the model we trained with the non-overlapping con-
straint, the best combination of constraints would be with

Table 2 Best performance of informed EM models

α = β = 2 (R/P/F) β = 100 (R/P/F)

Without NOC

0.1 48.0/68.2/56.3 47.6/68.3/56.1

0.2 47.6/68.6/56.2 47.4/68.5/56.0

0.3 47.7/68.8/56.3 47.3/67.5/55.7

0.4 47.1/67.8/55.6 47.6/67.7/55.9

With NOC

0.1 47.3/68.9/56.1 47.5/68.1/55.9

0.2 47.3/68.0/55.8 47.5/69.3/56.4

0.3 48.1/68.9/56.7 47.2/68.1/55.8

0.4 46.8/68.9/55.8 47.3/67.7/55.7

The best figures are set in bold-face

the α value of 0.3 and the β value of 2 and without the
non-overlapping constraint as indicated in Table 4.
Finally, we chose the best baseline model (a multi-

labeled model) and best proposed model (α=0.3, β=0.2,
no use of non-overlapping constraint) in terms of the per-
formance on the development corpus and evaluated them

Table 3 Average performance of informed EM models

α = β = 2 (R/P/F) β = 100 (R/P/F)

Without NOC

0.1 47.9/66.8/55.8 47.3/67.7/55.7

(0.27/0.56/0.31) (0.22/0.30/0.23)

0.2 47.1/68.0/55.7 47.1/68.1/55.7

(0.35/0.86/0.42) (0.22/0.21/0.16)

0.3 47.4/67.9/55.8 47.3/66.8/55.4

(0.18/0.39/0.23) (0.13/0.22/0.13)

0.4 46.7/67.5/55.2 47.0/67.7/55.5

(0.38/0.52/0.21) (0.35/0.23/0.30)

With NOC

0.1 46.9/68.0/55.5 47.1/67.6/55.5

(0.23/0.39/0.26) (0.15/0.23/0.16)

0.2 47.1/67.6/55.5 47.2/68.3/55.8

(0.22/0.29/0.20) (0.22/0.65/0.35)

0.3 47.6/68.0/56.0 47.0/67.1/55.3

(0.38/0.45/0.40) (0.27/0.36/0.29)

0.4 46.5/68.4/55.4 47.1/67.6/55.5

(0.33/0.72/0.42) (0.24/0.39/0.22)

The best figures are set in bold-face and the sample standard deviations are
bracketed
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Table 4 p-values for informed EM models

α = β = 2 (w.o/w NOC) β = 100 (w.o/w NOC)

0.1 3.32E-09/1.86E-04 1.03E-06/4.47E-06

0.2 9.98E-07/1.21E-08 3.58E-09/1.05E-08

0.3 9.59E-12/3.93E-09 4.38E-06/2.95E-03

0.4 4.37E-02/1.19E-04 2.50E-08/6.70E-07

The best figures are set in bold-face

on the BioNLP’09 test corpus. We found that the best
baseline model has a recall of 42.2 % and a precision of
65.5 % and F-score of 51.3 %, while the best proposed
model has a recall of 42.2 % and a precision of 66.4 % and
F-score of 51.6 %, suggesting that the proposed models
slightly outperform the best baseline model.

Analysis of adjusted graphs
We observed updates of shifting themark of anchor words
from empty words into content words (e.g., ‘activity’
vs. ‘-binding’ in the noun phrase ‘DNA-binding activity’
(PMID:9115366)) and from words distant from the partic-
ipants of the anchored events into words closer to them
(e.g., ‘simulates’ vs. ‘activation’ in the phrase “simulates the
activation of” (PMID:8557975)). There were also updates
of labeling more than one words as the event trigger of
an identical event (e.g., ‘results’ and ‘increases’ in a phrase
starting with “results in increases of” (PMID:2121746)).
Unexpectedly, we found that sets of edges were updated

more often than the position of anchor words. Some
edges were copied and redirected (e.g., copies of all edges
coming from ‘results’ are attached to ‘increase’ in the pre-
ceding example), leading to new events whose presence
makes sense, where some of them have corresponding
existing ones and some of them are completely new. For
example, a Regulation event of granulocyte-macrophage
colony-stimulating factor was created on sentence (6) with
an annotated Regulation event of the Expression event of
the protein.

(6) Regulation of granulocyte-macrophage colony-
stimulating factor and E-selectin expression in
endothelial cells by cyclosporin A and the T-cell
transcription factor NFAT. (PMID:7545467)

Table 5 Updated graphs for informed EM models

α = β = 2 (w.o/w NOC) β = 100 (w.o/w NOC)

0.1 72/47 98/50

0.2 34/18 46/31

0.3 16/11 25/15

0.4 9/8 9/5

Some edges not used in deriving events from the graphs
are removed, leading to the removal of events that seem to
be inferred. For example, sentence (7) below has an anno-
tated Positive Regulation event of H2 receptors, which was
removed by an update. The rationale behind this annota-
tion is that a sensible way of usingH2 receptors to increase
cAMP and c-fos expression is to activate H2 receptors.

(7) Histamine transiently increased cAMP and c-fos
expression throughH2 receptors. (PMID:9187264)

Of course, there are inexplicable updates. Table 6 shows
the distribution of types of 16 updates occurring in learn-
ing the best proposed model (α=0.3, β=0.2, no use of
non-overlapping constraint). It shows that there are vari-
ous types of ambiguity, even though the algorithm finds a
small number of each type of cases.

Conclusion
In this study, we looked into the possibility that adjust-
ments to the annotated span of event triggers to reduce
inconsistencies across them lead to an improved per-
formance of event extraction systems. In order to make
adjustments automatically in favor of statistical models,
we developed an Informed EM algorithm, or the EM
algorithm with a posterior regularization technique that
exploits the gold-standard event trigger annotations in
the form of constraints. The algorithm (the best F-score=
56.7 %) is shown to outperform our baseline algo-
rithm (the best F-score=55.7 %) on the BioNLP’09
development corpus in a statistically significant manner
(p-value=9.59E-12), indicating that proper adjustments
of event trigger annotations would be beneficial. Our
algorithm (F-score=51.6 %) is also shown to slightly out-
perform our baseline algorithm (F-score=51.3 %) on the
BioNLP’09 test corpus. The annotations generated by the
algorithm indicate that there are various types of ambigu-
ity in event annotations including ambiguity in the span
of event triggers, even though the algorithm finds only a
small number of such cases.
However, there are still remaining issues. First, we use

the Viterbi approximation to the EM algorithm, whose
soundness is not well grounded. We anticipate that there

Table 6 Distribution of types of 16 updates

Description Count

Adding events similar to existing ones 7

Adding missing but reasonable events 4

Shifting the mark of anchor words 2

Removing duplicated and inferred events 2

Wrongly adding an incorrect event 1

Total 16
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would be a counterpart of the Inside-Outside algorithm,
an efficient implementation of the EM algorithm used
in learning PCFGs. Second, we fixed the parameters α

and β as confidence and distance constraint constants,
respectively, during training models. However, Smith and
Eisner [16] show that it would be beneficial for the EM
algorithm guided by prior knowledge to soften the con-
straints, as model parameters are converging. We antici-
pate that such update scheduling would also be beneficial
for the informed EM algorithm. Third, we applied this
approach only to the 2009 BioNLP shared task. Since this
approach is not specific to this task, there is a possibil-
ity of applying this approach successfully to similar tasks,
such as Infectious Disease (ID) and Epigenetic and Post-
translational Modification (EPI) tasks defined in the 2011
Bio-NLP shared task. We plan to address these issues in
the future.
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