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Abstract

Background: Statistics play a critical role in biological and clinical research. However, most reports of scientific
results in the published literature make it difficult for the reader to reproduce the statistical analyses performed in
achieving those results because they provide inadequate documentation of the statistical tests and algorithms
applied. The Ontology of Biological and Clinical Statistics (OBCS) is put forward here as a step towards solving this
problem.

Results: The terms in OBCS including ‘data collection’, ‘data transformation in statistics’, ‘data visualization’,
‘statistical data analysis’, and ‘drawing a conclusion based on data’, cover the major types of statistical processes
used in basic biological research and clinical outcome studies. OBCS is aligned with the Basic Formal Ontology
(BFO) and extends the Ontology of Biomedical Investigations (OBI), an OBO (Open Biological and Biomedical
Ontologies) Foundry ontology supported by over 20 research communities. Currently, OBCS comprehends 878
terms, representing 20 BFO classes, 403 OBI classes, 229 OBCS specific classes, and 122 classes imported from ten
other OBO ontologies.
We discuss two examples illustrating how the ontology is being applied. In the first (biological) use case, we
describe how OBCS was applied to represent the high throughput microarray data analysis of immunological
transcriptional profiles in human subjects vaccinated with an influenza vaccine. In the second (clinical outcomes)
use case, we applied OBCS to represent the processing of electronic health care data to determine the associations
between hospital staffing levels and patient mortality. Our case studies were designed to show how OBCS can be
used for the consistent representation of statistical analysis pipelines under two different research paradigms. Other
ongoing projects using OBCS for statistical data processing are also discussed.
The OBCS source code and documentation are available at: https://github.com/obcs/obcs.

Conclusions: The Ontology of Biological and Clinical Statistics (OBCS) is a community-based open source ontology
in the domain of biological and clinical statistics. OBCS is a timely ontology that represents statistics-related terms
and their relations in a rigorous fashion, facilitates standard data analysis and integration, and supports reproducible
biological and clinical research.

Keywords: OBCS, Biological statistics, Clinical outcomes statistics, Standardization, Statistical analysis, Data
integration
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Background
The movement to advance reproducibility of research ad-
vocates the use of open data, standard operating proce-
dures, and reproducibility of methods used in both
computation [1] and statistics [2]. To support such
reproducibility it is imperative that standard metadata for-
mats be used to describe how results were generated. Con-
sider, for example, the case of ImmPort (the Immunology
Database and Analysis Portal; https://immport.niaid.nih.-
gov/), which is the world’s largest repository of public-
domain de-identified clinical trial data related to immun-
ology [3, 4]. All data derived from clinical trials funded by
the Division of Allergy, Immunology and Transplantation
(DAIT) of the National Institute of Allergy and Infectious
Diseases are required to be published on the ImmPort por-
tal. In addition, the ImmPort portal includes data obtained
from the work of the Human Immunology Project Consor-
tium (HIPC, www.immuneprofiling.org/) as well as rele-
vant data from a number of external sources such as the
Gates Foundation. ImmPort currently contains data sets
from 211 studies with 34,801 subjects and 1054 experi-
ments, including complete clinical and mechanistic study
data all of which are publicly available for download in a
deidentified form. To facilitate data import and processing,
ImmPort has created templates for data representation and
documented standard operating procedures for working
with imported data. To facilitate discovery and usability of
these data to external users, and also to address the goal of
reproducibility, ImmPort is seeking wherever possible to
draw on publicly available ontologies such as the Cell
Ontology (CL) [5] and the Protein Ontology (PRO) [6] as
sources for the terms used in these templates.
If the information-driven research documented in re-

sources like ImmPort is to be reproducible, however, then
the research results contained in the ImmPort and similar
repositories must also be annotated using ontology terms
which specify the protocols and methods used in data
generation and analysis. The OBI has been created to this
end, and the OBCS follows in the footsteps of OBI by pro-
viding terms and formal definitions representing the stat-
istical methods used in biological and clinical research.
OBCS will thereby not merely allow researchers to repro-
duce statistical analyses in order to validate the conclu-
sions reached by study authors but also allow new
possibilities for discovery of and for comparison between
studies. We believe that it will also serve as impetus for
the creation of new sorts of software tools supporting
more advanced use of statistics in complex analysis and
meta-analysis of large and heterogeneous data sets.
Ontologies are human- and computer-interpretable

representations of the types of entities existing in spe-
cific scientific domains and of the relations between
these types. Since the creation of the first version of the
Gene Ontology (GO) in 1998 [7], many influential

ontology resources have been created, most recently fol-
lowing the principles of the Open Biological and Bio-
medical Ontologies (OBO) Foundry [8]. Ontologies built
in accordance with OBO Foundry principles are de-
signed to allow not only consistent classification, com-
parison and integration across heterogeneous datasets,
but also automatic reasoning with the data annotated
with their terms. This is achieved in part through the
adoption of Basic Formal Ontology (BFO) [9] as a com-
mon top-level ontology, and also through employment
of a common set of logically defined relations. OBI is a
prominent example of ontology that aligns with BFO.
OBI provides a set of logically defined terms covering a
broad range of investigation processes, experimental
conditions, types of equipment and documentation, and
data analysis methods performed on data generated from
the experiments [10, 11]. OBO ontologies were initially
successful in the representation of model organism re-
search data and have subsequently been influential in
health-related data standardization and processing [12].
Ontobee, the default OBO ontology linked server, incor-
porates over 100 OBO ontologies and provides the facility
to track how ontology terms are reused in multiple ontol-
ogies [13].
OBCS has its origin in a 2010 study of the ANOVA

(ANalysis Of VAriance) meta-analysis of vaccine protec-
tion assays [14], which led to the addition into OBI of
statistical terms related to ANOVA and survival rate
analysis. Later, an OBI statistics branch was generated to
identify and fill gaps in OBI’s representation of statistics
[15]. The OBCS resulted directly from these efforts.
OBCS extends OBI, and the two ontologies share over-
lapping development groups.

Methods
OBCS development
OBCS is a community-based ontology of statistical tools
and methods used in biological and clinical investigations
that follows OBO Foundry principles in providing the pos-
sibility for enhanced representation and analysis of data
generated through complex statistical procedures.
OBCS is expressed using the W3C standard Web Onto-

logy Language (OWL2) (http://www.w3.org/TR/owl-guide/).
The meta-data schema of OBCS is implemented using
OWL annotation properties defined in the Information
Artifact Ontology (IAO, http://purl.obolibrary.org/obo/iao),
which is widely used by OBO Foundry and other ontologies
(https://github.com/information-artifact-ontology/IAO/wiki/
OntologyMetadata). In what follows, we use single
quotes to represent terms from ontologies (including
OBCS), and italics to represent object properties (also
known as relations) such as is_a and part_of. The Pro-
tégé OWL editor (http://protege.stanford.edu/) was used
for ontology editing and the Hermit reasoner (http://
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hermit-reasoner.com/) for consistency checking and infer-
encing. OBCS-specific terms were generated with IDs using
the prefix “OBCS_” followed by auto-generated seven-digit
numbers.
OBCS is released under Creative Commons Attribution

(CC BY) 3.0 License, and the OBCS source code is freely
available at: https://github.com/obcs/obcs and also on the
Ontobee [13] (http://www.ontobee.org/ontology/OBCS) and
NCBO BioPortal (http://purl.bioontology.org/ontology/
OBCS) websites. The summary information of ontology
terms in OBCS based on term types and resources can be
found here: http://www.ontobee.org/ontostat/OBCS.
The RDF triples for the OBCS ontology have been saved

in the He group Triple store [13], which allows easy re-
trieval of related OBCS contents using Semantic Web
SPARQL technology. OBCS can be queried from the Onto-
bee’s SPARQL query endpoint (http://www.ontobee.org/
sparql) [13].
A combination of top-down and bottom-up methods was

used in OBCS development. The top-down approach was ini-
tiated by extending OBCS from the latest version of OBI
(http://purl.obolibrary.org/obo/obi/2015-12-07/obi.owl) using
the BFO 2.0 classes-only version (http://purl.obolibrary.org/
obo/bfo/2014-05-03/classes-only.owl) and the middle tier
ontology IAO (http://purl.obolibrary.org/obo/iao/2015-02-23/
iao.owl) [11]. OBCS also reuses ontological models (as de-
scribed in the Results section) developed in OBI and IAO.
The remaining parts of the ontology were then populated on
the basis of a survey of statistics workflows, which led to the
identification of a number of statistics-related terms not in-
cluded in other ontologies. These terms were supplemented
through the prototype statistics data analysis workflow pro-
posed in [14] and through the study of specific use cases de-
scribed below.
This bottom-up strategy was combined with a top-down

approach involving definition terms through downward
migration from higher-level ontology classes. For example,
the Robust Multi-Array Average (RMA) normalization is a
commonly used microarray data normalization method
[16] and the corresponding term ‘robust multi-array aver-
age normalization’ (OBCS_0000140) was generated as a
subclass of OBI ‘normalization data transformation’. Popu-
lating the ontology in this way provided a simple strategy
for creating definitions of the terms introduced using the
method of specific difference [17] since the genus (and its
definition) were inherited from OBI it was necessary for
purposes of OBCS to supply only the differentia.

Reusing existing ontology resources
OBCS imports the subset of OBI consisting of all
statistics-related terms and associated parent terms using
the Ontodog tool [18]. The Excel input data used for this
purpose is available at: https://github.com/obcs/obcs/raw/
master/docs/OBI_statisitics_subset.xlsx. To ensure valid

reasoning, Ontodog was set to import all the terms used
in the expression of the ontological axioms relating to
each imported OBI term. For example, when Ontodog
fetched the OBI term ‘log-log curve fitting’, the axiom:

‘log-log curve fitting’: ‘achieves planned objective’
some ‘curve fitting objective’ was also retrieved,
together with the terms ‘achieves planned objective’
and ‘curve fitting objective’.

To eliminate redundancy and ensure orthogonality,
terms already defined in OBO Foundry ontologies were
reused in accordance with the Minimum Information to
Reference an External Ontology Term (MIREOT) guide-
line [19]. OntoFox, a software program implementing
and extending MIREOT [20], was used to extract indi-
vidual terms from external ontologies using this strategy.

Driving use cases for OBCS development
The first of two use cases driving OBCS development con-
cerns a study of the systems biology of influenza vaccin-
ation described in [21], relating to a transcription profiling
by array experiment which has as its objective the identifi-
cation of the gene expression profiles in human study sub-
jects after influenza vaccine administration. Human blood
specimens were used in this study, so that both biological
and clinical domains were involved. The second use case
concerns the study of clinical outcomes of nursing services
data with the aim of investigating statistical associations
between variable levels of nurse staffing and inpatient mor-
tality [22]. Using observational data collected from a clin-
ical setting, a Cox proportional hazards model estimation
was conducted to draw the conclusion that understaffed
shifts were significantly associated with increased inpatient
mortality [22]. ‘Transcription profiling by array experi-
ment’ and ‘Cox proportional hazards model estimation’
are among the OBCS terms deriving from these use cases.

Results
OBCS overview and high level hierarchy structure
The latest release of OBCS contains a total of 878 terms,
including 780 classes, 42 object properties, 25 annota-
tion properties, and 6 datatype properties. Among these
780 classes, 229 classes are unique to OBCS, 403 were
imported from OBI. The remaining terms were imported
from various OBO ontologies, such as BFO (20 classes),
IAO (51 classes), the Statistics Ontology (STATO)
(http://stato-ontology.org/) (36 classes), the Phenotypic
Quality Ontology (PATO) (10 classes) [23] (Table 1).
Figure 1 illustrates the top-level hierarchical structure

and some key ontology terms of OBCS, showing terms
from both the ‘continuant’ and ‘occurrent’ branches of
BFO [9]. The continuant branch represents entities (e.g.,
‘material entity’) which endure through time; the
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‘occurrent’ branch represents entities such as ‘process’
which occur in time. Many key continuant terms in
OBCS are classified under IAO’s ‘information content
entity’, including: ‘data item’, ‘probability distribution’, as
well as ‘directive information entities’ such as ‘protocols’
and ‘algorithms’ (Fig. 1). OBCS includes 178 subclasses
under the branch of IAO data item (IAO_0000027).
Major occurrent terms in OBCS relate to different

types of planned process, including: ‘data collection’, ‘data
operation’, ‘data visualization’, and ‘drawing a conclusion
based on data’. The term ‘data operation’ (OBI_0200000;
a new alternative label for the imported OBI term ‘data
transformation’) is defined as “A planned process that
produces output data from input data”. ‘Data operation’
satisfies two logical axioms:

has_specified_input only/some ‘data item’

has_specified_output only/some ‘data item’

Two important child terms of ‘data operation’ are: ‘data
transformation in statistics’ and ‘statistical data analysis’
(Fig. 1). A ‘data transformation in statistics’ converts a
‘data set’ to another ‘data set’ by applying a deterministic
mathematic function to each data item in the input data
set. For example, the OBI term ‘logarithmic transform-
ation’ (OBI_0200094) represents the kind of process that
transforms input data to output data by applying a loga-
rithm function with a given base. In this case, the data
transformation process concretizes realize the mathemat-
ical function. A key subclass under ‘data transformation in
statistics’ is ‘normalization data transformation’, which in-
cludes various normalization processes such as ‘robust
multi-array average normalization’ (RMA) [16].

General design pattern used in the OBCS representation
of statistical studies
OBCS is designed to represent all aspects of a statistical
study. A general statistical study workflow is represented

Table 1 Summary of ontology terms in OBCS as of June 4, 2016

Ontology Names Classes Object properties Datatype properties Annotation properties Instance Total

OBCS 229 2 0 1 1 233

OBI (Ontology for Biomedical Investigations) 403 9 2 3 4 421

IAO (Information Artifact Ontology) 51 8 4 13 18 94

STATO (Statistics Ontology) 36 0 0 0 0 36

BFO (Basic Formal Ontology) 20 6 0 2 0 28

PATO (Phenotypic Quality Ontology) 10 0 0 0 0 10

RO (Relation Ontology) 0 17 0 1 1 19

Other ontologiesa 31 0 0 4 1 42

Total 780 42 6 25 25 878
athe name and statistics of other ontologies used in OBCS can be found on the Ontobee website: http://www.ontobee.org/ontostat/OBCS

Fig. 1 The top level OBCS hierarchical structure and key ontology terms. The terms shown in boxes with the prefix “OBCS:” in bold font are
OBCS-specific terms, and the other terms are imported from existing ontologies including BFO, IAO and OBI
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in Fig. 2, which shows five major processes including: ‘data
collection’, ‘data transformation in statistics’, ‘statistical data
analysis’, ‘data visualization’, and ‘drawing a conclusion
based on data’. These are all subtypes of OBI ‘planned
process’ (Fig. 1) which comprehends two major subtypes
of data item (Fig. 3), namely: ‘measurement datum’ and

‘derived data from statistical analysis’. The latter is further
divided into: ‘derived data from descriptive statistical ana-
lysis’ (e.g., ‘median’ and ‘mode’) and ‘derived data from in-
ferential statistical analysis’ (e.g., p-value).
OBCS defines many different types of data directly

under ‘data item’, and then provides logical axioms that

Fig. 2 Semantic representation of statistical data analysis studies using OBCS. The boxes highlighted in red represent key planned processes in
OBCS, and the terms in black boxes represent different information content entities

Fig. 3 Illustration of selected OBCS terms under ‘data item’ and ‘statistical data analysis’ and their hierarchies. a Illustration of part of the asserted
hierarchical structure for the OBCS branch of ‘data item’. Note that there is no subclass under ‘derived data from statistical analysis’. b The inferred
hierarchical structure after using the reasoner HermiT 1.3.8. After the reasoning, the ‘derived data from statistical analysis’ has two direct subclasses
‘derived data from descriptive statistical analysis’ and ‘derived data from inferential statistical analysis’. c Illustration of a part of the ‘statistical data
analysis’ branch in OBCS. Note that many OBCS terms under these branches are not shown, and these selected terms are used for demonstration.
These screenshots came from the OBCS display using the Protégé OWL editor
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can be used to infer a data type under a particular class
based on a statistical data analysis (Fig. 3). For example,
‘derived data from inferential statistical analysis’ is de-
fined by an equivalence class axiom as:

‘data item’ and (is_specified_output_of some
‘inferential statistical data analysis’)

Given this equivalence class, every ‘data item’ sub-
class (e.g., ‘specificity’) having the axiom of is_specified_out-
put_of some ‘inferential statistical data analysis’ will be
inferred to be a subclass of ‘derived data from inferential
statistical analysis’.
Next we will introduce how OBCS represents each of

the five major processes. Figure 4 represents the major
parts of the OBCS ‘data collection’ branch, which compre-
hends 12 subclasses corresponding to different approaches
to data collection, such as from experiment, literature, ob-
servation, by online extraction, or by sampling. Online ex-
traction can be performed from online databases or
through a web crawler. Sampling can be achieved through
survey or censoring. Data collection may face difficulties
of different sorts. For example, data fields may be incom-
mensurable, data may be missing, incompatibilities may
arise due to different types of study design, and we may
have only partial information concerning data provenance,
and so forth. To address these factors OBCS includes
terms such as ‘generation of missing data’, which repre-
sents a planned process that generates possible values of
missing data. OBCS also includes the term ‘processing in-
compatible data’ that represents a data transformation
process that attempts to transforms incompatible data
into data that are compatible. Different methods can be
used to support these processes.

After data are collected, the data often need to be reor-
ganized or processed by different data transformation pro-
cesses that transform the data into a format suitable for
‘statistical data analysis’. A typical method is to transform
a list of data by associating data items with probability
values yielding one or other type of probability distribu-
tion, for example, ‘normal (or called Gaussian) distribu-
tion’ (Fig. 5). Such a distribution follows a specific
‘probability density function’, a term that is also included
in OBCS. ‘Normalization data transformation’ is a com-
monly used ‘data transformation in statistics’ that adjusts
values measured on different scales to a notionally com-
mon scale and makes variables comparable to each other.
OBCS defines 34 different types of normalization
methods. Other data processing methods applied before
‘statistical data analysis’ – for example ‘permutation’, ‘sort-
ing’, or ‘data partitioning’ – are also represented in OBCS.
Figure 1 represents are two types of statistical data

analysis methods called ‘descriptive’ and ‘inferential’, re-
spectively. A ‘descriptive statistical data analysis’ quanti-
tatively summarizes a feature of a collection of data. It
includes the application of many statistical operations
that summarize a data set in terms of its ‘arithmetic
mean’, ‘standard deviation’, ‘empirical probability distribu-
tion’, and so on. An ‘inferential statistical data analysis’,
in contrast, infers properties of a collection of data
through analysis of data. An ‘inferential statistical ana-
lysis’ includes testing hypotheses and deriving estimates.
These methods can be performed on multiple data sets
and thereby generate a ‘p-value’, ‘R-squared value’, ‘likeli-
hood ratio’, or other ‘quantitative confidence value’
(Fig. 3c). In total, OBCS now includes 12 types of ‘de-
scriptive statistical analysis’ methods and 92 types of ‘in-
ferential statistical analysis’ methods.

Fig. 4 Illustration of logical axioms and subclasses of ‘data collection’ in OBCS. This is a screenshot of Protégé OWL editor display of OBCS. As
shown here, this term is defined by an equivalent axiom, four subclass axioms, and one inherited subclass axiom. There are 12 subclasses under
‘data collection’
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OBCS defines a ‘statistical variable’, including ‘independent’
and ‘dependent variable’, as a ‘directive information entity’
that is about a ‘data item’ and can only be realized in a ‘stat-
istical analysis’. Without a ‘statistical analysis’, a statistical
variable does not exist. For example, a clinical study may
have collected data about age, sex, weight, and whether dia-
betes. Age data item is about age quality. A statistician can
specify that an independent variable (for instance an age-
independent variable) is about an age data item and a
dependent variable is about whether a given individual has
diabetes, and then test whether age significantly affects the
likelihood of the occurrence of diabetes in a human popula-
tion. The age data item is about the age quality of a human
subject. A scalar measurement datum includes two parts:
data value and data unit. If a human subject is 20 years old,
the age data item can be represented as:

((‘has value’ value 20) and (‘has measurement unit
label’ some ‘year’)) and ‘is about’ some age.

The age data item will vary from subject to subject,
which is the reason why we can get an age data set in a
study. For example, if a clinical study includes three hu-
man subjects whose ages are 20, 40, and 50 years, then
the three age data items form an age data set.
One or multiple data sets can be visualized as an ‘image’ or

‘graph’ by performing a process of ‘data visualization’ (Fig. 2).
Two logical axioms are defined for ‘data visualization’:

has_specified_input only/some ‘data item’

has_specified_output only/some (‘graph’ or ‘image’)

Currently, OBCS includes four subclasses of ‘data
visualization’: ‘clustered data visualization’, ‘gene list
visualization’, ‘classified data visualization’, and ‘back-
ground corrected data visualization’. To support data
visualization, OBCS imports 25 terms from the ‘graph’
branch in the STATO ontology.
Based on the results of a statistic data analysis, we can

‘draw a conclusion based on data’ (Fig. 2). The ‘descrip-
tive statistical analysis’ results (such as ‘median’ and
‘mode’) describe the features of a ‘data set’. The result of
an ‘inferential statistical data analysis’, such as a ‘p-value’
(a type of ‘quantitative confidence value’), is used to help
us to ‘draw a conclusion’ either accepting or rejecting a
‘hypothesis’. One important ‘quantitative confidence
value’ is ‘R-squared value’, which is often used for analyz-
ing prediction problems. The class ‘draw a conclusion
based on data’ also includes subclasses corresponding to
different sorts of biological feature conclusions, such as
‘comparative phenotypic assessment’ and ‘assigning gene
property based on phenotypic assessment’.
Next we focus on the OBCS modeling of the two use

cases introduced in the Methods section above.

OBCS statistical representation of a systems vaccinology
use case
The first use case, which is of a sort typically found in high
throughput biomarker analysis, is a study selected from
the field of systems vaccinology [21]. Each of the twenty
eight enrolled human subjects was vaccinated once with
Fluarix, a trivalent inactivated influenza vaccine (TIV). At
days 0 (baseline), 3 and 7 post vaccination, ‘blood speci-
mens’ were collected from human subjects and from these

Fig. 5 OBCS modeling of statistical terms related to normal distribution. The normal (or Gaussian) distribution is a continuous probability
distribution of a numerical data set that follows the normal distribution probability density function. The formula of the density function is at the
bottom of the figure and included in OBCS as a ‘mathematical formula’ annotation. A normal distribution transformation is able to transform a
data set to normally distributed data set
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samples peripheral blood mononuclear cells (PBMCs)
were prepared. ‘RNA extracts’ were then prepared from
the PBMCs and used in a ‘transcription profiling assay’
examining expression of a large number of genes using
Affymetrix microarray technology. The basic investigation
procedure can be presented using OBI. For the statistical
steps however the additional resources of OBCS are
needed. To illustrate how OBCS is used for annotation or
tagging of statistics workflows we single out one human
subject (subject X) (Fig. 6). The initial statistical data ana-
lysis step is ‘data collection from experiment’. Such a ‘data
collection’ process ‘has specified output’ the raw gene ex-
pression data at different time points post vaccination.
After the raw data collection, the gene expression results
for individual genes such as TNFRSF17 (tumor necrosis
factor receptor superfamily, member 17) at days 0 (base-
line) and 7 post vaccination were normalized using the
‘Robust Multi-array Average (RMA)’ method [16]. The
‘RMA’ (OBCS_0000140) statistical method has the follow-
ing two asserted axioms (Fig. 2b):

‘RMA’: has_part some ‘background correction data
transformation’

‘RMA’: has_part some ‘quantile transformation’

The above ‘RMA data normalization’ process ensures
that all Affymetrix microarray data from the study can

be analyzed. Normalized gene expression values for any
given gene (for example TNFRSF17) across all subjects
at different time points can then be used in a range of
statistical tests, including ‘ANOVA’, ‘signal-2-noise ana-
lysis (S2N)’ and ‘significance analysis of microarrays
(SAM)’. The ‘p-values’ for these tests are then reported,
the ‘p-value’ of <0.05 obtained for all 3 tests indicating
that a null hypothesis that the two groups (baseline Day
0 vs Day 7) have the equal means of gene expression in-
tensities can be rejected. From this we can ‘draw a con-
clusion’ that the gene in question is significantly
regulated in study subjects consequent to influenza vac-
cination (Fig. 6).
Note that for simplicity some important experimental

factors (such as ‘sex’, ‘age’, and microarray format) and
statistical results (for example ‘fold change’) are not rep-
resented in the Figure. These factors can be represented
using OBO Foundry-related ontologies such as PATO
and the Experimental Factor Ontology (EFO) [24]. Rep-
resentation of these factors can be incorporated in a
statistical analysis using the OBCS approach. The Figure
provides, we believe, a good illustration of how OBI and
OBCS are used to annotate the sorts of biostatistics
studies commonly found in high throughput molecular
assay analysis and biomarker analysis.
For users to explore and better understand how OBCS

can help biomedical data annotation and analysis, we
provided an example data set and supplemental

Fig. 6 Ontological representation of an influenza microarray study. In this example, each of 28 human subjects was vaccinated once with an
influenza vaccine [21]. At day 0, 3, and 7 post vaccination, human blood samples were extracted, peripheral blood mononuclear cell (PBMCs)
were isolated from the blood samples, and RNAs were prepared from PBMCs. An Affymetrix microarray experiment was then conducted using
the RNA samples. After RMA data normalization, the gene expression data from different groups (separated on the basis of time) were used for
three types of statistical tests (ANOVA, S2N and SAM). All the boxes represent instances, labelled by the class names of these instances. All the
relations are italicized
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materials available for downloading at https://github.-
com/obcs/obcs/wiki/OBCS-example. The example con-
tains an Ontodog-generated OBCS subset including all
the terms, relations, and axioms introduced in the Fig. 6
use case. We created instances of the OBCS subset clas-
ses to present transcriptional expressions of 3 genes
(TNFRST17, MAPK1, and CNOT2) in the PMBCs col-
lected from three individuals at day 0, 3, and 7 after an
administration of TIV. This example shows how data
items (e.g., gene expression intensities) can be grouped
together to form a data set (e.g., the set of expression in-
tensities of the genes in a microarray chip for one sam-
ple), and how data sets themselves can be grouped
together to form a data matrix, which is data set of
higher order (for example a set of gene expression data
obtained from applying multiple microarray chips to
multiple samples). As shown in Fig. 6, planned pro-
cesses link the data sets collected from experiments
to the conclusion based on data drawn from statis-
tical data analysis.

OBCS representation of a clinical outcomes research use case
The second use case is focused on medical informat-
ics analysis in clinical research. In a study of clinical
outcomes of nursing services [22], data were obtained
from ‘electronic medical records’ (EMR) and trans-
formed to data with standard measurement units.
This study examined the effect of variable levels of
nurse staffing on inpatient mortality. The ‘statistical

analysis’ of these variables is represented ontologically
in OBCS (Fig. 7). On a shift-by-shift basis, the unit
on which each patient was located was identified and
unit characteristics and staffing data for the shift were
merged with outcomes-relevant patient data. This
process resulted in 3,227,457 separate records, with
information for each patient relating to each shift
during the period in which they were hospitalized.
The records included measures of patient-level and
unit-level characteristics, nurse staffing, other shift-
specific measures, and patient mortality. In this study,
the initial statistical data analysis step is ‘data collec-
tion from an observation’, rather than from an experi-
ment. ‘Covariates’ were constructed to adjust for
factors not controlled in the study and yet still affect-
ing the ‘dependent variable’, which is in this case mor-
tality. Such a process ‘has specified output’ the
difference between targeted and actual staffing levels
at different time points during hospital stay. The rela-
tive risk of increased mortality was then estimated using
‘Cox proportional hazards models’. Reported statistical re-
sults included ‘p-value’, ‘mean’, ‘standard deviation’, ‘confi-
dence interval’, and ‘standardized mortality ratio’. The
obtained ‘p-value’ of <0.05 indicates that a null hypothesis
of equal average of ‘mortality ratios’ between those with
and without exposure to understaffed shifts was rejected.
Therefore, we can ‘draw a conclusion’ that understaffed
shifts were significantly associated with increased mortal-
ity (Fig. 7).

Fig. 7 Ontological representation of a clinical study. This use case study analyzed the effects of variable levels of nurse staffing on inpatient
mortality [22]. The data was obtained from eMedical records and then transformed. Cox proportional hazards model estimation (a type of survival
analysis) was performed to identify the effect of hospital unit shift rates (independent variable) on the patient mortality rate (dependent variable).
A p-value of <0.01 was used to draw a conclusion of the statistical significance between these two variables
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OBCS data query
OBCS can be queried using SPARQL, a Resource De-
scription Framework (RDF) query language for retrieving
ontology data stored in the RDF format [25]. Figure 8
shows how a simple SPARQL query can be used to iden-
tify the number of methods under the OBCS class ‘stat-
istical data analysis’ (OBCS_0000001). As shown in
Figs. 1 and 3, there are two types of statistical data ana-
lysis: inferential and descriptive. The SPARQL query can
recursively search all the layers of the two branches and
identify the total number of subclasses in each branch.

Discussion
There is a critical need to standardize data representa-
tion, including standardization and formal representa-
tion of statistical methods. In this paper, we have
introduced Ontology of Biological and Clinical Statistics
(OBCS), focusing on the introduction of high level sta-
tistics terms in OBCS and on how OBCS can be used in
combination with OBI for the ontological representation
of statistics-related biological and clinical data process-
ing. OBCS provides a timely source of statistical terms
and semantics in various areas of biological and clinical
statistics. OBCS provides a consensus-based rigorously
curated representation of the steps involved in statistics
pipelines in different domains in biological and clinical
fields, thereby supporting reproducibility of research.
The current OBCS development team is composed of

researchers from a number of complementary back-
grounds. Jie Zheng (PhD) is an experienced ontology de-
veloper and biomedical researcher. Marcelline Harris
(PhD, RN) is a domain expert in clinical statistics. Alfred
Hero (PhD, with appointment in the Department of Sta-
tistics at the University of Michigan) is a domain expert
in statistics and biostatistics. Anna Maria Masci (PhD) is
an immunologist who is well trained in ontology. Dr Yu

Lin (MD, PhD) is experienced in both clinical and bio-
medical informatics and ontology development. Barry
Smith (PhD) is a co-creator of the BFO ontology and of
the OBO Foundry. Yongqun He (DVM, PhD) is an
ontology developer and a domain expert in vaccine and
immunology research as well as computer science.
OBCS and OBI are closely related. OBCS extends OBI

by focusing on data collection, normalization and statistical
analysis performed on data. Some core terms in OBCS are
taken from OBI but the term coverage in OBCS includes
terms relating not only to data generated through experi-
ments but also to data from other resources such as survey
studies, text mining, clinical observations, online databases,
and so on. While many statistical data analysis methods
and related terms, including ‘ANOVA’ and ‘p-value’, are
used quite generally, there are also statistical methods and
terms that are applied only in certain specific domains.
The RMA [16] and GSEA (gene set enrichment analysis)
[26] methods, for example, are used only in relation to bio-
logical data. Since OBCS originated from and inherits its
coverage domain from OBI, it places its emphasis on bio-
medical statistics. However, OBCS’s coverage goes beyond
that of OBI, since it contains terms relating to statistical
methods commonly used in clinical fields. The major pur-
pose of OBCS is to provide a standardized representation
of statistical processes, methods and algorithms across
both the biological and clinical science. OBCS can serve as
an integrative metadata platform to support statistical data
representation, analysis, and data integration and facilitate
statistical validation, reproducibility, and discovery of pub-
lished research involving statistical analysis.
Several ontologies have been developed that contain

terms related to statistics [27–29]. Above all, the STATO
(http://stato-ontology.org/) was recently announced.
While OBCS is focused on biological and clinical statis-
tics, STATO aims to cover a broader scope and to

Fig. 8 SPARQL query of the number of statistic data analysis methods in OBCS. This SPARQL query was performed using the Ontobee SPARQL
query website (http://www.ontobee.org/sparql/). This query found 108 statistical data analysis methods in OBCS. These terms are all under the
OBCS term ‘statistical data analysis’ (OBCS_0000001)
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include also natural science domains outside the life sci-
ences. OBCS and STATO thus focus on different aspects
of statistics. After STATO was officially released, we
reused STATO terms in OBCS wherever applicable. We
have imported many terms with a focus especially on
the graph branch of STATO. To deal with the residual
sets of terms common to both OBCS and STATO, we
added the STATO-OBCS mapping information using
the oboInOwl:‘database_cross_reference’ annotation
property in OBCS. STATO terms contain many logical
axioms, which can be used for generating queries such
as those listed at http://stato-ontology.org/. Such imple-
mentations are very helpful will be incorporated within
OBCS wherever possible. On the other hand, the major
driving use case for OBCS is to serve annotation of bio-
medical data in a way that promotes reproducibility – and
eventual automation – of statistical data analyses for the
whole sets of biomedical experimental data [30]. As a re-
sult, OBCS focuses more than STATO on providing de-
tailed data analysis pipelines, as illustrated in Figs. 2, 5, 6,
and 7, to support systematic statistical data analyses. We
are collaborating with STATO to achieve a consensus div-
ision of development effort in the future.
The OntoDM ontology [27], developed with a focus

on data mining, also has some statistical components, as
does the Hypothesis and Law Ontology (HELO), which
focuses on representing probabilistic scientific know-
ledge and hypothesis evaluation [28]. In addition, the
Ontology of Clinical Research (OCRe) incorporates
some statistics terms used in clinical studies [29]. How-
ever, OCRe, in contrast to all the aforementioned ontol-
ogies, does not provide definitions for its terms, and it is
not aligned with BFO or OBI. After careful comparison
and examination, we found that none of these ontologies
focuses on the sort of comprehensive representations of
biological and clinical statistics that meets our needs in
formally representing the statistical tools and methods
used in data collection, organization, analysis, presenta-
tion and interpretation. OBCS is the first ontology that
systematically represents the five major processes in stat-
istical studies (Fig. 2), and lays out general design pat-
terns for representing statistical distributions (e.g.,
normal distribution as shown in Fig. 5) and related
terms. OBCS also includes many statistics terms unavail-
able in other ontologies.
Our two use cases lie at opposite ends of the trans-

lational science continuum from T0 (basic biomedical
research) to T4 (translation to population). These use
cases demonstrate the usage of OBCS in basic and
translational biomedical research. We are developing
OBCS applications addressing other points on this
continuum, including T1 (basic to clinical translation),
T2 (demonstrating efficacy), T3 (translation to prac-
tice) [31, 32].

In addition to the two use cases detailed in this manu-
script, OBCS is currently being used for the standardized
representation and annotation of genomics data analysis in
the Beta Cell Genomics Database (http://www.betacell.org/
gbco/). The OBCS design pattern and strategies are consist-
ent with previous research of using the combination of OBI
[10] and the Vaccine Ontology [33, 34] to support the stat-
istical meta-analysis of variables contributing to the effects
of protective immunity [14, 35]. OBCS is being tested in
the work of the ImmPort project team for standard data
representation and statistical data analysis, and it is being
evaluated also for its ability to support statistical software
tools such as RImmPort [4] and Python for Population
Genomics (PyPop; http://www.pypop.org/) developed to
promote reproducible and automated analysis of biological
and clinical data. Since OBI, VO, PATO, and other
OBO ontologies provide many terms to represent fea-
tures of biological and clinical studies, OBCS can use
the corresponding terms when representing the corre-
sponding experimental variables (such as ‘vaccine’,
‘gender’, ‘age’, ‘mortality’) in a statistical analysis.
In the future, OBCS will be further developed to in-

clude new statistical methods and inference procedures,
support data integration, and be applied to more re-
sources. The OBCS development is driven primarily by
use cases. Our current use cases have been focused on
vaccinology, immunology, flow cytometry, microarray,
and clinical nursing scenarios. Many more statistics-
specific questions and cases will still be generated and
studied in these areas. In addition to standard statistical
data representation and integration, OBCS will be useful
also in supporting more consistent extraction of data,
thereby allowing new kinds of search (for example: for
all data derived using a specific type of analysis or a spe-
cific type of variable). Many statistical methods have
been implemented in different software programs such
as many statistical programs available in BioConductor
[36] and RImmPort [4]. We plan to relate OBCS statis-
tical analysis methods to corresponding software pro-
grams by reusing the Software Ontology (SWO) terms
[37]. Such linkage between OBCS statistical methods
and software programs can support standard statistical
method representation and software integration, repro-
ducible data analysis, and interoperable communications
between different software programs. We believe that
biomedical and clinical databases and software programs
targeting big data analysis will benefit considerably from
the standardized definitions and logical representations
of statistics terms and relations [30] of the sort which
OBCS provides.

Conclusion
The Ontology of Biological and Clinical Statistics
(OBCS) is a community-based open source ontology in
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the domain of biological and clinical statistics. We pre-
sented the rationale, history, scope, contents, top level
hierarchy, and a general design pattern of OBCS. Sec-
ond, we provided detailed accounts of the main branches
of OBCS, including ‘data item’, ‘statistical data analysis’,
and ‘data collection’. Third, the OBCS approach to stat-
istical terms related to normal distribution is presented,
and it is shown how this approach can be generalized to
other statistical distributions. Fourth, two OBCS use
case are studied and presented, demonstrating how
OBCS can be applied to the ontological representation
of real statistical studies. Lastly, a SPARQL query ex-
ample (Fig. 8) is provided to demonstrate how to quickly
query OBCS information stored in an RDF triple store.
Overall, we believe that OBCS is a timely ontology able
to represent statistics-related terms and their relations in
a rigorous fashion, facilitate standard data analysis and
integration, and support reproducible biological and
clinical research.
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