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Abstract

Background: Pathogenic Escherichia coli infections cause various diseases in humans and many animal species.
However, with extensive E. coli vaccine research, we are still unable to fully protect ourselves against E. coli infections.
To more rational development of effective and safe E. coli vaccine, it is important to better understand E. coli
vaccine-associated gene interaction networks.

Methods: In this study, we first extended the Vaccine Ontology (VO) to semantically represent various E. coli
vaccines and genes used in the vaccine development. We also normalized E. coli gene names compiled from
the annotations of various E. coli strains using a pan-genome-based annotation strategy. The Interaction Network
Ontology (INO) includes a hierarchy of various interaction-related keywords useful for literature mining. Using VO,
INO, and normalized E. coli gene names, we applied an ontology-based SciMiner literature mining strategy to
mine all PubMed abstracts and retrieve E. coli vaccine-associated E. coli gene interactions. Four centrality metrics
(i.e., degree, eigenvector, closeness, and betweenness) were calculated for identifying highly ranked genes and
interaction types.

Results: Using vaccine-related PubMed abstracts, our study identified 11,350 sentences that contain 88 unique
INO interactions types and 1,781 unique E. coli genes. Each sentence contained at least one interaction type and
two unique E. coli genes. An E. coli gene interaction network of genes and INO interaction types was created.
From this big network, a sub-network consisting of 5 E. coli vaccine genes, including carA, carB, fimH, fepA, and
vat, and 62 other E. coli genes, and 25 INO interaction types was identified. While many interaction types represent
direct interactions between two indicated genes, our study has also shown that many of these retrieved interaction
types are indirect in that the two genes participated in the specified interaction process in a required but indirect
process. Our centrality analysis of these gene interaction networks identified top ranked E. coli genes and 6 INO
interaction types (e.g., regulation and gene expression).

Conclusions: Vaccine-related E. coli gene-gene interaction network was constructed using ontology-based literature
mining strategy, which identified important E. coli vaccine genes and their interactions with other genes through
specific interaction types.
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Background
In addition to be harmless commensal strains, the versa-
tile E. coli bacterial species includes many pathogenic vari-
ants [1]. Depending on the site of infection, pathogenic E.
coli strains are divided into intestinal pathogenic E. coli
(IPEC) and extraintestinal pathogenic E. coli (ExPEC).
Example IPEC pathotypes include enteroaggregative E.
coli (EAEC), enterohaemorrhagic E. coli (EHEC), entero-
pathogenic E. coli (EPEC), and enterotoxigenic E. coli
(ETEC). The most common ExPEC pathotypes include
uropathogenic E. coli (UPEC), meningitis-associated E.
coli (MNEC), and avian pathogenic E. coli (APEC) [2].
These virulent E. coli strains cause various diseases (e.g.,
gastroenteritis and urinary tract infections) with big
damages worldwide. For example, ETEC is estimated to
cause 300,000 to 500,000 deaths per year, mostly in
young children [3].
To prevent diseases caused by pathogenic E. coli infec-

tions, extensive vaccine research has been conducted
[4–7]. The Vaccine Investigation and Online Information
Network (VIOLIN; http://www.violinet.org/) [8, 9], a
comprehensive web-based central resource for integrating
vaccine research data curation and literature mining ana-
lysis, currently includes over 40 manually annotated E. coli
vaccines. Among these vaccines, Dukoral, originally
intended for protection against Vibrio cholerae, provides a
moderate protection against ETEC infections in human
[10]. However, there is no other licensed human E. coli
vaccine available on the market, putting humans at risk of
E. coli infections. Therefore, more active research is
needed to develop new E. coli vaccines.
For rational pathogenic E. coli vaccine design, it is

critical to understand E. coli gene functions and E. coli-
host interaction mechanisms. With over 35,000 E. coli-
related articles published in PubMed, it is impossible to
read all these articles manually. Therefore, literature
mining becomes critical. In addition to pathogenic
strains, many E. coli strains are nonpathogenic. E. coli
is also widely used as a model organism in microbiology
studies and as a commonly used tool in recombinant bio-
logical engineering and industrial microbiology. Given so
many E. coli strains and different E. coli usages, it has been
a challenge in mining vaccine-related E. coli gene interac-
tions from the large pool of literature reports. In this
study, we use the commonly applied GENETAG-style
named entity annotation [11], where a gene interaction
can involve genes or gene products such as proteins.
While human gene names are well normalized based on
the HUGO Gene Nomenclature Committee (HGNC;
http://www.genenames.org/), a similar gene nomenclature
strategy for bacterial gene names has not been formed.
However, it is possible to normalize bacterial gene names
using the strategy of pan-genome. Specifically, a bacterial
species can be described by its pan-genome, which is

composed of core genes present in all strains, and dis-
pensable (or accessory) genes present in two or more
strains or unique to single strain [12, 13]. After a pan-
genome is generated, the gene/protein names of the pan-
genome of a bacterial species can be obtained by gene/
protein name merging and cleanup from the annotations
of all strains belonging to the bacteria species.
Integration of biomedical ontology with literature

mining can significantly improve its performance. An
ontology is a human- and computer-interpretable set of
terms and relations that represent entities in a specific
biomedical domain and how they relate to each other.
Previously, we applied the community-based Vaccine
Ontology (VO) [14] to enhance our literature mining of
interferon-gamma related [15], Brucella-related [16],
and fever-related [17] gene interaction networks within
the context of vaccines and vaccinations. Recently, we
have developed the Interaction Network Ontology
(INO) and successfully applied it to the studies of vac-
cine gene interactions [18] and host-Brucella gene
interactions [19]. In these studies, we used and ex-
panded SciMiner [20], a natural language processing
and literature mining program with a focus on scientific
article mining. SciMiner uses both dictionary- and rule-
based strategies for literature mining [20].
To better study gene interaction networks, we have

also developed a literature mining strategy CONDL,
standing for Centrality and Ontology-based Network
Discovery using Literature data [17]. The centrality ana-
lysis here refers to the application of different centrality
measures to calculate the most important genes (i.e.,
hub genes) of the resulting gene-gene interaction net-
work out of biomedical literature mining. Four types of
centrality measures have been studied: degree, eigen-
vector, closeness, and betweenness [17, 21]. The CONDL
strategy was applied to extract and analyze IFN-γ and
vaccine-related gene interaction network [21] and vac-
cine and fever-related gene interaction network [17], and
our results showed that the centrality analyses could
identify important genes and raise novel hypotheses
based on literature mined gene interaction networks. In
this study, we applied this approach, together with the
pan-genome E. coli gene collection, to E. coli gene inter-
action networks using VO and INO to identify the cru-
cial E. coli genes and interaction types.

Methods
Pan-genome based E. coli gene name normalization
E. coli gene names from E. coli K12 genome have been
collected in EcoGene (http://www.ecogene.org/) [22],
which were used as the basis for our E. coli gene name
normalization. To integrate E. coli gene names from dif-
ferent E. coli genome annotations, we applied the pan-
genome strategy [12, 13]. Specifically, out of 75 E. coli
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strains, we used the Vaxign program [23], which includes
the OrthoMCL ortholog searching program [24], to
generate an E. coli pan-genome that includes core E.
coli genes shared by all strains, and dispensable genes
present in two or more strains or unique to single
strain. After the E. coli pan-genome was generated, the
gene names of the pan-genome were reannotated by
merging together different gene names from these E.
coli strains when these gene names belong to the same
genes of the pan-genome. The reannotated gene names
were then used for next step literature mining.

VO modeling of E. coli vaccines and genes used in E. coli
vaccine development
E. coli VO ontology terms were obtained from the VIO-
LIN vaccines website (http://www.violinet.org/vaxquery/
vaccine_query_process.php?c_pathogen_id[]=25) that con-
tained 44 manually annotated E. coli vaccines. In addition
to specific E. coli vaccine representations (terms), we also
modeled and represented E. coli ‘vaccine genes’. Here, a
‘vaccine gene’ is defined as a microbial gene that has been
used as a gene targeted or genetically engineered in at
least one experimentally verified vaccine. For example, a
vaccine gene may encode for a protective protein antigen,
which can be expressed, purified, and used as the vaccine
antigen component in a subunit vaccine. Some vaccine
genes encode for virulence factors, and their mutations
result in the generation of live attenuated vaccines [25].

VO/INO-SciMiner tagging of genes/interaction terms and
vaccine terms
Our current study relies on the use of SciMiner (and its
variant VO-SciMiner). The original SciMiner achieved
87% recall, 71% precision and 76% F-measure on
BioCreAtIvE II Gene Normalization Task data [20]. In
terms of identifying vaccine ontology terms, VO-
SciMiner demonstrated 91% recall and 99% precision in
the domain of Brucella vaccines [16]. In the current study,
VO-SciMiner was further modified to be able to handle
the compiled pan-genome-based E. coli genes with a more
stringent name identification matching strategy.
The abstracts and titles of all PubMed records pub-

lished by the end of 2014 were used for the present lit-
erature mining study. Figure 1 illustrates our overall
workflow. SciMiner [20] and its variations, specialized
for specific ontologies (INO-SciMiner [18] and VO-
SciMiner [16]) were used to process sentences from
PubMed literature and to identify entities (E. coli VO
terms, and INO terms). VO-SciMiner was modified to
be able to handle the compiled pan-genome-based E.
coli gene. In order to focus on the genes related to E. coli
vaccine, the analysis was limited to the entities identified
from the articles in E. coli and vaccine context, defined
by a PubMed search of “Escherichia coli [MeSH]” and

“vaccines [MeSH]”. Figure 1 illustrates the overall work-
flow of our approach.

Co-occurrence analysis
The tagged genes were used to study the co-occurrence
of genes and vaccines in the same sentences. First, an E.
coli gene-gene interaction network was generated based
on the sentence-level co-occurrence of E. coli genes. The
E. coli gene-gene interactions were defined for any pos-
sible pairs of E. coli genes, two or more of which were
identified from same sentence. The VIOLIN vaccine data-
base [8, 9] includes 25 E. coli vaccine genes as shown on
the VIOLIN website: http://www.violinet.org/vaxquery/
query_detail.php?c_pathogen_id=25. These vaccine genes
have also been represented in the VO. These E. coli vac-
cine genes were used in our ontology-based literature
mining study, which aims to identify other E. coli genes
that co-occur with these vaccine genes in the same sen-
tences from peer-reviewed article abstracts.
This E. coli gene-gene interaction network was ex-

tended by INO to create a comprehensive vaccine-
centered E. coli gene-gene interaction network. In this
study, these additional entities were limited only to those
in the same sentences, where two or more E. coli genes
were mentioned.

Centrality analysis
The collected gene-interaction networks were subject to
centrality analysis. Four different centrality metrics were

Fig. 1 Project workflow. The presented study was limited to the
literature in the vaccine domain. Representative E. coli genes, obtained
through a pan-genome orthologue analysis, host genes as well as two
established biomedical ontologies of interactions (INO) and vaccines
(VO) were identified from the literature by SciMiner. Based on the
co-occurrence among these identified entities, vaccine-associated
E. coli gene-gene interaction network was generated and further
analyzed to identify the central genes and enriched biological functions
in this network
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computed to identify the most important nodes (i.e.,
genes, vaccine genes, and INO terms) in the created
interaction networks using the Cytoscape plug-in
CentiScaPe [26]. The degree centrality of a node is the
number of nodes that are its first neighbors (i.e., directly
connected to the given node). The more connections a
node has, the more central it is based on degree centrality.
In degree centrality, all neighbors contribute equally to
the importance of a node. In eigenvector centrality, a node
contributes to the centrality of another node proportion-
ally to its own centrality. A node is more central, if it is
connected to many central nodes. The well-known PageR-
ank algorithm for ranking web pages is also based on
eigenvector centrality. Closeness and betweenness cen-
tralities depend on the position of a node in the net-
work. Closeness centrality is based on the distance of a
node to the other nodes in the network. The closer a
node is to the other nodes, the more important it is
considered to be. Betweenness centrality is based on
the number of shortest paths connecting two nodes
that pass over the given node. A node is more central,
if it acts like a bridge in the network, i.e., lies on many
shortest paths.

Ontology-based hierarchical classification of interaction
terms
All the interaction keywords identified in our literature
mining were mapped to INO terms. The OntoFox tool
[27] was used to extract these INO terms and additional
terms related to these INO terms. The Protégé OWL
editor [28] was used to visualize the hierarchical struc-
ture of these extracted terms.

Results
Pan-genome-based E. coli gene name normalization
Although EcoGene provides very good E. coli gene name
annotations, it mainly covers the E. coli strain K12.
However, many other E. coli strains are available and E.
coli gene names are very complicated with different
names across various strains. For example, the gene
names “iroN” and “fepA” are synonyms, and E. coli iroN
encodes for an outer membrane receptor FepA (http://
www.ncbi.nlm.nih.gov/gene/7324526). Similarly, E. coli
strain CFT073 gene C0393 (hemoglobin protease) has
100% sequence identity with the vacuolating autotran-
sporter toxin (vat) gene from many other E. coli strains
such as strain PAB48 (GenBank Accession ID:
KR094946.1). Another example is the E. coli gene rfaJ,
which has several synonyms such as waaJ (http://ecoli-
wiki.net/colipedia/index.php/rfaJ:Quickview). Such syno-
nym information is often not reported in EcoGene.
Therefore, we applied the pan-genome based strategy as
detailed in the Methods section in order to get a more
complete set of normalized E. coli gene names.

VO modeling of vaccines and related vaccine genes
The newest VIOLIN vaccine database includes 44 E. coli
vaccines. Only approximately half of these vaccines existed
in the initial release of VO back in 2012. In this study, we
updated VO by including all these vaccines in VO, and we
also added intermediate layer terms to better represent and
organize the relations among these terms. VO also repre-
sents 25 E. coli vaccine genes and how these vaccine genes
are used in E. coli vaccine formulations. Figure 2 provides
an example of E. coli subunit vaccine ‘E. coli FimH with
CFA and then IFA’. A subunit vaccine uses a subunit (typ-
ically a protein) of a pathogen organism as vaccine antigen.
This vaccine uses the E. coli protein FimH (an E. coli fim-
brial subunit and D-mannose specific adhesin) as the pro-
tective vaccine antigen, and it uses the complete Freund’s
adjuvant (CFA) in the first vaccination and the incomplete
Freund’s adjuvant (IFA) in the boost vaccination [29].
Some E. coli vaccines are live attenuated vaccines. One

method to make a live attenuated vaccine is to knock out a
virulence factor gene(s) in a wild-type virulent strain to
make it less virulent (i.e., attenuated) but keep the antige-
nicity. For example, the carA and carB genes, which form
a carAB operon, are virulent E. coli genes. Their mutations

Fig. 2 VO hierarchical structure and axioms of E. coli vaccines. a
Vaccine hierarchy that shows the E. coli vaccines. b Axioms of the E.
coli vaccine ‘E. coli FimH with CFA and then IFA’ (VO_0001168). The
circled term ‘FimH’ is the E. coli protein FimH. These are screenshots
with the Protégé OWL editor
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in an E. coli strain led the development of the mutant
vaccine “E. coli carAB mutant vaccine” [30]. Such a viru-
lence factor gene whose mutation leads to the generation
of an experimental verified vaccine is named “virmugen”
[25]. In VO, an ontological axiom is used to represent the
relation between the vaccine and the mutated genes:
‘E. coli carAB mutant vaccine’: not has_part some

(carA or carB)
In this ontological axiom, the relation ‘not has part’

means that the mutant vaccine strain does not have carA
and carB genes in the mutated bacterial genome.
The VO representation of the vaccine-gene relations

provides rationale for us to identify specific “vaccine
genes” and study how these vaccine genes are related to
other E. coli genes.

Literature mining statistics and interaction network
The complete abstracts and titles from PubMed,
published before December 31, 2014, were processed by
SciMiner to identify E. coli genes, INO and VO terms.
SciMiner identified 2,037 E. coli genes from 53,925 sen-
tences in articles indexed with “Escherichia coli [MeSH]”.
The study was further limited to the articles in the vaccine
context (defined by ‘vaccines [MeSH]’), where SciMiner
identified a total of 1,781 unique E. coli genes that were
co-cited with at least one other E. coli genes at the
sentence level. A total of 16,887 INO terms (mapped to
88 unique INOs) were also identified in 11,350 sentences.
An interaction network of these E. coli genes and INO

terms within the vaccine context was visualized in Fig. 3a.
A subnetwork focused on known genes used in E. coli vac-
cines was generated as illustrated in Fig. 3b, which include
5 vaccine-genes (nodes in cyan), 62 E. coli non-vaccine
genes (nodes in red), and 25 INO terms (nodes in purple).
As seen in the carA and carB sub-network (Fig. 3c),

carA and carB were found in our literature mining to
interact with each other through different interaction
types including gene expression, gene fusion, dominant
regulation, and protein translation. For example, the re-
trieved sentence corresponding to the gene fusion inter-
action (INO_0000106) between these two genes is:
“A construct was made in which the intergenic region

between the contiguous carA and carB genes was
deleted and the sequences encoding the carbamyl-
phosphate synthetase subunits were fused in frame” [31].
In this case, after deletion of the intergenic region be-

tween these two genes, a fused carA-carB gene formed,
and the resulting fusion protein was activated 10-fold
relative to the native protein [31].
Meanwhile, our literature mining also found that carA

or carB interacts with other genes. For example, carB
interacts with pyrB through the induction interaction
type (INO_0000122) as shown in the following sentence:

“In addition, however, exogenous uracil triggers cellu-
lose production, particularly in strains defective in either
carB or pyrB genes, which encode enzymes catalyzing
the first steps of de novo UMP biosynthesis.” [32].
This sentence represents a complex interaction

process. Specifically, the direct induction interaction is
that exogenous uracil triggers cellulose production, and
such interaction occurs when the carB or pyrB gene was
defective. In this case, carB and pyrB genes are related,
since both encode enzymes that catalyze the frist steps
of de novo UMP biosynthesis [32]. In this case, the two
genes do not directly interact through the induction
type, i.e., it is not that carB (or pyrB) triggers pyrB (or
carB). Instead, the two genes are involved in providing a
condition to another induction interaction. Our study
found that such cases occur frequently.
Other sub-networks centered on the other vaccine

genes are available in Additional file 1. A Cytoscape file
containing the E. coli gene-vaccine interaction network
as well as the sub-networks centered on each vaccine-
gene is available in Additional file 2.

Centrality analysis
Our centrality analysis using the Fig 3b subnetwork
identified the centralities of three types of nodes (E. coli
vaccine genes, other E. coli genes, and INO terms) in the
literature mined network as shown in Fig. 3b. By identi-
fying top 10 nodes based on either of the four types of
centrality scores, 19 central nodes were identified
(Table 1). Out of the 19 “central” nodes, all the 5 E. coli
vaccine genes are in the list. The result is reasonable
since all the genes in Fig. 3b subnetwork are expected to
interact with at least one of these five E. coli genes. Eight
other E. coli genes are also found central in the list.
Besides identifying the central E. coli genes, we also

targeted the identification of central types of interactions
among these genes in the created vaccine associated E.
coli gene interaction network. Therefore, INO terms
(interaction types) were represented as nodes in the net-
work. Six INO terms were identified in the top node list
(Table 1). These terms (e.g., gene expression and regula-
tion) represent the most commonly identified interaction
types in vaccine-related E. coli gene interaction studies.
Different centrality measures provide different aspects

of the network (Table 1), since they define centrality in
different ways and capture central nodes based on differ-
ent aspects. While some node are central based on all
four centrality metrics, some are identified as central by
only one or two of the centrality metrics. Overall, degree
centrality and eigenvector centrality results are similar.
Interestingly, three out of the five vaccine genes were
ranked in the top 10 only by the betweenness centrality
metric, suggesting that these three vaccine genes are
critical to link together different sections in the network.
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A node may be considered as important, even if it is
identified as central based on only one centrality metric.
Therefore, to summarize the importance of a node, the
minimum (i.e., top) rank of each node based on any of
the four centrality metrics is shown in Table 1.

INO ontology-based analysis of interaction types
Here is one example sentence identified from our study:
“Complementation experiments indicated that both the
major fimbrial subunit gene, fimA, and the fimH gene in
combination with either the fimF or the fimG gene were
required for mannose-specific adhesion.” [33].

This sentence represents the INO interaction type
‘regulation’ (INO_0000157). Specifically, the four genes
fimA, fimH, and fimF (or fimG) were found to regulate
(“were required for”) the mannose-specific adhesin [33].
Note that in our literature mining, the regulation rela-
tion does not have to be one gene regulating another
gene; it is also allowable for both genes regulating for a
specific phenotype.
For the INO interaction type detection, we used the

literature mining keywords collected in the INO. Spe-
cifically, in INO, we used the annotation property ‘has
literature mining keywords’ (INO_0000006) to assign
many keywords used to represent the interaction type.

A

B

C

Fig. 3 The interaction network among E coli genes and INO terms. a Interaction network among all E. coli genes co-cited at a sentence-level with
INO terms in the vaccine context. b a sub-network focused on five E. coli genes (in cyan nodes) that are known to be used in E. coli vaccines. c a
sub-network of two vaccine genes, carA and carB, and their immediate neighbors in (b). Gene names with additional synonyms were represented
with the sign “|”. For example, “iroN|fepA” represents that this gene has two gene symbols “iroN” and “fepA”. Nodes in red represent E. coli genes,
except cyan nodes, and nodes in purple are INO terms identified in the same sentences of these E. coli genes. The pink dashed lines represent
interaction between E. coli gene and INO terms, while the black solid lines represent the interaction between E. coli genes
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For example, “required” is a keyword assigned for the
INO interaction type ‘regulation’.
From our literature mining study, 25 specific INO

interaction types were identified. The hierarchical struc-
ture of these 25 INO interactions types is shown in Fig. 4.
As shown in this figure, the most common interaction
type is various types of ‘regulation’, including positive,
negative, and dominant regulation types. Other inter-
action types such as direct physical interactions and
gene expression types (including transcription and trans-
lations) are also included. Such an INO hierarchical ana-
lysis clearly illustrates how different genes interacted
with each other based on the reported literature papers.

Discussion
The contributions of this study are multiple. First, this
study for the first time applied ontology-based literature
mining method to analyze vaccine-related E. coli gene
interaction network using all PubMed abstracts. Con-
sidering the status of E. coli in microbiology, infectious
diseases, and the whole biology, such a study is important.
Second, our study employed pan-genome-based approach
to normalize E. coli gene names across various strains.

Third, this study represents the first-time application of
applying both VO and INO in supporting literature
mining of pathogen and vaccine-related gene-gene
interactions. Fourth, we further demonstrated that the
centrality-based analysis enhanced our ability in identi-
fying hub or critical genes or nodes in the E. coli gene-
vaccine intearction network.
The identification of those other E. coli genes that

interact with known E. coli vaccine genes from our study
provides scientific insights on E. coli vaccine research
and development. These genes as a whole provide an
explanation on the functions and biological processes of
these genes preferred for vaccine development. These
genes also provide new candidates for future vaccine de-
velopment. It should be noted that not all E. coli vaccine
genes were identified in our literature mining process,
since our analysis focuses on retrieving gene-gene inter-
actions instead of individual genes.
Compared to our previous vaccine-related Brucella

gene interaction literature mining study [16], the current
study includes the more challenging E. coli species and

Table 1 The most central nodes in the network. The top 10
nodes based on Degree (D), Eigenvector (E), Closeness (C), and
Betweenness (B) centrality metrics. The minimum (i.e., top) rank
of each node based on any of the four centrality metrics is shown
in the Min column

Type Name D E C B Min

Vaccine gene fimH 1 1 2 1 1

Vaccine gene fepA 2 2 1 2 1

E. coli fimA 3 7 9 6 3

E. coli ompT 4 4 3 4 3

E. coli hlyA 5 3 4 - 3

INO Inclusion 6 5 3 7 3

Vaccine gene vat - - - 3 3

Vaccine gene carA - - - 5 5

INO protein translation - - 5 - 5

E. coli yfcU 8 6 - - 6

INO gene expression 9 - 6 10 6

E. coli entF 7 - - - 7

E. coli chuA 9 8 7 - 7

E. coli tonB - - - 8 8

INO dominant regulation - - 8 - 8

INO association 9 9 9 - 9

INO regulation 9 - 9 - 9

Vaccine gene carB - - - 9 9

E. coli hlyD - 10 - - 10

The rankings of the terms are shown. Terms with the same centrality scores
have the same ranking. Abbreviations here: “E. coli” - E. coli gene, “Vaccine
gene” - E. coli vaccine gene; “INO” – INO term

Fig. 4 INO hierarchy of 25 interaction keywords identified in the
vaccine-related E. coli gene interaction network. OntoFox [27] was used
to extract the hierarchical structure among the 25 identified INO types.
The OntoFox option of “includeAllIntermediates” was used in the
process. The Protégé OWL editor was used for structure visualization
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also for the first time employed a new INO-based inter-
action type analysis approach. In general, our study
found many commonly reported interaction types (e.g.,
expression and regulation) from the E. coli vaccine-gene
interaction network. We also found that different types
of regulation often are not about the direct regulatory
interactions between two genes (e.g. gene A regulates
gene B). Instead, they are often related to regulatory
interactions between the genes and another interaction
process or phenotype. For example, as shown in the
“mannose-specific adhesion” sentence described in the
Results section, the gene fimA and the gene fimH were
both required for a phenotype: mannose-specific adhe-
sion [33], rather than they had a direct interaction.
Another example is the carB vs pyrB interaction, which
was also shown in the Results section, where the two
genes participate in a pathway and a defective pathway
process results in the occurrence of an induction inter-
action [32]. These two examples represent quite com-
plex interactions that involve multiple components and
relationships that are represented by multiple literature
keywords as shown in our previous studies [18, 34].
Further research is required to automatically identify
such specific and complex patterns from the biomedical
literature.
It is possible that tagged E. coli genes from our litera-

ture mining and their associated ortholog genes in other
bacteria may likely co-occur with most vaccines for vari-
ous bacteria (instead of only E. coli). This aspect of study
is out of our scope for this study since we only focus on
E. coli in this study. However, our previous INO-based
study found that many genes co-occur in sentences with
vaccines, and we even developed an INO-based Fisher’s
exact test to perform enrichment analysis of tagged
genes in the scope of INO [18]. It is noted that the pre-
vious INO-based study focused on human genes [18]
while our current study focuses on bacterial genes. How-
ever, we envision that bacterial genes would perform
similarly. Our previous VO-based Brucella gene-vaccine
interaction study identified many interesting patterns
among the Brucella genes as well [16]. Furthermore,
many studies have found that the collection of bacterial
genes, proven to be useful in vaccine development, often
share common characteristics [25, 35, 36]. For example,
systematic analysis of a collection of experimentally
verified protective bacterial genes revealed multiple
conserved domains (or called motifs) and preferred sub-
cellular localizations among protective antigens [35, 36].
The collection and analysis of a set of virulence factors
(i.e., “virmugens”) whose mutations led to experimentally
verified live attenuated vaccines also discovered many
enriched virmugens patterns, for example, the frequent
usage of bacterial aroA genes as virmugens, and virmu-
gens often involving metabolism of nutrients (e.g., amino

acids, carbohydrates, and nucleotides) and cell mem-
brane formation [25]. These results out of systematical
analyses facilitate rational vaccine design. More re-
searches are warrantied to apply literature mining to
identify more specific vaccine-associated gene/protein
patterns and underlying biological and immunological
mechanisms.
Our literature mining method identifies gene-gene

interactions based on sentence-level co-citation analysis.
The directionality of the extracted gene-gene interac-
tions is not detected by the current SciMiner. Therefore,
the generated gene-gene interaction network is undir-
ected and the centrality scores are computed on this
undirected network. For example, if a sentence states
that Gene A activates Gene B, an undirected edge be-
tween Gene A and Gene B is included in the gene-gene
interaction network. The information that the direction-
ality of the interaction is from Gene A to Gene B is lost.
In our future work, we will develop new text mining and
statistical methods to identify the directionality informa-
tion regarding gene-gene interactions. With the direc-
tionality of extracted gene-gene interactions, it would be
easier to find “provider” or “consumer” roles for differ-
ent genes. We will investigate how centrality analysis is
affected when directionality information is incorporated.
A direction-based importance metric, such as SimRank
[37], can be measured to provide direction-based
weights to network nodes and generate more interesting
results.
Our future directions will be multiple. First, we plan to

improve our pan-genome-based gene name normalization
method to cover other pathogens and to include such a
strategy automatically in our SciMiner pipeline to study
other pathogens (including bacteria, viruses, and para-
sites). The performance of our SciMiner pipeline in host-
pathogen interaction literature mining will be thoroughly
evaluated using manually curated documents. Second, we
also plan to apply our methods to study host-pathogen/
vaccine interactions. In addition, we will extend the INO
modeling to better support ontology-based literature
mining. Furthermore, statistical and machine learning
methods [38, 39] will be explored to improve our litera-
ture mining and downstream analysis.

Conclusions
In this study, we first used a pan-genome-based
approach to collect and normalize E. coli genes and cor-
responding gene names, relied on the Vaccine Ontology
to obtain E. coli vaccines and vaccine genes, and applied
the Interaction Network Ontology to obtain possible
interaction keywords. These E. coli gene names, vaccine
names, vaccine genes, and interaction keywords were
then combinatorially used by SciMiner to process all
PubMed abstracts to construct a vaccine-related E. coli
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gene-vaccine interaction network. From the contructed
interaction nework, our centrality analysis further identi-
fied hub or critical E. coli genes and the types of the
interactions involved in the network. New insights have
been identified using our systematic analysis. To our
knowledge, this is the first study of applying pan-
genome and ontology-based literature mining strategy to
construct E. coli gene interaction network and perform
systematic centrality analysis.
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