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Abstract

Background: Biological databases store data about laboratory experiments, together with semantic annotations, in
order to support data aggregation and retrieval. The exact meaning of such annotations in the context of a database
record is often ambiguous. We address this problem by grounding implicit and explicit database content in a
formal-ontological framework.

Methods: By using a typical extract from the databases UniProt and Ensembl, annotated with content from GO, PR,
ChEBI and NCBI Taxonomy, we created four ontological models (in OWL), which generate explicit, distinct
interpretations under the BioTopLite2 (BTL2) upper-level ontology. The first three models interpret database entries as
individuals (IND), defined classes (SUBC), and classes with dispositions (DISP), respectively; the fourth model (HYBR) is a
combination of SUBC and DISP. For the evaluation of these four models, we consider (i) database content retrieval,
using ontologies as query vocabulary; (ii) information completeness; and, (iii) DL complexity and decidability. The
models were tested under these criteria against four competency questions (CQs).

Results: IND does not raise any ontological claim, besides asserting the existence of sample individuals and relations
among them. Modelling patterns have to be created for each type of annotation referent. SUBC is interpreted
regarding maximally fine-grained defined subclasses under the classes referred to by the data. DISP attempts to
extract truly ontological statements from the database records, claiming the existence of dispositions. HYBR is a hybrid
of SUBC and DISP and is more parsimonious regarding expressiveness and query answering complexity. For each of
the four models, the four CQs were submitted as DL queries. This shows the ability to retrieve individuals with IND,
and classes in SUBC and HYBR. DISP does not retrieve anything because the axioms with disposition are embedded in
General Class Inclusion (GCI) statements.

Conclusion: Ambiguity of biological database content is addressed by a method that identifies implicit knowledge
behind semantic annotations in biological databases and grounds it in an expressive upper-level ontology. The result
is a seamless representation of database structure, content and annotations as OWL models.
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Background
Biological databases store data about summarized results
from laboratory experiments. Apart from numeric and
unstructured text entries, they usually include seman-
tic annotations, characterized by identifiers from domain
ontologies, to enhance database entries with standardised
meaning. For instance, database records from the Uni-
fied Protein Resource (UniProt) [1] are annotated with
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terms taken from the Protein Ontology (PRO) [2] and
the Gene Ontology (GO) [3]. It is mainly via their use as
annotation vocabularies that bio-ontologies have become
important resources for the management of biomedical
research data.
As much as these domain ontologies, in isolation, obey

formal principles and good practice guidelines [4, 5],
as little the meaning of the annotations themselves has
been formalized so far. The exact interpretation of what
it means when, e.g., in a UniProt record the protein
PRO:Methionine synthase is linked to the biological pro-
cess GO:Methylation, is left to the user, mainly due to
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limited representation of UniProt Core [6]. UniProt Core
includes the description on database fields related to each
other, but without formalization and links to GO (for
example). This can constitute a source of misunderstand-
ing and hamper correct data interpretation, leading to
doubtful or wrong conclusions.
Although the meaning of semantic annotations in

database records may seem trivial for domain experts,
human interpretation of large numbers of records is
tedious and time-consuming. Laukens and colleagues [7],
among others, have highlighted the difficulty of interpret-
ing database content in the context of proteomics. The
reason for this is that there is still a divide between biolog-
ical databases and the semantic technologies developed
for biomedical ontologies. Scattered data need to be inte-
grated into a coherent picture, which is complicated by
ambiguity and lack of interoperability.
On the one hand, there are rich and well-curated

databases with highly structured tabular content but lim-
ited ontological explicitness. Like most content of tabular
data structures, these databases require implicit back-
ground assumptions for their correct interpretation.
Imagine, for example, a database table with three fields

Protein, Organism and Phenotype, filled with the symbols
Prot1, Org1, and Phen1. Such a table is open to multi-
ple interpretations, among which only one is the intended
one, viz. that organisms of the type Org1 in which protein
Prot1 is dysfunctional are at risk to develop the patholog-
ical phenotype Phen1. This interpretation is not formally
described anywhere, because it is assumed that database
curators and users would not succumb to erroneous inter-
pretations, such as that all proteins of Prot1 are included
in at least one organism of type Org1, or that organ-
isms of type Org1 have as part at least one protein of the
type Prot1 and exhibit specifically at least a Phen1. There-
fore, a formal description would be fundamental for the
correct interpretation of the database content in other
contexts.
On the other hand, there is an increasing number of

biomedical ontologies in which logic-based axioms pro-
vide precise descriptions, which indeed enable formal
reasoning. Such axioms are expressed in Description Log-
ics (DL) [8] using the Web Ontology Language OWL2
[9]. DL queries can be answered based on satisfiability
testing and class subsumption. For instance, such queries
enable to retrieve Parkinson’s disease in a query when
searching for diseases that affect the extra-pyramidal
system, if Parkinson’s disease has been formally char-
acterised as a disorder located in the basal ganglia of
the brain, and the latter as part of the extra-pyramidal
system.
This division between database content and structure

on the one hand (with its implicit meaning) and ontol-
ogy content on the other hand (with its explicit meaning)

is, currently, an obstacle towards querying both together.
Given this picture, several questions arise:

i. How can the implicit knowledge about entities and
relationships described in the structure of a
biological database be represented?

ii. How can the content of databases be interpreted, i.e.,
which domain entities are represented by the data
elements and their connections?

iii. Are structure and content of biological databases of
ontological nature?

iv. If this is the case, how can they be translated into
axioms or assertions in a commonly used ontology
language, and which representational patterns might
be considered?

v. Once database structure and content are expressed
by formal-ontological means, how can existing
bio-ontologies be plugged into this structure?

vi. Given a seamless integration among these
components, are there benefits for content retrieval,
regarding correctness, completeness, and
user-friendliness?

vi. Is such a system capable to accommodate large
amounts of data in biological databases, also
considering the size of a domain ontology?

Addressing questions i-iv, we hypothesise that there are
feasible ways to express implicit and explicit database
content by formal-ontological means and combine this
content with pre-existing domain ontologies.
Regarding question v, previous work has shown how

content of tables in scientific publications can be inter-
preted on formal grounds [10]. Question vi has been
addressed in [11], which introduced the reasoning capa-
bilities of querying highly axiomatised bio-ontologies.
Question vii needs to be addressed after answering ques-
tions i-iv, but is beyond the scope of the present paper.
We will demonstrate how entities referenced by a typ-

ical extract from a biomedical database can be inter-
preted under several ontological viewpoints, viz. regard-
ing the introduction of individuals (IND), the addition
of new axioms to existing classes (DISP) and the intro-
duction of additional defined classes (SUBC and HYBR).
The resulting OWL models are, then, tested under three
aspects:

i. Database content retrieval: classes or individuals are
retrieved by means of DL queries;

ii. Information completeness: is the interpretation
generated able to answer user queries?

iii. DL complexity and decidability: in order to solve DL
queries, there should be theoretical guarantees that
the machine performs under a reasonable cost and
finite time (complexity) and always finishes its task
(decidability).
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Methods
This section describes the ontology engineering princi-
ples we subscribed to, as well as the data we gathered to
exemplify our approach.

Engineering principles
Firstly, we believe that ontology structure and content
should be driven by the underlying reality, rather than
by specific application needs. We subscribe to the prin-
ciples of the OBO Foundry [4], and emphasise the use
of a principled upper-level ontology, here BioTopLite2
(BTL2) [12], which offers a set of high-level classes,
together with constraining axioms, using a small number
of core relations. Classes like Organism, ‘Mono molecular
entity’, and ‘Body part’ facilitate the alignment with other
ontologies like GO, PRO, SNOMEDCT and ChEBI. BTL2
can also be aligned with most of BFO [13] and the OBO
Relation Ontology [14]. BTL2 regards all instances of its
classes as implicitly time-indexed, thus solving the ambi-
guity problem of using binary relations for the cases
where BFO2 [13] requires ternary ones, which are not
expressible in OWL [15].
The fundamental role of Description Logics (DLs) [8]

is justified by the widespread use of the Web Ontology
Language OWL2 [9], supported by popular editors and
classifiers [16]. We use OWL-DL, which corresponds to
the language specification SROIQ [17], and which com-
bines expressiveness with complete and finite reasoning
power. OWL2 supports classes, binary relations (object
properties), and individuals, together with related axioms
and assertions, for which we will use the OWL2 Manch-
ester Syntax [18]. Important for DL is the distinction
between ABox and TBox. The TBox contains “termi-
nological" class-level axioms, i.e. the ontological content
proper, whereas the ABox contains contingent “asser-
tions" about individuals.

Dispositions
Real world entities are often described in terms of dis-
positions, i.e., tendencies of something to act in a certain
manner under given circumstances resulting from natu-
ral constitution, nature, quality, or orderly arrangement.
Saying that all animals are organisms is a universal state-
ment; stating that all humans are able to develop diabetes
mellitus type 2 is a dispositional statement. Several works
[12, 19–21] have suggested to include dispositions in
biomedical ontologies; e.g., the disposition to pump blood
is present in all healthy organs of the type Heart.
Large parts of biomedical database content seem to be

dispositional: In biochemistry, a statement that a protein
A participates in a process B does probably not mean
that all instances of A constantly participate in a pro-
cess of type B, but rather that all instances of A have the
disposition to participate in such a process. Biomedical

observations yield statistical results, which indicate that
participants of an experiment are ascribed to certain capa-
bilities (e.g. to participate in B under certain experimental
conditions) [19, 22].

Information content entities
Finally, database content as such needs ontological
scrutiny, as highlighted in [7]. Database content is onto-
logically best characterised as information content. This
requires a strict distinction between (i) the database
content proper and (ii) the entities in the world ref-
erenced by the former. As well as the data in clinical
documents, biomedical database content is connected by
a specific relation (often named “represents”, “isAbout”,
or “denotes”) with biomedical entities. Such information
content entities do not necessarily denote particulars (i.e.,
instances) in the domain described. A “myocardial infarc-
tion” record entry about a patient recently admitted to the
emergency room may have the attribute “probable”, even
if the patient does (in fact) not have any heart problem.
Similarly, a database entry on, e.g., the relation between
protein Pk and phenotype Ti in an organism Om may be
affected by experimentation, reporting, or curation errors.

Running example
For the analysis reported in this paper, we selected a
typical biological database example (cf. Table 1), gener-
ated by joining data from UniProt [1] and Ensembl [23]
by standard database querying (Additional file 1). This
was performed in order to retrieve all related records
to the metabolism of homocysteine and other sulphu-
rated amino acids, like methionine and cysteine (see [24]
for more information regarding homocysteine metabolic
pathway).
From UniProt (release 2015_01), we retrieved 21,868

records, and (exactly) 1000 from Ensembl (release 78). All
sample data were retrieved on January 22nd, 2015. Data
from the NCBI Taxonomy (2015AA) were incorporated
at the end of the retrieval process, adding the taxonomy
identifiers of the organisms from which data are recorded
in UniProt and Ensembl.
Using the ontology editor Protégé v.5, supported by the

DL classifier HermiT [16] v.1.8.3, we created four OWL2
models, each of which followed a different strategy. They
were created according to the data organisation presented
in Table 1, based on a sample record (Table 2). Terms
for individuals were created according to the same orga-
nization, but identified by a bold lower-case letter and a
random number, like „p1001“ or „m2001“ as terms for an
individual protein and molecule (respectively).
The four OWLmodels uniformly represent all informa-

tion entities (database content) as individuals. The models
differ, however, in the way how referents of this informa-
tion are interpreted, viz. (i) as individuals (Additional file 2),
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Table 1 Typical data record from the joined databases Uniprot and Ensembl. The abstraction introduces the symbols of the example
ontologies

Field Source Content Abstraction

Protein (PR) UniProt Cystathionine gamma-lyase Prot1

Organism (NCBI Taxonomy) NCBI Taxonomy via UniProt Rattus norvegicus (Rat) Org1

Processes (not distinguishing
between ‘Biological process’ and
‘Molecular function’ in Gene
Ontology (GO))

GO via UniProt hydrogen sulfide biosynthetic
process; negative regulation of
apoptotic signaling pathway;
positive regulation of I-kappaB
kinase/NF-kappaB signaling;
protein homotetramerization;
protein sulfhydration

BProc1, BProc2, . . . , BProck

Cell components (GO_cc) GO via UniProt cytoplasm; nucleus;
extracellular vesicular exosome;

CComp1, CComp2, . . . , CCompx

Small molecules (ChEBI) ChEBI Homocysteine Mol1,Mol2, . . . ,Moly

Phenotypes Ensembl Amino acid metabolism errors;
cataract; Gamma-cystathionase
deficiency

Phen1, Phen2, . . . , Phenz

(ii) as fully defined subclasses (Additional files 3 and 4) (iii)
as disposition (Additional file 5) classes.
In the following, names of individuals are picked out

in bold face with lower case initials, in contrast to class
names in italics with leading upper case character. Sym-
bols that include white spaces are enclosed in single
quotes, e.g., ‘has part’.
In order to test the fitness of these models, four com-

petency questions (CQs) were formulated in natural lan-
guage and then reformulated as DL queries (cf. Table 3)
in order to emulate typical query operations over ontolo-
gies and databases, performed by biomedical researchers.
Q1 aims at retrieving biological processes in which cer-
tain proteins participate; Q2 retrieves the cellular com-
ponent(s) a given organism includes, together with the
proteins found in them. Q3 retrieves proteins recorded
as participant of biological processes in a given organism.
Finally, Q4 retrieves organisms able to exhibit a specific
phenotype.

Results
Table 1 represents the typical structure of the data ana-
lyzed in this work. It is categorized and organized by the
following structure:

• one protein term (e.g., CBS) ;
• one taxon term (e.g., Rattus norvegicus);

Table 2 Schematic view over UniProt, NCBI Taxonomy and
Ensembl data

Protein Organism Bio Process Cell component Molecule Phenotype

Prot1 Org1 BProc1 ; CComp1 ; Mol1 ; Phen1 ;

Bproc2 ; CComp2 ; Mol2 ; Phen2 ;

Bproc3 CComp3 Mol3 Phen3

• one to many terms for GO biological processes or GO
molecular function (e.g., ‘Blood vessel remodelling’ );

• one to many terms for GO cellular components (e.g.,
Cytoplasm);

• zero to many terms for phenotypes (e.g., ‘Endocrine
pancreas increased size’ );

• one to many terms for small molecules (e.g.,
Homocysteine)

This structure was imported from UniProt and
expanded with mappings to Ensembl via identifiers. Fol-
lowing [25], we treat terms from GO ‘Molecular function’
as referring to processes. This is supported by the fact
that the latter ones are named “activities” in GO; and
heuristically, by the fact that in experiments molecular
functions are always discovered through their realizations,
i.e., through the observation of processes or their results.

Table 3 Queries translated into DL queries

Q1 – Which biological processes have proteins of the kind Prot1
as participant?

‘Biological process’ and (‘has participant’ some Prot1)

Q2 – In which cellular locations is Prot1 active in organisms of the
type Org1?

‘Cellular component’ and (‘is included in’ some Org1) and
(includes some Proti)

Q3 – Which proteins are involved in processes of the type BProc1 in
organisms of the type Org1?

Protein and (‘is participant in’ some BProc1) and (‘is included in’
some Org1)

Q4 – Which organisms are able to exhibit a specific phenotype Phen1?

Organism and (‘is bearer of’ some (Disposition and (‘has realization’
only Phen1)))
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Even if all terms from the database are understood, there
are still numerous open questions regarding the precise
meaning of such a database record. We fill this gap by
eliciting the necessary implicit knowledge from a domain
expert familiar with the process of database population,
performing an in-depth ontological analysis in the line
of Gangemi et al. [26]. This analysis begins with the for-
mal categorization of relations and basic classes, under
a suitable upper-level ontology. This was done by manu-
ally aligning the top-level classes of the domain ontolo-
gies GO, ChEBI and PR under the top-level ontology
BTL2 [12].
Once the entities are categorised, the following ques-

tions need to be answered:

• How are the structural elements of a database (i.e.
tables, fields) related to each other? Which
knowledge is missing that is required for correctly
understanding these relations?

• Which expressiveness is required to axiomatise the
content in a logic-based language in an appropriate
way to represent all implicit and explicit content?

• Which additional entities need to be included into
the ontology (e.g., Dysfunctionality and Disposition
in the above example)?

• Which compromises and simplifications may be
needed? Which propositions are categorical, which
ones are dispositional? [19] Do we have to include
ABox entities (individuals)?

When it comes to an ontology-based representation
of database content (as exemplified in Table 1), we face
three interpretation challenges: (i) the data points and col-
umn headers, (ii) the relation between the data points
and the column headers, and (iii) the relations among the
columns.
Task (i) is facilitated by the fact that many of the content

terms are already represented in biomedical ontologies
like GO. Besides, the natural language terms used as field
labels can easily be aligned to content from other ontolo-
gies. In our case, most field labels could be aligned with
BTL2.
Task (ii) will normally be accounted for by the subclass

or instantiation relation: the content terms denote classes
or instances of the class denoted by the field label. E.g.,
‘Cystathionine gamma-lyase’ subClassOf Protein, ‘Rattus
norvegicus’ subclassOf Organism, etc.
Task (iii) requires reference to the implicit knowl-

edge a scientist is likely to have. For example, a
UniProt record that points to Methylation, Bos tau-
rus and ‘Methionine synthase’ expresses that in a given
experiment with cattle tissue an instance of ‘Methionine
synthase’ was observed to participate in a methylation
process.

In the following, we investigate four different
approaches for representing the meaning of the content
and structure of biological databases:

1. Representation as sample individuals (IND);
2. Representation as defined maximally fine-grained

subclasses, seeing as referents of the information
entities in the database (SUBC);

3. Representation with dispositional properties (DISP);
4. Hybrid representation with subclasses and

dispositions (HYBR).

Our sample ontologies include one Protein class (Prot1),
one Organism class (Org1), and three subclasses of each
of ‘Cell Component’ (CComp1,...,3), ‘Biological Process’
(BProc1,...,3), ‘Small Molecule’ (Mol1,...,3), and Phenotype
(Phen1,...,3), respectively (Table 2).

Representation as individuals (IND)
The first representation is motivated by the fact that
a database entry is about a concrete experiment, in
which individual entities in space and time are described,
e.g., a piece of biological material, a certain amount of
molecules, the phenotype of an individual rat, etc. This
view is agnostic with respect to whether the observed
phenomena are manifestations of natural laws or not.
In this perspective, our sample data report that individ-

ual protein molecules p1001, p1002, . . . of the type Prot1
exist in some particular cell components cc1001, cc2001,
. . . of the types CComp1,...,n of some organisms o1001,
o1002, . . . of the type Org1. Biomolecular process individ-
uals bp1001, bp2001, . . . that are members of the classes
BProc1,...,m include moleculesm1001,m2001, . . . of the type
Mol1,...,k (specific to Org1). Finally, the dysfunctions of the
proteins p1001, p1002, . . . cause the organisms o1001, o1002,
. . . to display one ormore phenotypes ph1001, ph2001, . . . of
the type Phen1,...,n (Table 2).
We are aware that only collections of molecules (and

never single molecules) and activities thereof are observed
[22]. However, assuming that the observation of the
behaviour of collective individuals allows us to deduce
what happens at the level of individuals (as done when
describing chemical reactions or biochemical pathways
with symbols denoting single molecular entities), we here
populate the ABox with single, non-collective, sample
entities and the relations among them. Index numbers are
aligned arbitrarily.
In the following we describe our interpretation

approach. For instance, individual protein molecules in
individual organisms are active in processes, e.g., within
cell components, like:

p1001 ‘is included in’ cc1001
cc1001 ‘is included in’ o1001



Santana da Silva et al. Journal of Biomedical Semantics  (2017) 8:24 Page 6 of 14

We also introduce instances for protein molecules that
participate in process instances within an organism:

p1004 ‘is participant in’ bp1001
p1004 ‘is included in’ o1004

Proteinmolecules participate, within a particular organ-
ism, in process instances (e.g., bp1001) that synthesise
specific molecules (e.g.,m1001):

p1010 ‘is participant in’ bp1001
bp1001 ‘has participant’ m1001
p1010 ‘is included in’ o1010

Whenever the database fields for processes, molecules,
or cell components have more than one entry, the
database, unfortunately, leaves open which processes
involve which molecules and where they are located.
Ideally, this information might be retrieved from other
sources. Otherwise, a relation between an individual
processes and molecules participating in them can be
expressed by referring to an appropriate process individ-
ual bp1001 and an appropriate individual moleculem1001.
An analogous strategy is possible to express the participa-
tion of cell components in processes.

bp1001 includes m1001

There are organisms with specific phenotypes, in which
there is a protein of a certain type, which is however
dysfunctional. Dysfunctionalities can be represented as
qualities, here also expressed as the individual d1001.

p1013 ‘is included in’ o1013
o1013 ‘includes’ ph1001
p1013 ‘is bearer of’ d001

For these data to be interpreted in a DL context, ABox
entities (in this scenario) are to be understood as arbi-
trary individuals that participate in a specific experiment.
For the sake of simplicity, for each assertion that can be
derived from the database, new terms for individuals are
created.
Another simplifying assumption of this approach is that

all database terms are non-empty, i.e., they actually refer to
some existing entity. Each information-content individual
in the database needs to represent an existing individual
involved in the experiment. This is, of course, problem-
atic if the data is wrong due to curation errors, or if the
biological processes recorded did not really happen.

Representation as multiple subclasses (SUBC)
The second approach interprets database terms as refer-
ring to maximally fine-grained defined classes. The nam-
ing of these new subclasses follows strict naming criteria
as exemplified below. This is important for extracting the

original class names from the subclass names, because
only the former ones are interesting for querying. For
instance, the database represents a protein class Prot1
that is connected with an organism class Org1 and a bio-
process class BProc1. Accordingly, we create the classes
Prot1_in_Org1_in_BProc1, Org1_with_Prot1_and_BProc1,
and BProc1_in_Org1_with_Prot1 with appropriate full def-
initions (Fig. 1).
We leave open whether these defined classes are empty.

In a way, defined classes are nothing more than logical
artefacts. For this reason, the creation of such defined
OWL classes has a modest ontological engagement. Nev-
ertheless, these defined classes can serve as the referents
of the data instances [27].
In order to fully incorporate the idea that database

entries are individuals that refer to classes by means of
annotations, we create the following description logic
formula for each database entity:

databaseEntryx type represents only
(DefinedClass1 or DefinedClass2 or . . . or DefinedClassN )

Bearing this representation in mind, querying can be
limited to the expression in parentheses, which brings
two advantages, viz. that neither individuals and nor
value restrictions would impact the performance of the
reasoner.
In the following, the modelling patterns are given for

proteins, organisms, small molecules, biological processes
and phenotypes. Here, the index variable i denotes a
record, in which field (e.g., for protein) is filled exactly

Fig. 1 Example of subclass creation and relations enabled to be used
in class definitions
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once; hence the notation Proti1 . Accordingly, the notation
for organisms is Orgi1 , because there is exactly one organ-
ism type referred to by a record. The other fields may
be multiply filled; therefore the notation is, e.g., BProc1 ,
BProc2 , . . . , BProcm .
Proteins: We introduce classes for dysfunctional pro-

teins as well as for organism-specific proteins and their
combination:

Proti1_Dysf equivalentTo Proti1 and
‘is bearer of’ some Dysfunctional

Proti1_in_Orgi1 equivalentTo Proti1 and
‘is part of’ some Orgi1

Proti1_Dysf_in_Orgi1 equivalentTo
Proti1_Dysf and Proti1_in_Orgi1

Specifically, subclasses are created to represent the pos-
sible links among classes denoted by annotations within a
record. For instance, the subclass Proti1_in_Orgi1 is gener-
ated to express that we deal with a protein of an organism
of a certain type Orgi1 . In addition, subclasses are intro-
duced for phenotypes, processes, cell components and
molecules:

Proti1_Dysf _in_Orgi1_with_Phen1,...,o equivalentTo
Proti1_Dysf _in_Orgi1 and

‘is part of’ some (Orgi1 and
(includes some Phen1,...,o))

Proti1_in_Orgi1_in_BProci,...,m equivalentTo
Proti1_in_ Orgi1 and ‘is participant in’ some BProc1,...,m

Proti1_in_Orgi1_in_CCompi1,...,n equivalentTo
Proti1_ in_Orgi1 and ‘is included in’ some CComp1,...,n

Proti1_in_Orgi1_with_Mol1,...,k equivalentTo
Proti1_in_Orgi1 and (‘is participant in’ some

(Process and
(‘has participant’ someMol1,...,k )))

Organisms: Classes are introduced for organisms with
proteins in general, and for organisms with organism-
specific proteins in particular. The latter ones are also
specialized by phenotypes, processes and molecules:

Orgi1_with_Proti1 equivalentTo Orgi1 and
‘has part’ some Proti1

Orgi1_with_Proti1_Dysf equivalentTo Orgi1 and
(‘has part’ some ‘Proti1_Dysf ’)

Orgi1_with_Phen1,...,o_and_Proti1_Dysf equivalentTo
Orgi1_with_Proti1_Dysf and includes some Phen1,...,o

Orgi1_with_Proti1_and_BProc1,...,m equivalentTo
Orgi1 and (‘has part’ some (Proti1 and

(‘is participant in’ some BProc1,...,m)))

Orgi1_with_Proti1_and_Mol1,...,k
equivalentTo Orgi1 and

(‘has part’ some Proti1 ) and
(‘is participant in’ some (Process and

(‘has participant’ someMol1,...,k)))

Small molecules: We introduce classes for small
molecules contained in organisms, and further specify
these classes by stating the type of the proteins with which
these small molecules interact, i.e., with which they are
related by participating in the same biological processes.

Mol1,...,k_in_Orgi1 equivalentToMol1,...,k and
‘is part of’ some Orgi1

Mol1,...,k_in_Orgi1_with_Proti1
equivalentToMol1,...,k_in_Orgi1 and

(‘is participant in’ some (Process and
(‘has participant’ some Proti1 )))

Processes: Subclasses are introduced for the partici-
pating proteins which are included in a certain type of
organism.

BProc1,...,m_in_Orgi1_with_Proti1
equivalentTo BProc1,...,m and

(‘has participant’ some Proti1 ) and
(‘is included in’ some Orgi1 )

Phenotypes: Subclasses are introduced for associated
dysfunctional proteins and their respective organisms.

Phen1,...,o_in_Orgi1_with_Proti1_Dysf ′
equivalentTo Phen1,...,o and

(‘is included in’ some Orgi1_with_Proti1_Dysf )

The querying strategy for this representation model
is to check whether specific subclasses are retrieved or
not. For instance, if we want to retrieve processes with
Proti1_in_Orgi1 , the corresponding DL query is

Process and (‘has participant’ some Proti1 ) and
(‘is included in’ some Orgi1 )

The automated reasoner delivers a list with the corre-
sponding defined subclasses, such as:

BProc1_in_Orgi1_with_Proti1 ,
BProc2_in_Orgi1_with_Proti1 or
BProc3_in_Orgi1_with_Proti1 .

A disadvantage of the SUBC interpretation is that it
requires the introduction of classes that are not to be
found in the ontologies used for annotation (such as GO
or PRO) and that these classes are retrieved by the above
query. For querying purposes, their superclasses must be
identified, viz. BProc1, BProc2, and BProc3. This requires
some post-processing of the results as explained below.



Santana da Silva et al. Journal of Biomedical Semantics  (2017) 8:24 Page 8 of 14

Thus, subclasses for all types of entities referred to in
a database are created, which is on the one hand highly
prolific, because every possible association of entries in
table fields must be combined into a new defined class.
On the other hand, the expressiveness power of the
DL dialect needed is reduced to the EL++ [28], cor-
responding to OWL2-EL, which is known for its good
scalability [28].

Representation with dispositions (DISP)
In the representational patterns IND and SUBC, database
entries were seen as observations about individuals, either
represented as existing ABox entities or as specific,
potentially empty, subclasses. Whereas INDmakes strong
existential claims, stating that the content of a field is
interpreted as representing an actually existing biological
individual, the ontological engagement of SUBC is more
modest, as it allows empty classes (although non-denoting
database entries are rather the exception than the norm).
Both IND and SUBC avoid to claim any universal state-
ment of the form “For all A there is some B” for any class
A referred to by database.
In contrast, the DISP pattern goes a step further, assum-

ing that the database content has been created to give
insights into scientific regularities in the sense that all
members of a class have a disposition to behave in a certain
way, thus exhibiting a law of nature.
To ascribe a disposition for a certain process P to an

object m does not imply that m actually and at all times
participates in an instance of P. It implies only that the
physical structure of m allows m to participate in pro-
cesses of the type P. The proposed modelling pattern in
DL is the following [29]:

Object1 and Object2 and . . . and Objectn subclassOf
‘is bearer of’ some (Disposition and

(‘has realization’ only Process1))

whereObject1 refers to a class; andObject2 toObjectn refer
to other classes, or to statements of the type “ClassA and
relation some ClassB”.
The bearers of dispositions are independent continu-

ants [19, 20]. Thus, possible bearers of dispositions, in
our case organisms, proteins, small molecules and cell
components.
For organisms and proteins, we create a series of gen-

eral class inclusions (GCIs) in OWL, with the class of
interest (e.g. Proti1 ) intersected with the constraining con-
ditions at the left hand side (e.g. ‘is part of’ some Orgi1 ).
Dispositions are, then, ascribed to organism-specific pro-
teins within certain cellular components. We introduce
dispositions to perform biological processes that have cer-
tain kinds of molecules as output. Here is the general
pattern.

Proti1 and ‘is part of’ some Orgi1 subClassOf
‘is bearer of’ some (Disposition and

‘has realization’ only BProc1,...,m) and
‘is bearer of’ some (Disposition and

‘has realization’ only (Process and
‘has participant’ someMol1,...,k))

In this and the next formula, the restriction

‘is included in’ some
(CComp1 or CComp2 or . . . or CCompx)

could be added. However, this restriction is rather weak
due to the disjunction, which may leave room for several
classes to be added.
As a rule, dispositions have realisation conditions. The

realisation of the disposition of a protein to participate
in a given biological process depends, among others, on
the chemical environment within the organism and the
cell component. Such dispositions are introduced for all
proteins of the type Proti1 , under the condition that they
are included in Orgi1 as well as in one or more cellular
components (CComp1,...,n). These dispositions are defined
in terms of the process types BProc1,...,m processes, or in
terms of unspecified processes in which one ormore small
molecules (Mol1,...,k ) participate.
Our interpretation of the example is that the ability

to exhibit a certain pathological phenotype is attributed
to organisms in virtue of having a dysfunctional protein.
Again, the table does not tell us which kind of dysfunc-
tion affects which kind of process that results in which
phenotype:

Orgi1 and (includes some (Proti1 and
(‘is bearer of’ some Dysfunctional))) subClassOf

‘is bearer of’ some (Disposition and
(‘has realization’ only Phen1,...,o))

Formally, we could characterize a class of small
molecules as bearing dispositions in the following way:

Mol1 orMol2 or . . . orMolk
subclassOf ‘is bearer of’ some (Disposition and

(‘has realization’ only (Process and
(‘has participant’ some Proti1 ) and
(‘is included in’ some Orgi1 ) and
(‘is included in’ some

(CComp1 or CComp2 or . . . or CCompn)))))

As we said, dispositions could theoretically also be
ascribed to cell components, as these are also independent
continuants. However, according to the shared back-
ground assumptions of biologists, cellular components are
not participants but only the locations of the biomolecular
processes under scrutiny. That an entity bears a disposi-
tion of being the arena in which a process might take place
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would require the extension of either the notion of dispo-
sition or the notion or participation. Therefore, we refrain
from ascribing dispositions to cell components.
The use of general class inclusions (GCIs), i.e. the use

of complex class expressions on the left hand side of the
axiom, is a straightforward application of the above pat-
tern. However, this strategy does not support retrieval
purposes, as DL queries only retrieve simple names of
classes or individuals, but not complex expressions.

Hybrid class-level representation (HYBR)
To avoid complex class expressions on the left hand side
of GCIs, a feasible approach that supports DL queries
on dispositions would require equivalence axioms as the
following:

Orgi1_with_Proti1_Dysf equivalentTo Orgi1 and
(‘has part’ some (Proti1 and

(‘is bearer of’ some Dysfunctional)))

Here,Dysfunctional is a class that qualifies a given Proti1
as being causally related to a pathological phenotype.
The class Orgi1_with_Proti1_Dysf can then be used on

the left hand side of an axiom that states the disposi-
tions of organisms of the type Orgi1 under the condition
of having dysfunctional proteins of the type Proti1 . This
corresponds to the modelling pattern SUBC.
In our example, this means that the SUBC model

requires n defined classes for “organisms of the type Orgi1
that have dysfunctional proteins of the type Proti1 and
which include a phenotype Phen1,...,o”, whereas the DISP
approach requires one axiom with “organisms of the type
Orgi1 that have dysfunctional proteins of the type Proti1 ”
at the left hand side, with expressions on Phen1,...,o at the
right hand side:

Orgi1_with_Proti1_Dysf subClassOf
‘is bearer of’ some (Disposition and

(‘has realization’ only Phen1,...,o))

This leads to a hybrid approach in which subclass def-
initions are still needed. The hybrid representation may
be preferred as being more parsimonious, which however
has to be traded off against the increase in DL expressive-
ness, viz. from OWL-EL to OWL-DL, at least when DISP

(like proposed for SUBC) avoiding generation of a huge
number of very specific subclasses, as in SUBC.

Evaluating representation scenarios
We created four DL queries (Q1–Q4) (cf. Table 3) to
evaluate (i) database content retrieval, using ontologies as
query vocabulary; (ii) information completeness; and (iii)
DL complexity and decidability. Q1 aims at retrieving bio-
logical processes in which certain proteins participate; Q2
aims at retrieving the cellular component(s) a given organ-
ism includes, together with the proteins found in them.Q3
aims at retrieving proteins recorded as participant of bio-
logical processes in a given organism. Finally, Q4 aims at
retrieving organisms able to exhibit a specific phenotype.
Queries on SUBC or HYBR models require further pro-

cessing, because they retrieve the subclasses introduced
in the models, e.g., Phen1,...,k_in_Orgi1_with Proti1_Dysf,
whereas the user is only interested in retrieving the classes
used in the annotation, such as Phen1,...,k in our case.
This is easily achieved by extracting the original

class names from the constructed names of each
retrieved class; e.g., Phen1,...,k is extracted from
Phen1,...,k_in_Orgi1_with Proti1_Dysf .
Results from Q1–Q4 are displayed in Table 4. Apart

from the OWL profiles required, the result shows how
individuals can be retrieved with IND, and classes in two-
step queries for SUBC and HYBR. DISP does not retrieve
anything due to the use of GCIs without class definitions.
As expected, SUBC generates more classes and axioms

than DISP and HYBR. In IND, there are more axioms
than in SUBC, DISP and HYBR due to the large amount
of relationships created among the individuals while an
OWL model following the IND strategy may not include
any class definitions. IND and SUBC were not able to
retrieve Q4, which includes a disposition axiom and can
be answered only by HYBR.
In the context of an integrative framework, combining

“ontologised” databases and bio-ontologies, interesting
variations of these competency questions can be imag-
ined. These variations can exploit the axiomatic content
of the linked ontologies, such as subclass axioms or role
restrictions. Expressed in DL queries, these variations
would require none or minor syntactic variations:

Table 4 Query results together with characteristics of the four ontology implementations (without importing BTL2)

Model Q1 Q2 Q3 Q4 Classes Axioms Individuals OWL profile

IND bp1001, cc1001, p1004 – 24 207 51 OWL-DL

bp2001, cc2001,

bp3001 cc3001

SUBC BProc1 CComp1 Proti1 – 68 149 0 OWL-EL

DISP – – – – 29 70 0 OWL-DL

HYBR BProc1 CComp1 Proti1 Orgi1 48 129 0 OWL-DL
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• In Q1, a query could target a number of biological
processes by a common ancestor process, or a phase
of a certain process provided by GO;

• In Q2 and Q3, the organism could be substituted by a
biological taxon or other groupings of organisms,
such as provided by the NCBI taxonomy or
SNOMED CT (organism branch);

• In Q1 and Q3, processes could be clustered by
querying for metabolite characteristics. This can be
(for instance) provided by GO extensions, like the
GO – ChEBI linkage.

• In Q4, phenotypes could be queried through how
they are characterised, for instance by certain body
locations. This can be achieved such as provided by
SNOMED CT body structure and disorder.

Users should choose an interpretation approach that
accounts for their respective requirements and fits to
the computational resources available. With IND, the
whole semantic expressivity belongs to the ontology the
individuals are imported into; there is no guarantee that
this ontology is expressive enough to support reasoning
and querying, whereas the patterns provided by SUBC
and HYBR come with axioms that fulfil this task.
Our results indicated that DISP and HYBR promise

better results when reasoning over biomedical databases.
However, limitations may arise for these approaches due
to the nontrivial use of dispositions and scalability prob-
lems, because the reasoning complexity increases with
higher expressivity. In these respects, SUBC might be the
most parsimonious solution, as it may be less problem-
atic for scaling when applying reasoning and performing
queries, with the expense of simulating relations to avoid
the complexity that comes with the use of dispositions.

Discussion
Recently, ontology-aided interpretation of databases has
emerged as a research topic in the biomedical domain,
e.g., for disambiguating the sense of free-text keywords
in query generation to access data repositories [30], or as
a means to interpret proteomics data [31]. As biomedi-
cal observation databases, (e.g.) for proteomics, are still
interpreted manually [7], led to the suggestion of annota-
tion tools that support data interpretation. In these works,
authors suggest a deeper use of ontologies to support
interpretation, which is something that goes beyond of
what is currently performed with functional annotations.
Aiming to attain this purpose, we have proposed four

representation strategies: IND, SUBC, DISP and HYBR.

Interpreting data as individuals (IND)
The representation pattern IND is completely based on
single individuals (ABox entities), present in the underly-
ing experimental assays the results of which are referred to

by the database content. This approach, similarly to ontol-
ogy population [32], refrains from raising any ontological
claim apart from asserting the existence of individuals
and relations among them. The ABox entities can then be
retrieved by DL queries, but the performance problems
of large ABoxes with expressive TBoxes are known [47]
and may therefore hamper the theoretical issue of scal-
ability. In addition, the assertion of existence is an esti-
mation, because data may exhibit errors, especially when
not manually curated and, e.g., extracted from literature
abstracts by natural language processing.

IND andOntology-based Data Access
Previously, OWL models have been created in which
OWL axioms and assertions were automatically gener-
ated from database schemes [33]. These models, how-
ever, represent (first of all) data (information entities)
and not the reality denoted by the data. Our approach,
in contrast, aims at representing the latter, e.g, to which
classes the information entities denotes and further rela-
tions among them. In addition, relations extracted from
databases are semantically idiosyncratic and shallow, e.g.,
neglecting the complexity of the underlying reality, of
which a database schema represents nothing more than a
customized view.
For instance, database integration following the

Ontology-Based Data Access [34] (OBDA) approach
relies on a limited set of ontological relations that are
provided by ontologies. In OBDA, integration relies on
connecting information present in databases with ontolo-
gies, without discussing which interpretation of the data
is more appropriate, i.e., whether the data refer to indi-
viduals, classes, or classes of disposition bearers (neither
of which is expressed in the database nor defined in the
ontology). In practice, OBDA enables the user to retrieve
individuals from a database virtually, e.g., by means of
an ontology used as query vocabulary and an engine to
convert queries in SPARQL [35] to its respective SQL
equivalent, or retrieve RDF triples such as in Bio2RDF
[36] or the UniProt SPARQL Endpoint [37]. Such inter-
pretation issues may be not so relevant for daily database
usage, e.g., accessing or retrieving queries; but for biolog-
ical databases, which include data from real experiments,
raising them is quite relevant.
Approaches that rely on SPARQL queries, like OBDA,

do not go further into how data are to be interpreted,
which is crucial for the biomedical domain. E.g., queries
created in SPARQL and ontologies formalized in OWL
employ different semantics, e.g., of which the latter
enables more complex reasoning tasks (e.g.,classification
and consistency checking) than the former. Reasoning
is crucial for validating content interpreted according to
the semantics provided by ontologies, which frequently
employ OWL.
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Opposed to the stance that ontology artefacts should,
first, represent purpose-oriented data structures, where
different use cases might require different, partly incom-
patible design decisions [38], we reinforce the interop-
erability aspect of ontologies, which we consider to be
“representational artefacts whose representational units
are intended to designate classes or types in reality and
to relate them to each other” [39], which also requires
agreement on a set of high-level categories and relations.

Databases and temporal contexts
Ceusters and Smith [40] describe an approach called Ref-
erent Tracking, which is mainly devoted to the identifica-
tion of individuals from Electronic Health Records (EHR).
Referent tracking is based on the generation of triples in
order to record how individuals are related to each other
within a specific context. This approach is similar to our
IND strategy, but equally affected by the problems of non-
referring representational units [41], e.g., in case of false
diagnoses or abandoned care plans.
The domain upper-level ontology BTL2 had been cre-

ated with the purpose of enforcing temporal contexts
for continuant individuals [15]. Whereas in EHRs time
indexing is necessary to represent patients’ histories, the
biological annotation case described in this paper refrains
from temporal indexing, which may become relevant
when further describing the annotation process itself,
where temporal changes occur as data is automatically
annotated and later reviewed by human curators.

Interpreting data as subclasses (SUBC)
The inability to represent non-denoting database informa-
tion was addressed by the SUBCmodelling patterns which
created a defined subclass for each putative referent. Our
approach for this modelling is agnostic to whether such
classes are instantiated or empty, as their only rationale is
to act as referents of information entities in the database.
Therefore, this representation can (in a way) be considered
ontologically neutral in the sense that we only describe
potentially instantiated classes without being committed
to the actual existence of any instances. Instead, the
OWL model for SUBC exemplify a way to represent dis-
course, regardless of whether meaningful or nonsensical.
However, we have shown that an OWL-EL extract rep-
resented with SUBC successfully retrieves the desired
database content.
On many occasions, researchers already use ontology

terms in biological databases to express relations among
classes, such as that in certain types of organisms, cer-
tain biological processes are performed by or with the aid
of certain proteins. In such cases, the SUBC modelling is
more natural and will reflect the observed reality.
However, one has to deal with a problem that so often

appears in the area of knowledge representation, known

as the frame problem. When one ascribes a certain logi-
cal property to a class, it means that all members should
possess it. But in biology, there are always exceptions
and variations that arguably falsify universal statements
about classes. This “all-or-nothing” stance can be seen
as a drawback of the SUBC approach, which has been
extensively discussed. The usefulness of a SUBC approach
has been proven in practice in the realms of knowledge
representation applications; nevertheless, proposals to
accommodate exceptions [42], modal [43], and even prob-
abilistic, fuzzy solutions [44] have appeared both in KR
and DL [45, 46].

Interpreting data with dispositions (DISP) and the hybrid
representation (HYBR)
The DISP and HYBR representation strategies, attempts
to extract ontological statements in a stricter sense,
i.e. accounts of scientific laws expressed by universally
quantified statements about all members of a class. This
is possible by introducing dispositions, e.g., by stating
that all organisms with a certain dysfunctional protein are
predisposed to develop certain pathological phenotypes
under certain conditions only.
The DISP approach may be considered ontologically

problematic, as it is quite promiscuous in ascribing dispo-
sitions on class level. What is observed in an experiment is
the outcome of a particular process (which might be a col-
lective process). From the observation of the outcome, it
is inferred that particular process happened, which gives
support to the assumption that the participating partic-
ulars have had the disposition to participate in such a
process.
The problem lies in the extrapolation from the obser-

vation of a single case to all members of a certain class –
such inductive inferences are notoriously difficult. They
may be quite safe when describing the behaviour of small
molecules: knowing that one particular molecule has a
certain disposition, we can quite safely assume that other
molecules of the same kind share this disposition, as we
can think of no intrinsic property that could make a dif-
ference here. However, on the biological level, systems are
much more complex. If a gene defect in a certain individ-
ual organism increases the risk for, e.g., diabetes mellitus,
it does not exclude the possibility that in other organisms
with the same gene defect there is no such risk. We would,
that is, not be justified to ascribe an increased diabetes
risk to the latter population (though we were justified to
ascribe them a certain tendency to do so [19]).
There is no principled contradiction between SUBC and

DISP. The fact that the class inclusion axioms proposed
in DISP to introduce conditions are not suitable for DL
querying, approximates the second and the third mod-
elling approach in the sense that the latter also benefits
from fully defined subclasses. Therefore, the combination
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of these two modelling styles (HYBR) proved to yield the
best retrieval results with all four competency questions.

General remarks
In this sense, the need for analysing and formalising
the reality behind the database schemes was confirmed
by our effort when creating and querying ontologically
founded interpretation models. Current use of biological
databases might indeed demonstrate that a flat tabular
structure with the fields Protein, Organism, Process,
Cellular component, Molecule and Phenotypemight work
for most standard queries. Its ontological interpretation
under a common upper-level representation aiming at
a formal description of the domain itself and not just
of a specific view thereof, creates added value for more
complex queries that require semantic and not only syn-
tactic integration of biomedical ontology resources.
Entries from biomedical databases derive mostly from

harvesting scientific literature or, otherwise, from the
results of experiments. The veracity of these reports
can be roughly assumed, but any precise representation
should take into account that experimental, measurement,
reporting, and curation errors might occur, so that a cer-
tain number of entries in biological databases may be false
or even contradictory. This requires accounting for the
underlying domain knowledge that does not surface in
the database schema. Examples for these missing links
are, in our examples, that the phenotypes listed in the
database record are at least partly conditioned by protein
dysfunctions.
We do not claim that our interpretation approach is the

only possible one, or that it is exhaustive. In any case, it
might be incomplete and should therefore require refine-
ment and extension by domain experts. For example, a
phenotype might not only be the result of the dysfunc-
tion of a protein, but may also be caused by the complete
absence of this protein in an organism.
The real world applicability of the proposed approaches

has to be assessed with large datasets in the light of
computational constraints.

Conclusion
Interpretations of biological database content tend to
be ambiguous. Accordingly, we formulated the following
questions:

i. How can the implicit knowledge about entities and
relationships described in the structure of a
biological database be represented?

ii. How can the content of databases be interpreted, i.e.,
which domain entities are represented by the data
elements and their connections?

iii. Are structure and content of biological databases of
ontological nature?

iv. If this is the case, how can they be translated into
axioms or assertions in a commonly used ontology
language, and which representational patterns might
be considered?

Answering (i), we presented a method that formalises the
implicit knowledge behind the schemas of databases like
UniProt and Ensembl. In order to account for (ii), we
grounded all classes in an expressive upper-level ontology.
The result is (iii) a seamless representation of database
structure, content and annotations as (iv) an OWLmodel.
Four different ontological interpretations of database

content were developed and compared. The first and
the second strategy represent data individuals denot-
ing either individual processes and their participants
(IND), or defined classes of such entities, using maximally
expressive OWL class terms (SUBC), respectively. The
third strategy (DISP) makes stronger claims by universally
ascribing dispositions to some of the continuant classes
involved. The fourth strategy (HYBR) combines elements
from SUBC and DISP.
The usefulness of the representations was assessed by a

series of competency questions formalised as DL queries,
for which the hybrid representation of database referents
as subclasses together with dispositions (HYBR) yielded
the most convincing result when considering expressiv-
ity and reasoning. However, the SUBC may be well suited
for automating interpretation, as its expressiveness scales
better for reasoning tasks over a large amount of data.
Adding dispositional properties may constitute a useful

add-on, although it is epistemically problematic to auto-
mate the ascription of dispositions to classes based on
cursory evidence on sample individuals gathered in lab
experiments.
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