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Abstract

Background: High-throughput methods in molecular biology provided researchers with abundance of
experimental data that need to be interpreted in order to understand the experimental results. Manual methods of
functional gene/protein group interpretation are expensive and time-consuming; therefore, there is a need to
develop new efficient data mining methods and bioinformatics tools that could support the expert in the process of
functional analysis of experimental results.

Results: In this study, we propose a comprehensive framework for the induction of logical rules in the form of
combinations of Gene Ontology (GO) terms for functional interpretation of gene sets. Within the framework, we
present four approaches: the fully automated method of rule induction without filtering, rule induction method with
filtering, expert-driven rule filtering method based on additive utility functions, and expert-driven rule induction
method based on the so-called seed or expert terms – the GO terms of special interest which should be included into
the description. These GO terms usually describe some processes or pathways of particular interest, which are related
to the experiment that is being performed. During the rule induction and filtering processes such seed terms are used
as a base on which the description is build.

Conclusion: We compare the descriptions obtained with different algorithms of rule induction and filtering and
show that a filtering step is required to reduce the number of rules in the output set so that they could be analyzed by
a human expert. However, filtering may remove information from the output rule set which is potentially interesting
for the expert. Therefore, in the study, we present two methods that involve interaction with the expert during the
process of rule induction. Both of them are able to reduce the number of rules, but only in the case of the method
based on seed terms, each of the created rule includes expert terms in combination with the other terms. Further
analysis of such combinations may provide new knowledge about biological processes and their combination with
other pathways related to genes described by the rules. A suite of Matlab scripts that provide the functionality of a
comprehensive framework for the rule induction and filtering presented in this study is available free of charge at:
http://rulego.polsl.pl/framework.
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Background
Introdution
Over 20 years ago, high-throughput technologies for the
analysis of genomic data opened a new era in molecu-
lar biology and genetics. Since the beginning of the so-
called genomic era, advanced tools and techniques such
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as DNA microarrays [1] and next-generation sequencing
(NGS) [2] systems allow for studying genomes, analyz-
ing cellular processes and interactions, which is the first
step of research leading to diagnosis of diseases and
invention of new drug, and treatment discovery [3–5].
However, to be effective, today’s genomic technologies
require not only reagents and sophisticated laboratory
instruments but also application of new software, algo-
rithms, and knowledge discovery techniques in order
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to process and analyze huge amount of experimental
data [6–8].
Many of the experiments using genomic technologies

are focused on searching of co-regulated genes that play
an important role in some biological processes partic-
ularly interesting from the experimental point of view.
Typically, genes that work coordinately as genemodules or
gene networks are seen as groups characterized by similar
expression levels and can be found by applying clustering
methods to the expression data [9–13]. However, the func-
tional analysis and interpretation of gene clusters obtained
in such a way are difficult and time-consuming, especially
if each gene composing the group is manually analyzed by
an expert in the field, based on his or her experience and
literature searches.
To help the expert during such analysis, a lot of tools

have been invented and successfully applied during last
years. One of the most frequently used tools is the Gene
Ontology (GO) database, which is a collaborative effort to
address the need for consistent descriptions of gene prod-
ucts across databases [14]. The information in the GO
database is divided into three separate structures in the
form of directed acyclic graphs (DAGs): Biological Process
(BP), Molecular Function (MF) and Cellular Component
(CC). Each node of the graph has a label t called the
Gene Ontology term and has a unique seven-digit num-
ber, name, short description, and defined relationship to
one or more terms in the same domain.
The information included in the GO database is pro-

vided on different levels of specificity: the terms found
closer to the root of the graph (higher in the hierarchy) are
general descriptions, and as the graph is traversed down
to its leaves, the terms become more and more specific.
The important part of GO database are annotations that
associate gene products with particular terms in Gene
Ontology graph. Each gene product can be annotated to
zero or more terms of any ontology on any level of the
GO graph. Annotations are independent of each other, but
should be made on the most detailed level in the ontology
as annotating to a particular term implies annotation to all
its parent terms up to the root.
In this paper, we describe a comprehensive framework

for functional description of gene sets based on the so-
called logical rules that are combinations of GO terms.
The presented approach involves (i) method of rule induc-
tion which takes into account the structure of Gene
Ontology database, (ii) method of rule interestingness
assessment based on various subjective and objective cri-
teria, and (iii) the method of rule filtering that allows
removing the rules that are uninteresting from the expert
point of view from the output rule set. Finally, (iv) we
present a new, semi-interactive method of rule induction
which allows the expert to influence the process of rule
generation by providing a set of so-called seed or expert

terms, that is the GO terms of special interest, which
should be included into the description. These GO terms
usually describe some processes of particular interest, fre-
quently related to the experiment that is being performed.
During the rule induction and filtering process such
seed terms are used as a base on which the description
is built.

Using Gene Ontology database for functional analysis
The first approach to the automated functional interpre-
tation was the so-called single-term analysis in which,
based on the results of the statistical test, a list of
over-represented GO terms describing gene groups was
obtained. A number of tools were created based on the
idea of single-term analysis, which is still the most com-
mon approach used for functional interpretation of gene
sets [15].
Another approach to the methods of automated func-

tional interpretation was the introduction of more
advanced tools such as RuleGO [16] or GeneCodis
[17] that search for the so-called logical rules that
include combinations of GO terms. The rationale
standing behind such approach is that the combina-
tions of GO terms are more specific and therefore
can show significance, whereas single terms do not
show statistically significant enrichment or depletion. If
we analyze GO terms separately, some of them may
be too general to be included in the list of stati-
cally significant terms; however, their combination with
other terms may present some novel and interesting
information.
In our previous research [18], we showed that the num-

ber of possible statistically significant combinations of
co-existing pathways is huge and that a filtering step is
required in order to reduce the number of possible results.
However, frequently, an expert who designs an experi-
mentmight be interested in some specific process or event
related to the research. For example, in cancer research
searching for a gene signature, which could be potentially
useful for diagnosis or could suggest novel drug targets,
one may look for genes involved in particular biological
process or network related to transformation of normal
cells into cancer cells. Therefore, there is a concern that
automated filtering methods could remove some rules
that consists of GO terms potentially interesting to the
expert. To address this issue, we propose a new method-
ology of rule induction and filtering which allows for
including the expert domain knowledge into rule genera-
tion and filtering process. The new approach is based on
the RuleGO algorithm, and it allows the expert to influ-
ence the process of rule generation by defining the GO
terms of special interests, which are then included into
the rules and preserved in the output rule set after the
filtering step.
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Related work
So far, to find co-appearance of Gene Ontology terms,
association rule induction algorithms were applied.
Caramona-Saez et al. [19] proposed a method that com-
bines expression data and biological information. Later,
in another study, Caramona-Saez et al. [20] introduced
the Genecodis web-based tool for integrated analysis of
annotations from different sources. The method uses the
Apriori algorithm [21] to discover sets of annotations that
frequently co–occur in the analyzed group of genes. A
similar tool that allows finding combinations of anno-
tations from many different sources such as functional
categories, gene regulation, sequence properties, evolu-
tion, and conservation was presented by Hackenberg et
al. [22]. Also, Gruca [23] applied FP-growth algorithm to
find combinations of GO terms for functional description
of genes.
Research on the induction of rules that combine gene

expression data and biological information was also per-
formed [24–26]. For example, in Lopez et al. [25], gene
groups described by similar values of the so-called struc-
tural features (e.g., gene length, the number of nucleotides
in the coding sequence, gene G+C content) with the cor-
responding GO terms are also joined by means of associa-
tion rules. Hvidsten et al. [27] proposed conditional rules
of the form "IF conjunction of conditions describing time
series of gene expression profile THENGO term". In a rule
conclusion, a set of Gene Ontology terms describing the
group were included.
Rule induction techniques mentioned earlier have two

basic drawbacks that can make obtained rules difficult or
even impossible to interpret. First, known rule induction
methods do not consider the fact that hierarchy of GO
terms could result in replacing a conjunction of attributes
with one, more specific GO term at the lowest level in the
GO graph hierarchy. Second, all the methods mentioned
earlier lead to generate a huge number of rules without
providing more advanced (apart from a p-value and a rule
coverage) methods of rule interestingness evaluation and
rule filtering.
In a previous study [18], we proposed the rule induction

algorithm which takes into account the structure of the
Gene Ontology graph and the method of selection of the
most important GO terms. The selection method is based
on the Rough Set Theory [28] and the asymmetrical indis-
cernibility relation. However, the number of induced rules
was still too large. Therefore, another method for rule fil-
tering based on subjective rule attractiveness measure was
proposed in Gruca and Sikora [29].
The problem of finding the minimal subset of the set

of rules, which has lower complexity and simultaneously
maximizes the value of the specified criterion (e.g., over-
all classification accuracy) is NP-complete and computa-
tionally expensive. For descriptive purpose or when the

classification ability is not the most important feature,
the rule elimination procedures (rule filtering) are based
on the minimum interestingness requirements (typically
some well-known rule interestingness measures are cho-
sen) [30, 31]. Some papers also refer to multicriteria rule
evaluation, and in such a case, machine learning [32] and
multicriteria decision-making [33] methods are applied.
These methods can be called supervised because they use
information obtained from an expert. For example, Lenca
[33] apply the PROMETHEE method [34] to select inter-
estingness measure which is able to order a rule set in a
manner most similar to the order provided by an expert.
In biological or medical applications, it is very impor-

tant to determine the rules containing information that
is interesting for a user. However, automatic selection of
elementary conditions included in the rule premises is
the main principle of rule induction algorithms, and rules
induced in this way may not always include knowledge
that is interesting and useful to the user.
To date, few studies have described how to design

the induction algorithm in such a way that it takes into
account the user preferences. Stefanowski and Vanderpooten
[31] present the Explore algorithm, which is based on the
idea of the Apriori method and allows the user to spec-
ify the requirements for attributes and/or their values,
appearing in the rule premises.
Other papers on the induction of association rules

describe examples of interactive construction of rules
[35] and the induction of the so-called unexpected
rules. Unexpected rules are created on the basis of
user-defined templates, indicating the attributes included
in the so-called typical rules [36]. Gamberger and
Lavrac [37] present a similar proposal for the deci-
sion rule induction algorithm, intended for descriptive
purposes.
Algorithms using the paradigm of argument-based

learning [38, 39] allow the user to provide explanation for
each example as to why it has been classified into that par-
ticular decision class. Examples of medical applications
show that this approach can significantly reduce the set
of generated rules. However, the argument-based learn-
ing approach does not verify the hypotheses that represent
the dependencies that, in the user opinion, might occur
in the data. Partially, this possibility is presented in Chen
and Liu [40], where the user defines a set of rules that
he or she expects to find in the analyzed dataset. Then
the rule-based version of the C4.5 algorithm is executed,
and three types of rules are generated: consistent with the
rules defined by the user, not related to the user rules, and
inconsistent with the user knowledge. The rule r is consid-
ered to be consistent with the user knowledge if, in the set
of defined rules, there is at least one rule e such that r and
e indicate the same decision class and a set of examples
covered by r is a subset of examples covered by e.
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Methods
Rule induction
Let us assume that there are two sets of genes:G1 which is
a set that we want to describe functionally and G2 which
is a reference set, and G = {G1 ∪ G2}. Also there is a set
of GO terms T describing genes and gene products. For-
mally, Gene Ontology is a directed acyclic graph denoted
as GO = (T ,≤), where ≤ is a binary relation on T such
that genes described by the GO term tj ∈ T are a subset
of genes described by the GO term ti ∈ T , where tj ≤ ti,
if and only if there exists a path (ti, ti+1, . . . , tj−1, tj) such
that tm ≤ tm−1 for m = i + 1, i + 2, .., j − 1, j. The largest
element t0 is a root of DAG and the i-th level of the graph
is formed by all the GO terms t ∈ T for which there is a
path (root, t1, ...ti−1, ti) such that t1 ≤ root, tm ≤ tm−1 for
m = 2, 3, ..., i − 1 and ti ≤ ti−1.
Each gene g from the setG can be described (annotated)

by a one or more Gene Ontology terms at any level of GO
graph. Therefore, it is possible to create a so-called deci-
sion table DT = (G,T ∪ {d}), where for all t ∈ T , t : G →
{0, 1} and d(g) ∈ {G1,G2} for all g ∈ G. Each row in DT
represents a description of a single gene g ∈ G by the GO
terms, annotating it from the set T. The notation t(g) = 1
(called a positive descriptor) denotes that a gene g is anno-
tated by the term t, whereas t(g) = 0 (called a negative
descriptor) means the opposite. Each gene is also assigned
to one of the groupsG1 orG2. The task is to find all statis-
tically significant logical rules (combinations of GO terms)
of the following form:

r : IF ti1 and ti2 and ... and tik THEN G1, (1)

where t1, t2, ..., ti ⊆ T . The interpretation of the above log-
ical rule is as follows: if a gene is described by a conjunction
of Gene Ontology terms appearing in the rule premise, then
it belongs to a group of genes indicated in the rule con-
clusion. The set of rules creates functional description of
the gene group G1. In order to simplify the notation, we
include only positive descriptors into the rule premise.
In our case, the generation of the rules is discovery

oriented. Therefore, we search for all co-occurring com-
binations of GO terms satisfying some criteria defined by
the user. Such approach is, among others, implemented
in the classical association rule induction algorithm
Apriori [21] and its extension for decision rule induction,
Explore [31].
The aim of the method is to generate all statistically

significant logical rules of defined length, with premises
containing only positive descriptors. The induced rules
have to satisfy some additional criteria defined by a user
(e.g., a minimum number of genes describing each of
induced rules).
Therefore, to create the description of the given group,

we must determine all possible combinations of GO terms
describing that group. In pessimistic case (assuming that

every generated combination of GO terms is statistically
significant), this would result in the following number of
generated rules

∑|T |
k=1

(|T |
k

) = 2|T | − 1, where |T | is the
number of all GO terms considered.
In order to narrow down the searching space and

shorten the algorithm operating time, we introduced sev-
eral modifications to the Explore algorithm [18]. The basic
method is based on the idea of the so-called rule can-
didates. The generation of rules starts from a single GO
term, and then, in the loop, the rule is extended by adding
another GO term. Proposed solution assures that all GO
terms that are included in the rule premise belong to
exclusive paths leading from these terms to the root. In
other words, there is no such GO term in the rule premise
that is in the relation ≤ with any other GO term from the
rule premise, which means that among all GO terms that
create the premise of a single rule, there are no such two
GO terms that are in parent-child relationship, according
to the structure of DAG.
We say that a gene is recognized by the rule if it is

described by all GO terms from the rule premise and
that a gene is supported by the rule, if it is recognized by
the rule and belongs to the group indicated in the rule
conclusion.
Below, we present pseudocodes of procedures that allow

to generate rules. The Eliminate procedure removes terms
that are placed too close to the root in the GO ontol-
ogy graph from the GO terms set. In particular, the user
does not need to define any restrictions. In such a case,
the Eliminate procedure returns a set of terms that are
identical to the submitted ones.

Algorithm 1 RuleGO rule induction method
Input: T – list of GO terms
Output: R – rule set

1: LS ← Eliminate(T)

2: R ← ∅
3: GoodCandidates(LS,R)

4: Q ← LS
5: while Q 	= ∅ do
6: select first candidate rule r in Q
7: Q ← Q \ r
8: Lr ← Extend(r)
9: GoodCandidates(Lr,R)

10: Q ← Q∪ Lr 
 insert all candidate rules from Lr at
the end of Q

11: end while

The rule r which is statistically significant (the first con-
dition if in the GoodCandidates procedure) is added to
the output set of rules. However, it is not removed from
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Algorithm 2 This procedure inserts extensions of r that
are candidates for the final rules into Lr
Input: r – candidate rule
Output: Lr – extensions of r

1: procedure EXTEND(r)
2: Let k be the number of GO terms contained in r, h

be the highest index of the GO term (from
3: the list LS) included in r
4: Lr ← { r ∧ th+l ∈ LS such that conditions 1 and 2

are satisfied}
5: 1. all the subrules of r ∧ th+l of size k that include

th+l belong to Q (l = 1, 2, ..., n − h),
6: where n = |LS|
7: 2. th+l is not located on the same path (from the

root to the leaf in the GO graph) as any of
8: GO terms from the rule premise r
9: return Lr

10: end procedure

the set of candidate rules because its extension may lead
to obtain another, successive, statistically significant rule.
The candidate rule is removed from the Lr list if it does
not fulfill the minimal support criterion (minSupp). The
value of minSupp is defined by the user as an algorithm
parameter.
Our previous research [18] revealed that the number of

generated rules that are statistically significant combina-
tions of GO terms is usually very big.
Typically, even when describing small datasets consist-

ing of several hundreds of genes, the outcome number of
statistically significant rules can be around several hun-
dred thousands. Therefore, sophisticated filtering meth-
ods must be applied before presenting the results to the

Algorithm 3 This procedure prunes list Lr, discarding
candidate rules whose extension cannot satisfy the min-
Supp criterion
Input: Lr – list of candidate rules, R – rule set

1: procedure GOODCANDIDATES(Lr,R)
2: for r ∈ Lr do
3: if p-value(r) ≤ p then 
 p-value(r) –

statistical significance level of the rule r
4: R ← R ∪ r
5: end if
6: if support(r) < minSupp then
7: Lr ← Lr \ r
8: end if
9: end for

10: end procedure

expert. In the following subsections, we present several
possible filtering approaches.

Rule interestingness
As mentioned in the previous section the rules are gener-
ated for the description purposes. We would like to stress
that it is very difficult or even impossible to provide the
definition of the interesting rule. Depending on the exper-
tise of the person who performs the experiment and the
purpose of analyses, different aspects of the description
might be important. In general, the criteria on which indi-
vidual rule is evaluated might be objective or subjective
[30]. For each rule, we can determine p – number of posi-
tive examples, that is, number of genes from G1 described
by this rule, n – number of negative examples, that is,
number of genes fromG2 described by this rule. P denotes
all positive examples, that is, genes belonging to G1, and
N denotes genes belonging to G2. A lot of measures have
been defined in the literature based on the values of p,P, n
and N [41–44].
Two most basic measures that can be used to assess

rule quality are precision: prec(r) = p/(p + n) and cov-
erage: cov = p/P. The first measure describes how likely
the rule is able to describe examples from the positive set.
The second one describes how general is the rule, that
is, the percentage of genes from the positive set that are
described (covered) by the rule. Typically, we search for
the rules that are characterized by both high precision
and coverage. Therefore, in the literature, a lot of mea-
sures have been defined, which combine both precision
and coverage in one single, more powerful measure that
represents trade-off between these two elements.
One of such examples is Correlation measure Corr

that is used in the FOSSIL rule induction algorithm and
for association rules evaluation [43] and is computed as
follows:

Corr(r) = pN − Pn
√
PN(p + n)(P − p + N − n)

. (2)

The Corr measure takes into account the number of
positive and negative examples described by the rule and
also analyzes additional information about the dependen-
cies between p, n, P, and N. This is extremely useful while
generating rules for classification purposes. However, in
case the rules are generated for description, we also need
to evaluate the rules by using some other additional cri-
teria, not only the rule ability to discriminate between
positive and negative examples.
In the presented framework, for the rule interestingness

assessment, we propose to use QCompound interesting-
ness measure. This approach was introduced in our previ-
ous RuleGO method [16]. The QCompound measure is a
product of several rule quality measures and is computed
as follows:
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QCompound(r) = Lenght(r)∗GO_Depth(r)∗mYAILS(r),
(3)

where Length(r) represents a number of GO terms in
the rule premise (the longer is the rule, the better as
it includes more knowledge), GO_Depth(r) is a normal-
ized sum of levels in GO graph of the terms from rule
premise and mYAILS(r) = (0.5 + 0.25prec(r))prec(r) +
(0.5 − 0.25cov(r))cov(r) is modified YAILS measure [45]
that evaluates both rule precision and coverage. There-
fore, the proposed measure takes into account not only
classification abilities of the rule but also the structure
of the information included in the rule premise. In the
framework presented in this paper, the user can cus-
tomize the rule interestingness measure by including or
excluding particular components from it, which allows for
evaluating different aspects of the rule quality.
In addition to the typical quality or interestingness mea-

sures that are used for rule quality assessment in the
field of data mining, in the study, we also perform over-
representation test to determine statistical significance of
the rules. This is a typical approach that is used in many
single-term gene enrichment systems for the functional
analysis, and the most commonly used statistic for eval-
uating which functional categories are enriched in a set
of genes is hypergeomteric test (as presented in Table
2 in [15]). Hypergeomteric test analyzes enrichment by
evaluating the ratio of genes described by the rule in the
analyzed gene set G1 to genes described by the rule in
the reference set G2. Genes in the analyzed gene set are
assumed to have an equal likelihood of being identified,
consistent with the null model of hypergeomteric test.
The rule generation method presented in this study

assumes that we add only the rules that are statistically
significant to the output set; therefore, for each rule, we
compute its p-value according to the hypergeometric test.
As we perform enrichment analysis, that is as we search
the combinations of GO terms that are overrepresented
in the analyzed gene set, in our analysis, we use the right-
sided hypergeometric test. To correct for multiple testing,
we provide corrected p-value according to Benjamini and
Hochberg procedure to control False Discovery Rate [46].

Filtering and selecting themost relevant rules
Filtering is the process of selection of the most impor-
tant/interesting rules from the whole set of generated
rules. Most filtering methods are based on rule quality
rankings. The schema of the simplest filtering procedure
is as follows: first, each rule is evaluated according to the
arbitrarily selected rule interestingness measure; then, the
ranking of the rules is created, and, in the last step, based
on the ranking (and some additional criteria if applicable),
the rules of the lower quality are removed from the output
rule set.

It is important that during the rule removal process,
the filtering procedure must also take into account the
coverage (number of genes described by the rules) of the
described set of genes. The method should be designed in
such a manner that the coverage of analyzed gene group is
the same before and after filtering.
In the presented framework, after computing the

QCompound interestingness measure for each rule, the
rule set is ordered according to its value. Then, based
on the ranking, the two-step filtering procedure is per-
formed. In the first step, for each rule, the method ana-
lyzes whether another rule, lower in the ranking, exists,
which supports the same set of genes (or its subset). In
such a case, that rule is a candidate to be removed from the
output rule set. However, before removal of any rule, its
similarity to the rule which is higher in the ranking is ana-
lyzed. This is because rules are generated for description
purposes and removal of any rule from the output rule set
may result in the removal of potentially interesting infor-
mation. Therefore, the dissimilarity measure analyzes the
GO composition of premises of two rules rj and rj in the
following way:

sim(ri, rj) = 1 − �uGOterms(ri, rj) + �uGOterms(rj, ri)
�GOterms(ri) + �GOterms(rj)

,

(4)

where �uGOterms(ri, rj) is the number of unique GO
terms occurring in the premise of the rule ri and not
occurring in the premise of the rule rj, and �GOterms(ri)
and �GOterms(rj) denote the number of GO terms in the
premises of the rules ri and rj, respectively. We assume
that a GO term t from ri is unique if there is no parent-
child or child-parent relationship of that term with any of
the GO terms from rj premise.
If two rules are dissimilar above the defined dissimilarity

measure threshold, then both of them will remain in the
output rule set. Usually, after this step, the number of rules
is still large; therefore, the user has the possibility to apply
the second part of the filtering process.
The second step of the filtering procedure is also based

on the rule dissimilarity analysis. In this part of the
method, we traverse the rule ranking from top to the bot-
tom and analyze the dissimilarity among the rules. In the
output rule set, we leave only such rules that are dissimilar
to each other above the defined threshold. The rationale
standing behind such approach is that, in the description,
we want to include only the most distinct processes. How-
ever, as already mentioned, we also do not want to reduce
the coverage of the resulting rule set by removing too
much rules from the description. Therefore, if removal of
the rule r would change the rule set coverage (i.e., there
are no other rules left in the description supporting the
same set of genes as rule r supports), the rule remains in
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the output rule set. The procedure of the filtering process
(first step) is presented in Algorithm 4.

Algorithm 4 Rule filtering procedure
Input: R – set of rules ordered according to rule interest-

ingness measure τ – rule similarity threshold
Output: RF – filtered rule set ordered according to rule

interestingness measure

1: RF ← ∅
2: while R 	= ∅ do
3: Remove the top-ranking rule r∗ from R
4: R ← R \ r∗
5: RF ← RF ∪ r∗
6: for all r ∈ R do R ← R \ r
7: if set of genes supported by rule r ∈ set of genes

supported by rule r∗ then
8: if sim(r∗, r) ≥ τ then
9: RF ← R ∪ r

10: end if
11: end if
12: end for
13: end while

Method of rule set generation and its filtering presented
above is a fully automated approach to the rule induction
for description purposes. The expert may influence the fil-
tering process, by customizing the QCompound measure
that evaluates the rule interestingness or by defining if fil-
tering process should have one or two steps, depending on
the number of rules in the output dataset. However, most
of this process is carried out in an automated way, and
hence, there is a risk that some combinations of pathways
that could be interesting from the expert’s point of view
are removed from the output dataset.

Expert-driven rule evaluation by UTAmethod
In our framework, we propose another approach that
allows generating rules that are more consistent with the
expert preferences [29]. Here, the user is presented with
a small set of selected rules that should be representative
for the whole dataset. The rules presented to the user are
selected in the following way: first, each generated rule is
evaluated with several rule interestingness measures, and
for each measure, we can determine its minimal and max-
imal values which give us the range of possible values for
this measure. Then, the range of each partial measure is
divided into three intervals, and one representative rule is
randomly selected from each interval.
In the proposed framework, for each rule, five partial

rule quality measures qi(r) are defined. These measures
asses the quality of the rules from both subjective and
objective points of view. In particular, for each rule, the

following quality indicies are evaluated: mYAILS, Corr,
p − value, length, and GO_Depth. The first two measures
take into account the composition of genes in positive and
negative sets, third measure is based on hypergeometric
statistical test, and all of them could be regarded as objec-
tive measures. Other two measures are more oriented for
the description as they are focused on the structure of
information included in the rule premise.
In the framework proposed in this study, the expert is

presented with 15 representative rules and they are ranked
in preferred, subjective order – the most interesting rule
from the user point of view is placed on the top of the
ranking, the less interesting one goes to the bottom. The
order provided by the expert is used to generate the so-
called partial utility functions ui that are used to estimate
additive utility function (UTA measure) [47]. The partial
utility functions (especially estimation of ui and wi) are
computed in such a way that the ranking of the rules based
on the UTA measure reflects the ranking defined by the
expert. The QUTA measure is computed as follows:

QUTA = ui(qi(r))wi, (5)

where r denotes the evaluated rule, qi is i-th rule qual-
ity measure, ui is the estimated partial utility function
measure, wi is i-th coefficient and i = 1, 2, . . . , 5.
In the next step, the QUTA measure is used to order

all the rules from the output rule set, the standard two-
step filtering procedure is applied, and the final, reduced
output rule set is generated. Detailed description of the
method can be found in Gruca and Sikora [29].

Expert-driven rule induction
In the rule induction and filtering methods discussed
above, the user does not have any influence on the process
of selection of attributes that are used by the rule induc-
tion algorithm. It is not difficult to imagine the situation
when rules with the attributes describing particular pro-
cess or pathway related to the experiment and therefore
interesting from the user point of view are removed from
the output rule set during the filtering step.
For example, in the research presented in this study, the

set of rules, generated by RuleGO algorithm without fil-
tering, includes 3,812 combinations, and after two-step
filtering process, the number of rules is reduced to 32. The
coverage (that is, number of genes described by the logi-
cal rules) remains the same, but a lot of possibly important
information is removed from the resulting description.
To address this problem, we present here the extension

of the rule induction algorithm that allows the user to
influence the rule generation process by providing the list
of pathways/processes of special interest that should be
included in the rules composing the final result set. Such
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list of processes may be understood as a definition of a
particular hypothesis on the function of genes compos-
ing the group that needs to be verified by the expert. The
method assures that each rule from the output set includes
one or more pathways from the set defined by the user,
assuming that these pathways are functionally related to
the gene group, that is, they annotate some genes from
the group.
The user submits a list of GO terms, so-called seed or

expert terms that are a base for the rule induction algo-
rithm. The method analyzes the hierarchical structure of
the GO graph and extends the set of seed terms with all
their child processes. Then, the set of seed terms is fil-
tered to the terms that satisfies the constrains defined
by the user such as minimal and maximal depth in GO
graph, minimal number of GO terms describing genes,
evidence code, and so on. Next, all the seed terms cre-
ate singe-element rules that are a base for the the logical
rules generated by modified Explore algorithm described
in Rule induction section.
With every iteration of the algorithm, the rules are

built in such a way that they satisfy the following user
requirements:

• each generated rule includes at least one GO term
from the set of seed terms, extended by the child
terms derived from the analysis of the GO graph
hierarchy (if such seed terms describe genes from
analyzed gene set)

• each generated rule is statistically significant
(significance level is provided by the user)

• each generated rule includes GO terms satisfying
user preferences concerning minimal number of
genes described by a single GO terms and minimal
rule support (parameters provided by the user).

After the rule set is generated, for each rule its interest-
ingness is computed and based on this, the the rules are
ranked accordingly. Then, if the output set includes a large
number of rules, the user can apply one- or two-step fil-
tering procedure as implemented in the standard RuleGO
algorithm.

The comprehensive framework for functional description of
gene sets
In the earlier sections, we presented several different
approaches to the induction of logical rules. In this study,
we would like to propose all those approaches as the ele-
ments of a bigger system which is a comprehensive frame-
work for the induction of rules for description purposes.
Depending on the aims and expertise of the person who
performs the analyses, different steps can be applied in
order to obtain the best functional description of the
gene set.

First, the expert needs to make a decision whether the
rule induction process should be automated or expert-
driven. If there is no specific hypothesis related to the
experiment, we suggest selection of automated rule induc-
tion. However, if the expert performing analyses is inter-
ested in particular processes and wants to see if there are
cross talks among pathways of special interests and other
pathways, then the expert-driven method of rule induc-
tion should be performed. In both the cases, the user has
to set up the parameters for GO terms used to anno-
tate genes and for induced rules. In case of GO terms,
the user has to define which aspect of Gene Ontology
should be taken into account (Biological Process, Molec-
ular Function, Cellular Component), minimal number of
genes that are described by GO term, minimal and max-
imal level of a GO term in GO graph, if GO terms with
IEA evidence code should be excluded from the analy-
sis, and if hierarchy of GO graph should be taken into
account during the annotation process of GO terms . For
the rule induction algorithm part, the user can define sta-
tistical significance threshold, maximal numbers of GO
terms in a rule, minimal support, and maximal number of
generated rules.
Second part of the rule generation process is related

to the filtering procedure. Here, the user can choose if
standard, QCompound (3) rule interestingness measure
should be used to rank the rules or the user can influence
the process of rule interestingess assessment. In the latter
case, the user can either decide on particular elements of
the QCompound measure that it should include or decide
to compute the complex additive QUTA measure which is
then used to rank the rules. Then, as described earlier,
based on the ranking, filtering procedure can be per-
formed. The whole rule induction workflow is presented
in the Fig. 1.

Results and discussion
In this study, we propose a comprehensive framework for
the generation of logical rules for functional description
of gene sets using the controlled vocabulary from Gene
Ontology database. We also present a new method for
logical rule generation which allows the expert to ver-
ify hypothesis on existence or co-existence of specific
pathways that are related to the experimental conditions.
To demonstrate how the method works, and compare

different approaches to rule induction, we analyze gene
signature from DNA microarray experiments that differ-
entiate among three sub-types of breast cancer [48]. We
use this dataset as a case study to show the proposed
framework and its applications. The gene signature con-
sists of 26 genes, and we assume that those genes should
be involved in some processes related to tumor develop-
ment. There is also reference set of 135 genes that are
differentially expressed during the experiment. The lists



Gruca and Sikora Journal of Biomedical Semantics  (2017) 8:23 Page 9 of 14

Fig. 1 The workflow of the induction of logical rules for functional description

of genes analyzed in this research are also provided in the
Additional file 1.
For the breast cancer dataset, we generated logical rules

using the four approaches presented earlier and compared
their performance and accuracy. For the rule induction
method with expert terms, we also analyzed how its

composition changes depending on the selection of dif-
ferent components of QCompound measure and different
filtering settings.
As the seed terms, we decided to choose the set of Gene

Ontology terms that are related to the so-called hallmarks
of cancer [49], that is cell capabilities that enable tumor
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growth and metastatic dissemination. The list of such GO
terms related to hallmarks of cancer was derived from
the Knijnenburg et al [50], in which they propose map-
pings from cancer hallmarks to Gene Ontology processes.
Initial mapping included 57 GO terms, divided into 10
categories related to the following processes:tissue inva-
sion and metastasis, genome instability, tumor-promoting
inflammation, reprogramming energy metabolism and
evading immune destruction, sustaining proliferative sig-
naling, evading growth suppressors, resisting cell death,
replicative immortality, and sustained angiogenesis (see
Additional file 2 for the detailed list of GO terms). The
set of 57 GO terms was extended with their children
processes.
For the gene annotations, we used the version of Gene

Ontology database from January 2016, GO terms from
Biological Process only. The following settings for GO
terms and the rule induction algorithm were applied:

• minimal level on GO graph: 3,
• maximal level on GO graph: 20,
• minimal number of genes described by a single GO

term: 3,
• take into account GO graph hierarchy during

analyses: yes,
• statistical significance level: 0.05,
• minimal rule support: 3,
• maximal number of GO terms in rule premise: 5,
• rule similarity threshold during filtering: 0.5.

After applying the above constrains on GO terms used
during gene annotation process, we obtained 927 GO
terms describing 134 genes both from analyzed (22 genes)
and reference (112 genes) sets.
Obtained rule sets and their characteristics for different

approaches for rule generation are presented in Table 1.
Each column represents different approaches to rule gen-
eration according to the framework presented in this
paper. Set S01 represents the results for the "raw" RuleGO
method without filtering procedure applied, set S02 is a
standard method with applied filtering, set S03 applies fil-
tering using UTA approach, and set S04 proposes the new
rule generation method that allows the user to control the
process of logical rule generation by providing a set of
seed terms. For the last approach, we also analyze how
different QCompound measure and filtering parameters
setting can influence the rule induction process. These
results are presented in Table 1 as S04(1)-S04(6) datasets.
Numbers from 1 to 6 in parenthesis after the name of
the set S04 denote different parameter settings of rule
quality assessment and filtering. The detailed informa-
tion about the parameters setting for all sets is presented
in Table 2. YES means that the particular component
(mYAILS/Lenght/GODepth) of the QCompound measure

or particular step of filtering procedure is the number of
unique GO terms that was applied during the rule gener-
ation, NO means that the component was removed from
the formula, in case of QCompound measure, or was not
applied, in case of filtering.
The analysis of the results presented in Table 1 shows

that with the proposed new method the expert is able
to obtain the description that includes terms that could
be possibly interesting regarding the experimental con-
ditions. The terms defined by the expert are combined
with other GO terms providing the information on
gene/protein functions. In case of no filtering, the num-
ber of rules is too large to be analyzed by human. Filtering
allows reducing the number of rules, but in comparison
with the new method, the output rule set is generated in
a fully automated way and therefore consists of signifi-
cantly less rules including expert GO terms. It is worth
to notice that the method is designed in such a way that
the filtering process does not reduce the coverage of gene
set, which means that the algorithm always provides func-
tional description for all genes that could be described by
a set of GO terms satisfying constrains defined by the user.
The difference in coverage between the automated and
the expert-driven approach is the result of the fact that
in case of the expert-driven procedure, we require each
rule to have at least one expert GO term in its premise,
and the maximal coverage of the gene set with provided
expert terms is 62%. In case the user would like to obtain
the description for the rest of genes from the group, the
solution is to generate rules for the remaining genes in an
automated manner.
Regardless of the rule induction method, after filter-

ing, the average precision and the average coverage of the
rules in the output set is higher. Thus, filtering allows to
reduce some of rules from the output set which are too
general, that is, describe not only genes from the analyzed
set but also from the reference set, and it also prefers the
rules that are supported by large number of genes (that is,
describe more genes from the output rule set).
Analyzing the results from the UTA experiment (rule

set S03), we can see that the rule ranking obtained with
the QUTA measure, which is the base for the filtering pro-
cess, allows generating final rule set that is characterized
by similar values of quality indices as in the case of the
rules sorted by the QCompound measure. This indicates
that the method for semi-random sampling of rules which
is used in the UTA approach allows selecting small subset
of good representatives. This is important to notice, as the
number of rules presented to the expert should be small
enough for him or her to analyze them.
The UTA method takes into account the expert prefer-

ences, but in a different way than does the method based
on seed terms. In case of the UTA method, a small set of
representative rules is presented to the expert and he or
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Table 1 Comparison of different logical rule generation methods and different parameter settings

S01 S02 S03 S04(1) S04(2) S04(3) S04(4) S04(5) S04(6)

No. of rules before filtering 3812 3812 3812 110 110 110 110 110 110

No. of output rules 3812 32 32 9 10 7 19 110 14

No. of rules with expert terms 1465 15 11 9 10 7 19 110 14

Coverage 82 82 82 64 64 64 64 64 64

Avg. p-value 0.018 0.017 0.014 0.009 0.012 0.013 0.019 0.016 0.014

Avg. precision 0.74 0.78 0.77 0.81 0.78 0.7 0.68 0.71 0.72

Avg. coverage 0.14 0.15 0.15 0.16 0.16 0.16 0.16 0.15 0.17

Avg. GO Level 4.06 4.18 3.7 4.95 4.84 5.8 4.66 4.51 4.7

Positive coverage 18 18 18 14 14 14 14 14 14

Negative coverage 57 35 36 11 12 13 19 20 14

Positive coverage - expert rules 14 13 11 14 14 14 14 14 14

Negative coverage - expert rules 28 10 11 11 12 13 19 20 14

Avg. no. of descriptors 3.57 3.19 3.53 2.33 2.5 1.43 2.47 2.66 2.36

Avg. no. of expert term per rule 0.41 0.47 0.38 1.44 1.4 1.14 1.53 1.35 1.29

Number of distinctive expert terms 19 8 6 9 9 8 13 19 11

S01 – RuleGO method without filtering procedure, S02 – standard RuleGO method with applied filtering, S03 – filtering using UTA approach, S04 – new rule generation
approach using seed terms. Description of different Q Compound measure and filtering setting for S04(1)-S04(6) is presented in Table 2

she orders the rules according to his or her preferences. In
other words, the expert shows the best way to order the
rules, and the algorithm uses several objective indices to
reconstruct the ranking. In this approach, it is difficult to
provide the exact definition of the criteria on which the
rules are ordered, as it is more related to the expertise
and preferences of a particular person. Therefore, we may
see it as the soft approach to expert-driven rule induction
process.
As the opposite to the UTA expert-driven rule genera-

tion algorithm, the method based on seed terms can be
seen as a hard approach to rule induction and filtering.
Here, the user decides which GO terms are interesting
for him or her and each generated rule must include at
least one of the GO terms from the expert set. The sim-
plest possible description that includes GO terms that are
interesting from the expert point of view is represented in
Table 1 as the results set S04(1). We can notice that the

number of output rules in this set is very small, and this
because the rules that are added to the output rule set are
selected restrictively. However, they are characterized (in
average) by the smallest p-value, highest precision, very
high coverage, and the smallest coverage of the negative
class. Also in this set the average number of expert GO
terms per rule is the highest among all rule set generated
in this study. This may be interpreted as the fact that the
provided set of expert terms is functionally related to the
analyzed gene signature.
Analyses of the other results for the set S04, that

is, results obtained with different sets of parameters
for QCompound measure and different filtering settings,
show that the user is able control the process of rule induc-
tion. The proposed system is designed in a flexible way,
and the user can influence the process of rule induction
not only by indicating the biological processes of special
interest but also by having the possibility to decide on the

Table 2 List of parameters used for different rule induction methods as presented in Table 1

Dataset S01 S02 S03 S04(1) S04(2) S04(3) S04(4) S04(5) S04(6)

mYAILS YES YES YES YES NO NO NO NO NO

QCompound Length YES YES YES YES YES NO NO NO YES

GO_Depth YES YES YES YES YES YES YES YES YES

Filtering
1st level YES YES YES YES YES YES YES NO YES

2st level YES YES YES YES YES YES NO NO NO

YES means that the particular component of the Q Compound measure or particular step of filtering procedure was applied during the rule generation, NO means that the
component was removed from the formula, in case of Q Compound measure, or , in case of filtering, was not applied. Columns represent different approaches to rule
induction process and are consistent with the description of columns in Table 1
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characteristics of the output rule set by influencing the
process of rules evaluation and thus rules filtering.
To show the proportion of expert terms in rule sets gen-

erated by using different methods, we also visualize the
composition of expert terms in the output rules. The visu-
alization is presented in Fig. 2. In order to do this, we used
ciruvis tool [51], which allows visualizing of rule networks.
On the presented visualization, GO terms are represented
as outer and inner edges of the circle, and the connections
among the GO terms are shown as edges between the ele-
ments. The inner ring shows the color of the GO terms
on the other side of the connection. Here, the expert GO
terms are represented by red color and all the other GO
terms describing gene set are represented in blue color.
Analyzing the information presented in the graphical

form in Fig. 2, we can notice that in case of no filtering
step (Fig. 2a), even if the number of expert terms is the
biggest compared with other results, there is also a lot of
additional information that makes it a difficult task to find
the particular processes in the huge output rule set. Then,

we can observe that filtering (Fig. 2b) is able to reduce the
number of rules; however, it also removes the rules includ-
ing expert GO terms from the results. In case of the new,
expert-driven rule induction and filtering method (Fig. 2c
and d), we see that the expert terms are substantial part
of the output rule set. By applying the filtering process
with different sets of parameters, the user can decide how
much additional information should be included into the
final description. Rule network sets used to generate Fig. 2
are provided in Additional file 3.

Conclusion
In this study, we presented the comprehensive framework
for logical rule induction for functional interpretation of
the results of high throughput experiments. In order to
obtain the description, we use controlled vocabulary from
the Gene Ontology database as the keywords that help the
expert to understand and interpret the results of experi-
ments by means of the so-called logical rules in the form
of combinations of GO terms.

a b

c d

Fig. 2 Visualization of rule networks obtained for the selected rule induction methods. Each circle represents rule network obtained by using
different methods. a – rule network set S01, b – rule network set S02, c – rule network set S04(1), d – rule network set S04(5)



Gruca and Sikora Journal of Biomedical Semantics  (2017) 8:23 Page 13 of 14

Based on the results, we recommend that in case when
there is no specific domain knowledge related to the
experimental data or conditions, the user should use stan-
dard RuleGO rule generation method with the filtering
procedure. In case when the expert want to be involved in
the process of rule generation, but still is not focused on
particular processes and pathways, the UTA method for
filtering the rules should be used. However, in case when
domain knowledge related to the experimental data exists,
and if the expert prefers to influence the process of rule
induction or verify the hypothesis on existence of partic-
ular pathways, we propose the rule generation process in
which the rules are generated based on the expert terms.
In this work, we presented and compared four basic

approaches to the generation of rules for description pur-
poses, including a new method for rule generation based
on expert terms. We showed that the filtering step is
needed to reduce the output set, so that it could be ana-
lyzed by the human expert. Then we presented two meth-
ods that involve the interaction with the expert during the
process of rule induction. Both of them are able to reduce
the number of rules, but only in the case of the method
based on seed terms, each of the created rule includes
expert terms in combination with the other terms. Further
analysis of such combinations may provide new knowl-
edge about the biological processes and their combina-
tion with other pathways related to genes described by
the rules.
A suite of Matlab scripts that provide the functionality

of a comprehensive framework for the rule induction and
filtering presented in this study is available free of charge
at: http://rulego.polsl.pl/framework.

Additional files

Additional file 1: Analyzed gene set and reference gene set. This excel file
includes 26 genes that compose described gene group G1 and 135 genes
from reference gene group G2 analyzed in this study. The lists of genes
were derived from Finak et al. [48]. (XLSX 33 kb)

Additional file 2: List of 57 GO terms related to hallmarks of cancer. This
excel file includes a list of 57 GO terms related to the hallmarks of cancer
from Knijnenburg et al. [50], which were used as a base to define the
expert terms used in the analysis. (XLSX 29 kb)

Additional file 3: Rule network sets that were generated as a result of this
analysis. This excel file includes rule network sets that were generated as a
result of this analysis. Each tab of the Excel file represents different rule set:
set S01 represents results for the RuleGO method without filtering
procedure applied, set S02 is a standard method with applied filtering, set
S03 applies filtering using UTA approach, and set S04 proposes a new
approach that allows the user to control the process of logical rule
generation by providing a set of seed terms. For the set S04, we provide six
rule sets obtained with different sets of quality assessment and filtering
parameters as presented in Table 2. Each row represents a single rule, and
GO terms from the expert set (seed terms) are denoted with star (*). Also
for sets S02, S03, and S04 seed terms are marked with bold font. For each
rule, we also provide the number of genes supported and recognized by
the rule, its precision, coverage, value of the QCompoundmeasure, p-value,
and the list of genes supported by that rule. (XLSX 257 kb)
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