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Abstract

Background: Disease taxonomies have been designed for many applications, but they tend not to fully incorporate
the growing amount of molecular-level knowledge of disease processes, inhibiting research efforts. Understanding
the degree to which we can infer disease relationships from molecular data alone may yield insights into how to
ultimately construct more modern taxonomies that integrate both physiological and molecular information.

Results: We introduce a new technique we call Parent Promotion to infer hierarchical relationships between disease
terms using disease-gene data. We compare this technique with both an established ontology inference method
(CliXO) and a minimum weight spanning tree approach. Because there is no gold standard molecular disease
taxonomy available, we compare our inferred hierarchies to both the Medical Subject Headings (MeSH) category C
forest of diseases and to subnetworks of the Disease Ontology (DO). This comparison provides insights about the
inference algorithms, choices of evaluation metrics, and the existing molecular content of various subnetworks of
MeSH and the DO. Our results suggest that the Parent Promotion method performs well in most cases. Performance
across MeSH trees is also correlated between inference methods. Specifically, inferred relationships are more
consistent with those in smaller MeSH disease trees than larger ones, but there are some notable exceptions that may
correlate with higher molecular content in MeSH.

Conclusions: Our experiments provide insights about learning relationships between diseases from disease genes
alone. Future work should explore the prospect of disease term discovery from molecular data and how best to
integrate molecular data with anatomical and clinical knowledge. This study nonetheless suggests that disease gene
information has the potential to form an important part of the foundation for future representations of the disease
landscape.

Keywords: Disease Ontology inference, Disease tree inference, Pairwise disease similarity, Disease gene association,
Medical Subject Headings tree, Disease Ontology, Hierarchical clustering, Parent Promotion

Background
The recent growth in availability of genomic and clini-
cal data allows for the discovery of new molecular-level
mechanistic models of disease. However, existing dis-
ease taxonomies and ontologies are often focused on
either physiological characterizations of disease, some-
times using decades-old criteria, or on the organizational
and billing needs of hospitals. Automatically inferring
commonmolecular links between related diseases is made
more difficult by the limited molecular representation
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in current taxonomies [1], leading some researchers to
manually group related disorders for individual projects
(for example, PheWAS analysis [2] or network-based dis-
ease gene prioritization [3]). Yet such manual efforts limit
consistency and reproducibility. To further advance such
research and biomedical knowledge in the genomic era,
a recent National Academy of Sciences working group
has called for the development of new disease taxonomies
better suited to incorporate molecular information [4].
A truly modern taxonomy would presumably combine

clinical, physiological, and molecular data. The question
we address here is the degree to which we can infer a
meaningful disease taxonomy simply using disease gene
information. In this, we were inspired by efforts by Trey
Ideker’s group to infer a version of the Gene Ontology
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using pairwise similarity scores between genes [5, 6].
Their CliXO algorithm, for example, sorts gene pairs by
a pairwise similarity score and incrementally uses these
scores to group together cliques of similar genes. The
resulting ontology forms a Directed Acyclic Graph (DAG)
of sets of genes. As in that work, here we are not argu-
ing that we should ultimately construct a disease hierarchy
automatically in this way. However, learning how we can
discover the relationships in existing disease taxonomies
from disease gene data is a first step towards developing
new hierarchies of disease that integrate the clinical infor-
mation used in today’s taxonomies with genomic data.
Such integrated taxonomies are needed to better support
research in molecular medicine [7].
To infer a disease taxonomy, we would like to sim-

ply cluster diseases hierarchically based on associated
genes from a large gene-disease database. However, if
the items we are clustering are diseases, the internal
nodes of any hierarchical clustering method will corre-
spond to unnamed sets of diseases. While some of these
may be informative, identifying them is a challenge. We
therefore introduce here an algorithm called Parent Pro-
motion, based on hierarchical clustering, that addresses
this problem.
We acknowledge that we are deliberately blurring the

distinction here between an ontology of disease [8] and
a disease taxonomy [9]. In this manuscript, we focus on
learning a hierarchical characterization of disease using
existing disease terminology, yet incorporating molecu-
lar relationships. Such a description may be able to better
identify novel relationships between disorders that do not
appear clinically similar but that arise from similar under-
lying genotypes. Yet we are not expecting here to compre-
hensively infer disease relationships as in most ontologies,
in part because the current project ignores the clinical and
anatomical characteristics built into many existing tax-
onomies. Accordingly, we frequently use the term “disease
hierarchy” to encompass our inferred hierarchies as well
as those to which we compare.
One important question is how to evaluate our inferred

hierarchies of disease when there is no existing gold stan-
dard. However, there are a handful of existing taxonomies
and disease ontologies that are somewhat suitable for
molecular analyses and comparisons [4]. Medical Subject
Headings (MeSH) is a hierarchical structure of controlled
biological vocabularies used to index articles in MED-
LINE [10].MeSH includesmanymedical concepts beyond
diseases, but here we refer to MeSH category C, a com-
prehensive set of 26 trees that represent relationships
between diseases. SNOMED-CT provides an organized
terminology for clinical terms [11]; this is one of the most
detailed terminologies available, but there are restrictions
on its distribution. The Unified Medical Language Sys-
tem (UMLS) metathesaurus includes disease terms from

multiple taxonomies; while it is not intended to be an
ontology, its semantic network can identify some relation-
ships between terms [12]. The Disease Ontology (DO)
also integrates the knowledge and relationships from sev-
eral taxonomies, including MeSH, SNOMED-CT, and
ICD [13].
Initially, because of the high coverage and availability of

MeSH and its simple structure, we chose to compare our
inferred hierarchies to the MeSH forest of disease terms.
Although it is not necessarily a gold standard for the prob-
lem we are trying to solve, we can use such a comparison
to identify the strengths and limitations of different infer-
ence methods. In addition, identifying individual MeSH
disease trees that are more consistent with the hierar-
chies inferred from disease-gene data helps in assessing
the molecular content of existing domains in MeSH. We
have also extended our assessments by comparison to the
Disease Ontology, which is a more complex process for
reasons detailed below.
Even after fixing a “reference” hierarchy for comparison,

the question of how to assess correctness remains. Many
of the standard network and graph comparison metrics
are inappropriate for our problem. One that does make
sense is a strict variant of Edge Correctness [14] that
asks how many parent-child relationships we get right.
We therefore use Edge Correctness as one measure of
accuracy.
One limitation of Edge Correctness, however, is that the

distances between pairs of terms are not uniform [15].
That is, two diseases that are separated by more than
one taxonomic link may be more closely related to each
other than two other diseases in a direct parent-child
relationship. We therefore also introduce the notion of
Ancestor Correctness, a feature-based similaritymeasure-
ment [16] that assesses our ability to properly identify
ancestry without concern about distances.
Finally, neither Edge Correctness nor Ancestor Correct-

ness penalizes an algorithm for false positives (inferred
edges not in the reference hierarchy). This is fine for
inference methods like Parent Promotion that build trees,
which all have the same number of edges for a fixed set
of disease nodes, but not for comparison to ontology-
learning approaches that can add arbitrary numbers of
edges. Accordingly, we also compute a variation of hier-
archical precision and recall [17], analagous to Ancestor
Correctness, that accounts for both false positives and
false negatives.

Methods
Reference taxonomies
To quantify performance of various disease hierarchy
inference methods, we compare our inferred taxonomies
to the 2016 Medical Subject Headings (MeSH) disease trees
[10] and the Disease Ontology (DO) [18], downloaded
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on August 5, 2016. From both datasets, we exclude
diseases for which we cannot find any associated genes,
because our methods would then have no way to learn
about how they relate to other diseases. However, exclud-
ing diseases can disconnect our reference hierarchies. To
reconnect them, we therefore add edges from a deleted
node’s parents to all of its closest descendants that do have
associated genes.
We note that the MeSH trees allow repeated disease

names, resulting in multiple nodes with the same name
in different parts of the tree. We treat these terms as
if they were the same node, effectively matching against
the corresponding DAG. However, given that the original
structure is a tree, most of these DAGs end up being fairly
tree-like.
Because the Disease Ontology is substantially larger

than any of the individual MeSH trees, we extracted
smaller DAGs from the full DO to facilitate algo-
rithm comparison. To find these smaller DAGs, we
searched through the DO starting at the most general
term. A term became a root of a DO subnetwork if
its name approximately corresponded to the name of
the root of one of the 26 MeSH trees and if it had
at least 100 DO terms as descendants. This approach
identified four new DAGs that can be described as
covering mostly “Cardiovasular Disease,” ”Gastrointesti-
nal Disease,” “Musculoskeletal Disease,” and “Nervous
System Disease”.
Table 1 reports the sizes and topology of these four sub-

networks of the DO. All are fairly tree-like; only small
numbers of nodes have more than one parent, and the
total number of edges is not that much larger than the
number of nodes. We note that it is not necessarily the
case that all disease nodes in the DAG labeled Muscu-
loskeletal Disease, for example, actually correspond to
musculoskeletal disorders, because the Disease Ontology
and MeSH are organized according to different princi-
ples. We therefore acknowledge that each subnetwork
of the DO may contain terms that map to several dif-
ferent MeSH disease trees. Nonetheless, we use these
labels as shorthand ways to refer to the chosen DO
subnetworks.

Withheld MeSH subtrees for method development
We selected four small subtrees from MeSH that we used
for refining our computational methods. These are the
MeSH subtrees rooted at the terms “Infant Premature
Diseases,” “Dementia,” “Respiration Disorders,” and “Eye
Diseases,” giving us a range of subtrees of different sizes
and complexity (Table 2). Note that the MeSH tree rooted
at “Eye Diseases” includes 149 disease terms and 178
edges, indicating that several terms appear multiple times,
althoughwe allow a node with a given name to appear only
once in each inferred hierarchy.
Although we show the performance of the inference

methods on these subtrees separately in Additional file 1,
we did not think it fair to include them in our over-
all MeSH results because we used them to tune our
methods. Accordingly, we removed the subtrees rooted
at these nodes from the relevant disease trees in MeSH
before evaluating the different methods’ performance.
Only one whole disease tree, C11 (“Eye Diseases”), was
removed, because the entire C11 tree was used formethod
development.
There are two other MeSH disease trees that were also

removed before evaluation: C21, “Diseases of Environ-
mental Origin,” which included only 3 diseases with asso-
ciated genes, and C22, “Animal Diseases,” which contained
no diseases with associated genes. We therefore report
averaged MeSH results over the remaining 23 MeSH dis-
ease categories.

Disease genes
We use disease genes to calculate pairwise similarity
of diseases. For our comparison to MeSH, we gathered
disease-gene associations from the Online Mendelian
Inheritance in Man (OMIM) database [19] and the Geno-
pedia compendium in the HuGE database of Human
Genetic Epidemiology [20], both downloaded on February
3rd, 2016. OMIM contains human genes, phenotypes
(typically specific diseases), and information about rela-
tionships between them. In particular, OMIM phenotypes
include Mendelian disorders, whose associated genes are
either known or not yet known, as well as mutations that
increase susceptibility to infection, cancer, or drugs [21].

Table 1 Subnetworks of the Disease Ontology

Root disease #Diseases (nodes) #Edges #Nodes with 1 parent #Nodes with 2 parents #Nodes with 3 parents

Disease 2,039 2,095 1,982 55 1

Cardiovascular disease 141 141 139 1 0

Gastrointestinal disease 115 118 110 4 0

Musculoskeletal disease 133 135 129 3 0

Nervous System disease 308 324 291 15 1

The entire Disease Ontology (root = “Disease”) and four subnetworks of various sizes extracted from it. The original DO and its subnetworks are tree-like: 1) the numbers of
edges are close to n − 1, where n is the number of nodes and 2) only a small fraction of nodes have 2 or more parents
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Table 2 Four MeSH subtrees of various sizes used for method
development

Root disease #Diseases (nodes) #Edges

Infant, Premature, Diseases 6 5

Dementia 13 12

Respiration disorders 23 22

Eye diseases 149 178

Genopedia includes links to articles on epidemiological
studies that identify gene-disease interactions. The major-
ity of these are discovered through association stud-
ies; linkage mapping and animal studies are specifically
excluded [20]. We combined disease-gene associations
from the two databases as in our previous work [1],
using the MEDIC merged disease vocabulary (down-
loaded from the Comparative Toxicogenomics Database
[22] on February 3rd, 2016). This combined data set con-
tains 2755 diseases and 12,873 genes.
To infer hierarchies based on DO terms with this

disease-gene data, however, required converting the
MeSH disease terms to DO terms. The DO obo file pro-
vides synonym information for this conversion. However,
because not every MeSH term has a DO equivalent, nor
vice-versa, the mapped disease gene data set included
1790 DO terms with 12,230 associated genes. The Disease
Ontology actually includes 6932 disease nodes, so the
resulting DAG of diseases with associated genes was
largely disconnected.
For the DO analysis, we therefore augmented the dis-

ease gene data with disease-gene associations from the
DISEASES database [23] (downloaded on August 5th,
2016) which directly uses DO terms. We used the filtered
version of the DISEASES database which provides non-
redundant disease-gene association pairs, and selected
only associations derived from experiments or database
curation (“knowledge”), which we expect to be of rela-
tively high confidence. The DISEASES data included 772
disease terms and 13,059 genes. When combined with
the mapped data from the MeSH comparison, the total
yielded 2039 DO terms with 16,404 associated genes, pro-
ducing a sufficiently connected ontology for our purposes.
Although this number of disease genes seems high, note

that our “genes” are really referring to entities with distinct
HGNC “official gene symbols,” as reported in the NCBI
Gene database and associated with some disease term in
the databases described. Some HGNC symbols refer to
distinct subunits of genes, while a few (under 3.5%) refer
to non-coding sequences that have either been shown to
play a regulatory role in disease, or that are locations of
SNPs linked to disease in GWAS studies. At most 250
such non-coding entities are implicated in more than one

disease and might therefore potentially play a role in our
analyses.

Measuring pairwise similarity
For our inference algorithms we needmethods tomeasure
similarities both between pairs of diseases and between
pairs of genes. To calculate pairwise similarity between
diseases A and B, disease_sim(A,B), let GA be the set of
associated genes for diseaseA andGB the set of associated
genes for disease B. We then use the Jaccard Index [24] to
represent the similarity between the disease gene sets as
follows:

disease_sim(A,B) = Jaccard(GA,GB) = |GA ∩ GB|
|GA ∪ GB|

To calculate pairwise similarity between genes g1 and
g2, gene_sim(g1, g2), we do the opposite, as we are inter-
ested in measuring the similarity of diseases with respect
to their associated genes:

gene_sim(g1, g2) = Jaccard(Dg1 ,Dg2) = |Dg1 ∩ Dg2 |
|Dg1 ∪ Dg2 |

whereDg1 is the set of diseases associated with gene g1 and
Dg2 is the set of diseases associated with gene g2.
Note that no information about the relationships

between diseases other than this measure of overlapping
disease genes is incorporated into this similarity matrix or
used by our inference algorithms.

Inference strategies
Clique Extracted Ontology (CliXO)
To use CliXO to generate disease ontologies, we begin by
creating a matrix containing the Jaccard similarity score
between genes as defined above. CliXO uses this similar-
ity matrix as input. It also relies on two parameters: α,
which represents the amount of noise allowed in forming
cliques, and β , which represents missing data. The algo-
rithm is demonstrated to be relatively robust to variation
in β , so we set β = 0.5 as done by the CliXO team [5].
Variation in α has higher impact on the results, so tuning
it to the data set is suggested. We chose α = 0.05 because
it produced reasonable-sized output graphs in our initial
experiments on the four MeSH subtrees in Table 2.
Initially, CliXO returns a DAG whose internal nodes

correspond to sets of genes, not to specific disease terms
in the reference ontology. We then used the ontology
alignment technique of [6] to align the resulting ontol-
ogy to the MeSH reference or to the Disease Ontology,
in order to identify disease terms in the output DAG.
Accordingly, some of the disease terms may not be repre-
sented in the CliXO output, because they fail to map to
any node. (Fig. 1 demonstrates the topological difference
for a small example; note that the CliXO output on the
right maps only 5 of the 6 disease nodes.)
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a) b)

Fig. 1 Topological difference between MeSH and the corresponding inferred ontology using CliXO. a A MeSH subtree containing prematurity
complications. b Corresponding Disease Ontology inferred using CliXO and ontology alignment. Drawn in Cytoscape v. 3.3.0 [30]

Parent Promotion
We introduce a new technique we call Parent Promotion
that focuses on similarities in disease genes. The idea is
to group diseases by their similarity scores and use hierar-
chical clustering to form subgroups. Parent-child relations
are then created from these subgroups by counting cita-
tion frequency in PubMed.
Specifically, we transform the pairwise similarity score

into a distance by subtracting it from 1. We then perform
complete-linkage hierarchical clustering on the disease
terms using the hclust function in R with these dis-
tances. Internal nodes in this dendrogram correspond to
sets of diseases. To convert the resulting dendrogram to
a hierarchy with a single disease at each node, we iden-
tify the number of disease-related articles in PubMed
for each disease in a cluster using the NCBI’s E-utilities
(http://www.ncbi.nlm.nih.gov/books/NBK25501/).
Working up from the bottom of the dendrogram, the

disease term with the most citations is promoted to
become the parent, with all other diseases in the clus-
ter left as its children. Once defined as a child, a disease
does not have another chance to be promoted. That is,
we only consider the most recently promoted disease and
its siblings in a cluster when deciding the next parent.
Figure 2 shows an example of how the dendrogram guides
the Parent Promotion process.

Notice that the inferred tree created by the Parent Pro-
motion technique always has the same number of diseases
(nodes) as the reference. However, the number of edges
may differ from that of the reference, which may be either
implicitly or explicitly a DAG. In either case, Parent Pro-
motion may therefore produce a result with fewer edges.

Minimumweight spanning tree
We also compared our new Parent Promotion method
to the standard technique of finding a Minimum Weight
Spanning Tree (MWST) [25] over the complete network
of disease terms, with pairwise similarity scores between
diseases as edge weights. The idea behind this is that a
representation of the relationships between diseases that
connects all the disease terms by their highest disease
gene similarity represents a minimum-length description
of the data that seems likely to capture real disease rela-
tionships. The MWST is unrooted, so we choose the
disease with themost related PubMED articles as the root.

Evalution metrics
Comparing the inference methods remains challenging
due to the topological differences of the output. In par-
ticular, both Parent Promotion and MWST produce trees
whose n nodes are exactly those of the reference hierar-
chy. In contrast, the DAG output by the CliXO method

a) b) c)

Fig. 2 How the Parent Promotion method transforms a dendrogram created by hierarchical clustering. a Dendrogram for diseases of infants born
preterm. Hierarchical clustering builds a tree whose internal nodes are hard to interpret. b Parent Promotion finds the most general disease term
from each cluster and promotes it as an internal node. An internal node becomes the parent of all other nodes in the same cluster. Disease term 3
has the most citations and keeps being selected for promotion until it becomes the root. Disease term 6 has more citations than 5 and is promoted
as the parent of 5. However, it later becomes a child of 3 because it has fewer citations than 3. c Final tree built by Parent Promotion

http://www.ncbi.nlm.nih.gov/books/NBK25501/
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may be much larger (as in Fig. 1). We use multiple meth-
ods to quantify and compare performance despite these
differences.

Edge Correctness (EC)
Inspired by the notion of Edge Correctness (EC) used
in network alignment [14] we measure the number of
edges that are identical to those in the reference hierar-
chy. Unlike in the network alignment problem, which uses
Edge Correctness as a proxy for node correctness, for this
problem we know the node correctness and wish to mea-
sure correctly inferred edges. We count edges as correctly
matched if and only if the parent child relations (both
the edges and the directions of the edges) are preserved.
To create an overall score we calculate the percentage of
edges in the reference that also appear in the inferred
ontology.

Ancestor Correctness (AC)
While Edge Correctness (EC) can measure how well two
networks are aligned, it may not be the best method
for evaluating disease taxonomies. In particular, dis-
eases separated by multiple taxonomic links may still
be closely related to each other, so EC can underesti-
mate performance by ignoring the ancestor-descendant
relationship. EC also rewards successfully matched edges
with no penalty for incorrect ones. This property
may favor CliXO, which tends to produce DAGs with
many edges.
To address the first shortcoming, we introduce the

notion of Ancestor Correctness (AC). For a disease x,
let xref be a node representing x in the reference ontol-
ogy and xinf be a node representing x in our inferred
hierarchy. Also let A(x) be the set of all ancestors
of x in the appropriate hierarchy. Then for a specific
disease xinf in the inferred taxonomy we can mea-
sure how well it matches the reference by calculating
AncestorJaccard = Jaccard(A(xref ),A(xinf )). We can then
apply AncestorJaccard globally by averaging across all dis-
eases in the inferred network. We report this average as
our AC score for the inferred network. Note that we only
consider diseases existing in both hierarchies. However,
we exclude diseases that are roots in both because they do
not have any ancestors.

Ancestor Precision and Recall (AP and AR)
Ancestor Correctness (AC) provides a good estimate of
topological similarity in terms of the number of preserved
ancestors of mapped nodes. However, it still does not
penalize false positives.
To address this problem, we adapt the Hierarchical

Precision (HP) and Hierarchical Recall (HR) measure-
ments from Verspoor et al. [17]. These measurements
compare the sets of all ancestors of a disease in the
inferred hierarchy to the ancestors of the same term in the

reference. Informally, HP is the fraction of x’s ancestors
in the inferred hierarchy that are correct, while HR is the
fraction of true ancestors of x that are also predicted by an
inference method to be ancestors of x.
More specifically, for a disease x, let xref be the node in

the reference and xinf be the node in the inferred ontology.
Then our HP and HR are calculated as follows:

HP(xref , xinf ) = |A(xref ) ∩ A(xinf )|
|A(xinf )| (1)

HR(xref , xinf ) = |A(xref ) ∩ A(xinf )|
|A(xref )| (2)

We also calculate an F score using HP and HR as:

F(x) = 2 × HP(x) × HR(x)
HP(x) + HR(x)

(3)

Finally, we define Ancestor Precision (AP) and Ances-
tor Recall (AR) to be the average of HP and HR across all
diseases in our reference hierarchy.

Results
Comparison to MeSH
We ran all three algorithms on the disease gene data
and disease terms from each of the 23 MeSH trees.
Table 3 reports the averaged performance across all 23
trees for each method and the different evaluation crite-
ria. Across this data set, we see that Parent Promotion
on average outperforms CliXO and MWST for almost
all evaluation measures. The only exception is Ancestor
Recall, for which MWST slightly edges out Parent Pro-
motion. Detailed performance on eachMeSH disease tree
is shown in Additional file 1; in most cases the meth-
ods’ relative performance is similar to that in Table 3.
The detailed table also shows that, for each evaluation
criterion, performance of the different methods is highly
correlated across the 23 disease trees, suggesting that
some trees are more consistent with the disease gene data
than others.

Comparison to the Disease Ontology
We first attempted to reconstruct all of the Disease Ontol-
ogy reflected in our disease-gene data set (2095 edges
connecting 2039 DO terms). However, we could not com-
pare the performance of all three inference methods on
this full data set because running CliXO, which has at
its core the computationally hard problem of finding
cliques, was infeasible on a data set this large and complex.
Nonetheless, we found that Parent Promotion consistently
outperformed MWST on this large data set. Specifically,
Parent Promotion had an EC of 0.07 compared toMWST’s
EC of 0.05, an AC of 0.23 compared to MWST’s AC of
0.04, and an F score of 0.40 compared to MWST’s 0.08.
We used the subnetworks of DO listed in Table 1 to

compare all three methods. Table 4 shows the results of
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Table 3 Average performance of inference methods across the MeSH trees

Method EC (± stdev) AC (± stdev) AP (± stdev) AR (± stdev) F (± stdev)

Parent Promotion 0.13 (± 0.06) 0.30 (± 0.10) 0.46 (± 0.16) 0.47 (± 0.14) 0.47 (± 0.15)

CliXO 0.12 (± 0.10) 0.22 (± 0.12) 0.30 (± 0.14) 0.38 (± 0.17) 0.33 (± 0.15)

MWST 0.07 (± 0.04) 0.11 (± 0.07) 0.13 (± 0.08) 0.48 (± 0.18) 0.21 (± 0.11)

Average Edge Correctness (EC), Ancestor Correctness (AC), Ancestor Precision (AP), Ancestor Recall (AR) and F-score across the different trees in the MeSH forest. Standard
deviation is shown in parentheses. Best performance across different inference techniques is highlighted in italic

all three methods on these subnetworks of DO. We again
see that in most cases Parent Promotion outperforms
CliXO and MWST for each evaluation measure, with the
exception of “Musculosketal Disease,” where CliXO out-
performs Parent Promotion and MWST. Again, MWST
often has good Ancestor Recall despite unimpressive per-
formance on most other metrics.
Figure 3 shows an example of one of the larger con-

nected components inferred by Parent Promotion using
the DO data. All edges in the figure occur in both the
Disease Ontology and the inferred tree. Although the
inferred tree is relatively flat, the figure demonstrates that
inference method is capturing some logical relationships
between diseases.

Data sources and quantity matter
We investigated the influence of the type and amount
of data using Parent Promotion on the MeSH disease
trees. First, we tried using data from just OMIM or just
Genopedia. OMIM has a higher percentage of monogenic
diseases identified using classical methods such as posi-
tional cloning, while Genopedia has a higher percentage
of GWAS data. On the other hand, OMIM includes much
less data, containing just 2434 genes linked to 1173 dis-
orders, whereas Genopedia contains 12,527 genes impli-
cated in 2499 disorders. Therefore, it is not surprising
that performance on the Genopedia data exceeds that
on the OMIM data, nearly across the board. The excep-
tion, interestingly, is C16, “Congenital, Hereditary, and

Neonatal Diseases and Abnormalities,” where the OMIM-
only version outperforms Genopedia-only by the AC, AP,
and F measures. This seems likely to be because this
MeSH tree includes many hereditary disorders whose
genes are particularly likely to be included in OMIM.
Detailed results for this comparison appear in Additional
file 2. (EC is omitted because it is uninformative for many
of the smaller data sets.)
In most cases, furthermore, the combination of the

two data sources is better than either alone. There are
a few cases where performance declines slightly with
both compared to just Genopedia, but in those cases the
OMIM data actually adds just a handful of genes that
aren’t already in the Genopedia data, and the changes
in performance are small, consistent with small random
perturbations.
To further explore the hypothesis that more data pro-

duces better results, we also ran an experiment where we
randomly removed 25% or 50% of the disease-gene asso-
ciations from each MeSH tree, and again tried to infer
trees via Parent Promotion. On average, performance
on all measures improved with more data, although the
effects on most individual trees were modest (results are
in Additional file 3).

Discussion
Overall, these experiments have provided some impor-
tant insights into what can and cannot be learned about
disease relationships from disease genes alone.

Table 4 Evaluation results for four DO subnetworks

Edge Correctness Ancestor Correctness F-score (Ancestor precision, ancestor recall)

Parent Parent Parent
Root disease Promotion CliXO MWST Promotion CliXO MWST Promotion CliXO MWST

Cardiovascular disease 0.06 0.09 0.07 0.32 0.18 0.11 0.50 0.27 0.21

(0.57, 0.44) (0.24, 0.30) (0.13, 0.48)

Gastrointestinal disease 0.17 0.13 0.03 0.37 0.26 0.14 0.55 0.39 0.26

(0.56, 0.53) (0.36, 0.42) (0.18, 0.48)

Musculoskeletal disease 0.16 0.08 0.10 0.15 0.26 0.09 0.26 0.41 0.17

(0.44, 0.18) (0.42, 0.40) (0.16, 0.19)

Nervous System disease 0.13 0.07 0.09 0.29 0.17 0.10 0.46 0.30 0.19

(0.70, 0.34) (0.26, 0.34) (0.13, 0.34)

Average Edge Correctness (EC), Ancestor Correctness (AC), Ancestor Precision (AP), Ancestor Recall (AR) and F-score across four DO subnetworks. Standard deviation is shown
in parentheses. Best performance across different inference techniques is highlighted as italic



Park et al. Journal of Biomedical Semantics  (2017) 8:25 Page 8 of 11

Fig. 3 Parent Promotion tree using DO data. Subtree of the disease tree built by Parent Promotion on DO “musculoskeletal system disease” data that
is an exact match to nodes and edges in the DO

The correlations observed across the MeSH trees sug-
gest that disease relationships in some MeSH categories
are easier to learn than others. Correctness appears to
be higher for smaller trees, perhaps simply because there
are fewer possibilities. However, there are some large
disease subtrees with higher AC and EC scores, espe-
cially Endocrine System Diseases (C19), Nutritional and
Metabolic Diseases (C18), and Respiratory Tract Dis-
eases (C08).
It is possible that the MeSH hierarchy in these areas is

better defined by molecular data, or that there are sim-
ply more disease genes known in these areas than in some
others. One observation is that these categories include
several well-studied complex diseases with high public
health impact. For example, C19 includes diabetes and
ovarian and pancreatic cancer; C18 also includes diabetes,
plus obesity and related conditions; and C08 features
asthma, COPD, and several types of lung cancer. Which
exact properties of a set of diseases contribute most to the
success of inference algorithms is an important question
for future work.
On the “Musculoskeletal Disease” DO subnetwork,

CliXO outperforms Parent Promotion by several criteria.
Parent Promotion struggles with this region of the Dis-
ease Ontology, in part because the term “Musculosketal
Disease” has fewer PubMed citations than the less gen-
eral term “Bone Disease.” The latter is therefore promoted
incorrectly to become the root, while the former remains
low in the inferred tree.
We also notice that despite its relatively poor per-

formance overall, MWST seems to have good Ancestor
Recall in many cases, sometimes even beating other meth-
ods. This may be because MWST tends to infer tall, thin
trees rather than short and broad ones. Figure 4 illustrates
this tendency. A node has more ancestors in tall, thin trees
than in broad trees, and as a result, is more likely to share
ancestors with the reference.
By attempting to infer relationships for each MeSH dis-

ease category separately, or within specific subnetworks

of the Disease Ontology, most of the work described here
has only a limited ability to detect novel molecular con-
nections across diseases currently thought to be unrelated.
However, we can begin to address the question of whether
such discovery is possible with these methods by looking
at the performance of Parent Promotion on data from the
full Disease Ontology, and by examining inferred edges
connecting pairs of disease terms that are not directly
connected in the DO.
We found 1900 such pairs. Most of these make unsur-

prising connections. For example, progressive muscular
atrophy was, in our inferred hierarchy, directly con-
nected to spinal muscular atrophy because they share 34
genes (all of those associated with the first disease term).
Other pairs may span different medical domains and tis-
sues yet have well-known commonalities that are already
described in existing hierarchies (e.g. rheumatoid arthri-
tis and type I diabetes mellitus, both of which are listed as
autoimmune disorders in MeSH).
However, there are other inferred edges whose rela-

tionships are plausible but not currently characterized.
For example, liver cirrhosis and pre-eclampsia share an
edge in our inferred hierarchy because they have large
and highly overlapping sets of associated genes. These
disorders initially appear to affect very different anotom-
ical systems and processes; both the Disease Ontology
andMeSH categorize pre-eclampsia under cardiovascular
disease/hypertension (MeSH also lists it as a pregnancy
complication), while cirrhosis is represented primarily
as a liver disease in both hierarchies. Yet there is evi-
dence that cirrhosis elevates the risk of pre-eclampsia
during pregnancy [26]. There are also specific cases
(e.g. HELLP syndrome, characterized by hemolysis, ele-
vated liver enzymes, and low platelet count) that link
liver dysfunction with increased pre-eclampsia risk [27].
As another example, fatty liver disease is also surpris-
ingly linked to pterygium or “surfer’s eye,” character-
ized by fleshy growths of the eye that are linked to
sunlight exposure. Molecular markers associated with
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a)

b)

c)

Fig. 4 A MeSH tree rooted at “Respiration Disorder” and corresponding inferred disease trees. a The MeSH tree containing “Respiration Disorder”
and its descendants. b The disease tree inferred by Parent Promotion on data from the tree in a). c The disease tree inferred by MWST from the same
data. MWST builds a taller and slimmer tree. As a result, most diseases have more ancestors in c) than in a) or b). This leads MWST to have good
performance with respect to Ancestor Recall (AR)

pterygium appear to be associated with cell migration
or involved with epithelial-to-mesenchymal transition
(EMT) [28], a class of genes also thought to play a
role in how the liver responds to injury such as that
caused by fatty liver disease [29]. Future work explor-
ing the implication of such potential connections may be
warranted.

Conclusions
We have demonstrated that it is possible to recover much
of the structure of both MeSH disease trees and the
DO from molecular data alone. However, this work is a
preliminary analysis, and there is much more to learn.
Although our aim in this project has been only to

infer gene-based relationships between disease terms in
existing taxonomic systems, one ultimate goal for a 21st-
century disease taxonomy is the inference of new disease
terms based on molecular information [4, 7]. Classifica-
tion of cancer or autism subtypes based on underlying
genetic contributions, for example, might be possible in
such a system.
The examples in the previous section of discovering

links across apparently disparate disease types raise the
possibility that novel connections in the inferred hierar-
chies for the full Disease Ontology data may correspond
to novel disease subtypes with commonmolecular causes.
Thus the discovery of new disease terms could arise
from future work based on such analyses. Of the meth-
ods described here, CliXO is the only one that might
directly address this problem, by inferring internal nodes
corresponding to sets of genes and then by finding new

methods to map these gene sets into plausible disease
classes. Further exploration of its abilities to do so, or
extension of clustering-based methods analogous to Par-
ent Promotion to incorporate comparable possibilities, is
warranted.
Taxonomy inference using data from diseases across

organ systems and tissues, such as that in the full Dis-
ease Ontology data set, may also lead to improved
categorization of disease processes. Subgraphs of the
inferred hierarchies may represent disease groups spe-
cific to certain anatomical systems, and investigation of
disease genes associated with such a subgraph might
provide some insights into anatomical expression and rel-
evance of disease genes. However, to identify inferred
subgraphs representing specific anatomical systems we
would need a comprehensive mapping between DO terms
and these systems. The development of such a mapping
and further interpretation of the substructure in such
broad inferred hierarchies remains an interesting open
question.
Future work may also include exploring the incorpora-

tion of tissue specific gene expression to integrate relevant
tissues and organs with the molecular level data, and
to look more broadly at ways to combine clinical and
molecular data. We also have not yet fully explored the
range of relevant tree- and DAG-inference methods from
the machine-learning community. However, the current
results leave us optimistic that by including molecular
information, it will be possible to construct integrated dis-
ease taxonomies that better support medical research in
the genomic era.
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