
Lampa et al. Journal of Biomedical Semantics (2017) 8:35
DOI 10.1186/s13326-017-0136-y

SOFTWARE Open Access

RDFIO: extending Semantic MediaWiki for
interoperable biomedical data management
Samuel Lampa1* , Egon Willighagen2, Pekka Kohonen3,4, Ali King5, Denny Vrandečić6,
Roland Grafström3,4 and Ola Spjuth1

Abstract

Background: Biological sciences are characterised not only by an increasing amount but also the extreme
complexity of its data. This stresses the need for efficient ways of integrating these data in a coherent description of
biological systems. In many cases, biological data needs organization before integration. This is not seldom a
collaborative effort, and it is thus important that tools for data integration support a collaborative way of working. Wiki
systems with support for structured semantic data authoring, such as Semantic MediaWiki, provide a powerful solution
for collaborative editing of data combined with machine-readability, so that data can be handled in an automated
fashion in any downstream analyses. Semantic MediaWiki lacks a built-in data import function though, which hinders
efficient round-tripping of data between interoperable Semantic Web formats such as RDF and the internal wiki format.

Results: To solve this deficiency, the RDFIO suite of tools is presented, which supports importing of RDF data into
Semantic MediaWiki, with metadata needed to export it again in the same RDF format, or ontology. Additionally, the
new functionality enables mash-ups of automated data imports combined with manually created data presentations.
The application of the suite of tools is demonstrated by importing drug discovery related data about rare diseases
from Orphanet and acid dissociation constants from Wikidata. The RDFIO suite of tools is freely available for download
via pharmb.io/project/rdfio.

Conclusions: Through a set of biomedical demonstrators, it is demonstrated how the new functionality enables a
number of usage scenarios where the interoperability of SMW and the wider Semantic Web is leveraged for
biomedical data sets, to create an easy to use and flexible platform for exploring and working with biomedical data.

Keywords: Semantic MediaWiki, MediaWiki, Wiki, Semantic Web, RDF, SPARQL, Wikidata

Background
While much attention has been paid to the ever growing
volumes of biological data from recently emerging high
throughput technologies [1, 2], the biological sciences are
importantly also characterised by the extreme complexity
of its data. This complexity stems both from the incredible
inherent complexity of biological systems, as well as from
the vast number of data formats and assisting technolo-
gies developed by the scientific community to describe
these systems. In order to provide a coherent description
of biological systems making use of the data sources avail-
able, data integration is of central importance [3]. Also,

*Correspondence: samuel.lampa@farmbio.uu.se
1Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24,
Uppsala, Sweden
Full list of author information is available at the end of the article

while there are vast amounts of biological data publicly
available, for many problems the necessary data to be inte-
grated is still comparably small, however complex, and in
need of organization before integration.
Biological data integration is an active field of research

and a number of strategies have been presented for
addressing the data integration problem [4, 5]. Data inte-
gration involves a wide range of considerations, including
data governance, data licensing issues and technology. In
terms of technical solutions, the most central solution for
data integration proposed so far is a set of flexible and
interoperable data formats and technologies commonly
referred to as the “Semantic Web” [6, 7], with its main
underlying data format and technology, the “Resource
Description Framework” (RDF) [8, 9], accompanied by
technologies such as the SPARQL Protocol and RDF

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13326-017-0136-y&domain=pdf
http://orcid.org/0000-0001-6740-9212
http://pharmb.io/project/rdfio
mailto: samuel.lampa@farmbio.uu.se
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Lampa et al. Journal of Biomedical Semantics (2017) 8:35 Page 2 of 13

Query Language (SPARQL) [10] and the Web Ontology
Language (OWL) [11].
The power of these data formats and technologies lie in

their ability to capture data, ontologies and linking infor-
mation between multiple ontologies in a single underlying
serialisation format. This enables disparate user commu-
nities to create data sets adhering to different ontologies
and adding linking information between datasets after-
wards. It furthermore enables generic tools to leverage
the ontology and linking information to present data
from multiple sources in a coherent, integrated fashion,
on-demand.
While most biological data today is not available in

RDF format, initiatives such as the Bio2RDF project [12]
are tackling this by providing a way to convert publicly
available datasets in non-RDF formats to RDF, by writ-
ing so called rdfizers for each dataset, and using a URI
normalisation scheme developed as part of the project
to ensure that URIs referring to the same object are
encoded in the same way [12]. More recent examples of
well supported RDF-ization efforts of biological data are
the Open PHACTS project and platform [13, 14], pro-
viding an integrated environment for working with data
and tools related to drug discovery, and the EBI RDF [15]
platform, which provides data from multiple of EBI’s bio-
logical data sources in an integrated semantic data layer
where connections between multiple data sources can
easily be made, e.g. at the time of querying the data via the
SPARQL endpoint made available.
The heterogeneous nature of biological data also

means that the task of managing, annotating, curat-
ing and verifying it is prohibitively complex for a sin-
gle researcher to carry out because of the knowledge
needed to understand the many biological systems, data
formats and experimental methods involved. This high-
lights the importance of effective collaborative tools in
biology, to allow experts from multiple sub-fields within
biology to work together to build integrated biologi-
cal data sources. For example, in the chemicals and
nanomaterials safety science field, semantically annotated
databases with domain-specific ontologies are being used
to standardise collaborative community data entry and
curation [16, 17].
One successful approach to enable flexible collaboration

on biological data is wiki systems [18, 19]. Wikis facilitate
collaboration by removing technological complexity from
the editing process, allowing anyone with access to the
wiki to edit any part of it. Instead of complicated authen-
tication controls, it generally manages trust in the content
by saving every change in the system as a new revision,
not allowing deletion of content, and logging which user
did the change. This way, other users can review changes
made andmake any corrections needed or simply roll back
changes that do not fulfil the criteria set up for the data

source, resulting in a simple and friendly environment for
editing content for any user.
Plain-text wiki systems have a large drawback though:

They only allow plain text to be stored while lacking sup-
port for structured, machine-readable, data. To solve this
problem a solution proposed by a number of groups is
to combine a wiki system with support for storing struc-
tured data in the form of semantic “facts”, consisting of a
property–value pair, closely mapping to the predicate and
object in RDF triples, and resulting in a combination of
the ease-of-use, and flexibility of wikis, with the ability
to create structured, machine-readable data. A review of
numerous Semantic Wiki implementations is available in
[20]. A recent wiki approach for databases was introduced
with the Wikibase software used by the Wikidata project
[21] and is already used in the life sciences [22, 23]
Semantic MediaWiki (SMW) [24] is currently one of the

most known and widely used semantic wikis. One of the
factors for its success is that it is based onMediaWiki [25],
the software powering Wikipedia and thousands of other
wikis. SMW allows to combine the unstructured content
of typical MediaWiki wikis, with structural semantic con-
tent, encoded using a dedicated syntax that extends the
MediaWiki syntax.
SMW has found a number of uses in biomedical con-

texts. Apart from often being used as an internal wiki
system at many labs, it has also been used in publicly
available resources, including MetaBase [26], a wiki-
database of biological databases, SNPedia [27], a wiki-
database focusing on medically and personally relevant
Short Nucleotide Polymorphisms (SNPs), the Gene Wiki
portal onWikipedia [28], and a catalog of a transcriptome
based cellular state information in mammalian genomes
in the FANTOM5 project [29].
SMW has many features to make it interoperable with

the rest of the Semantic Web, such as export of normal
wiki pages and the “facts” that relate them, as RDF/XML,
export of “Categories” as OWL classes and so called “Con-
cepts” [30] as OWL class descriptions [31]. Also, integra-
tion with third party semantic data stores is possible via
third party plugins. It also has a feature to enable so called
“Vocabulary import”, which is a way to link properties in
the wiki to predicates of external Semantic Web ontolo-
gies, by manually creating special articles that define these
links [32].
A notable limitation of SMW is the lack of a general RDF

data import function. That is, the ability to do automatic
batch import of RDF datasets into the wiki. Note that
such a functionality is distinct from the so called “vocabu-
lary import” feature described earlier, which only enables
manual linking of properties to ontology items, but no
automatic import of data, and no support for import-
ing plain RDF triples (OWL individuals), regardless of
whether an ontology is used or not.

Lampa et al. Journal of Biomedical Semantics (2017) 8:35 Page 3 of 13

This lack of a general RDF import function means
that usage scenarios such as bootstrapping new wikis
from existing data sources, or round-tripping between the
SMW data structure and the RDF data format used in the
wider Semantic Web, are not possible without external
tools. This has important consequences, since for exam-
ple round-tripping between SMW and RDF could provide
important benefits for data integration. As already men-
tioned, wiki systems have proven to be excellent platforms
for collaborative editing. Thus, by storing RDF data in a
text format closely resembling normal wiki syntax, it is
possible to leverage the benefits of a proven wiki platform
to lower the barrier to entry for new users to start edit-
ing semantic data. In other words, allowing full round-trip
between SMW and RDF data sets would allow to present
RDF data in a format more apt to collaborative editing and
curation, after which it can be exported again into the RDF
format for use in the wider Semantic Web.
Additionally, import of RDF data sets into SMW

would allow creating mash-ups, combining automati-
cally imported data sets of moderately large size with
manually created presentations of this data using the
querying and visualisation tools available in SMW or its
eco-system of third-party libraries. Based on these pos-
sibilities it can be concluded that RDF import in SMW
is an enabler of a number of usage scenarios useful in
data integration, including making working with seman-
tic data easier for users without deep knowledge of the
Semantic Web.
There exist a few solutions for semantic data import in

SMW, developed as third-party extensions. Among these,
Fresnel Forms [33] is focused on the import of an ontology
structure rather than plain RDF triples (OWL individ-
uals), and also requires running the Protégé software
outside of the wiki installation. Furthermore, the Linked
Wiki Extension [34] allows import of plain RDF triples but
does this by importing the triples into an external triple
store rather than inserting the data as SMW “facts” inside
the wiki source text, which is required for being able to
further modify the data in the wiki format.
To solve this lack of plain triples RDF data import into

SMW facts in the wiki text, a set of tools and SMW exten-
sions commonly named as the “RDFIO suite” was devel-
oped. These tools and extensions are presented below
together with biomedical demonstrators of the benefits of
the methodology.

Implementation
The RDFIO suite consists of the following parts:

1. A web form for importing RDF data via manual entry
or copy-and-paste.

2. A SPARQL endpoint allowing both querying and
creation of RDF triples via an INSERT INTO

statement, as well as RDF export by running
CONSTRUCT queries.

3. A SPARQL endpoint replicator, which can import
semantic data from an external SPARQL endpoint
(in essence creating a mirror of the data set).

4. A command-line import script for import of RDF
data stored in a file.

5. A command-line export script for export for RDF
data into a file.

6. A standalone command-line tool for converting RDF
triples into a MediaWiki XML file, for further import
using MediaWiki’s built-in XML import function,
named rdf2smw (referred to as rdf2smw below).

Tools 1-5 above were developed in the PHP program-
ming language, as modules of a common MediaWiki
extension called RDFIO. An overview picture of how these
parts are related to each other is available in Fig. 1. Tool 6
above, which is a standalone tool, was developed in the Go
programming language to provide shorter execution times
for the RDF-to-wiki page conversion of large data sets.
Tools 1-3 are implemented as MediaWiki Special-pages,

each providing a page with a web form related to their
task. Tools 1-5 all rely on the PHP based RDF library
ARC2 [35]. ARC2 provides its own MySQL-based data
store which is used for all its functions and which is
installed in the same database as the MediaWiki instal-
lation when installing RDFIO. To enable the ARC2 data
store to capture the data written as facts in the wiki a cus-
tom SMW data store was developed. It hooks into each
page write and converts the SMW facts of the page into
the RDF format used in the ARC2 store.
The most resource demanding part of the import pro-

cess is the creation of wiki pages in the MediaWiki soft-
ware. Thus, to enable previewing the structure of the wiki
pages, most importantly the wiki page titles chosen, before
running the actual import, the standalone tool in 6 above
was developed. By generating a MediaWiki XML file as
an intermediate step before the import, the user has the
option to view the wiki page content and titles in the
MediaWiki XML file in a text editor before running the
file through MediaWiki’s built-in import function. While
this is not a mandatory step, it can be useful for quickly
identifying whether any configuration settings should be
changed to get more useful wiki page titles, before the
more time-consuming MediaWiki import step is initiated.
The limitation of using the standalone tools is that any

manual changes would be overwritten by re-running the
import (although an old revision with the manual change
will be kept, like always in MediaWiki). We thus antici-
pate that the external tool will only be used for the ini-
tial bootstrapping of the wiki content, while any imports
done after manual changes have been made, will be done
using the PHP based import tool mentioned above, which

Lampa et al. Journal of Biomedical Semantics (2017) 8:35 Page 4 of 13

Fig. 1 Overview of the intended usage for the different parts of the RDFIO suite. The figure shows how RDF data can be retrieved from a set of
different sources, as well as being exported again. The parts belonging to the RDFIO SMW extension and the rdf2smw tool are marked with dashed
lines. The newly developed functionality in this paper is drawn in black while already existing functionality in MW and SMW is drawn in grey color.
Red arrows indicate data going into (being imported into) the wiki, while blue arrows indicate data going out of (being exported from) the wiki.
From top left, the figure shows: i) how RDF data files can be batch imported into SMW either by using the rdf2smw tool to convert them to
MediaWiki XML for further import using MediaWiki’s built-in XML import function, or via the importRdf.php commandline script in the RDFIO
SMW extension, ii) how plain triples (OWL individuals) can be imported from text files, or from web pages via copy and paste into a web form, iii)
how a remote triple store exposed via a SPARQL endpoint can be replicated by entering the SPARQL endpoint URL in a web form, iv) how new RDF
data can be created manually or dynamically in the SPARQL endpoint via SPARQL INSERT INTO statements supported by the SPARQL+
extension [44] in the ARC2 library, and finally, v) how data can also be exported via the SPARQL endpoint, using CONSTRUCT queries, or vi) by using
the dedicated exportRdf.php commandline script

supports updating facts in place without overwritingman-
ual changes.

Results and discussion
To solve the lack of RDF import in SMW, the RDFIO suite
was developed, including the RDFIO SMW extension
and the standalone rdf2smw tool. The SMW extension
consists of a set of functional modules, each consist-
ing of a MediaWiki Special page with a web form, or a
commandline script. A description of the features and
intended use of each of these parts follows. See also Fig. 1
for a graphical overview of how the different parts fit
together.

RDF import web form
The RDF import web form allows the user to import RDF
data in Turtle format either from a publicly accessible URL

on the internet, by manually entering or copy-and-pasting
the data into a web form. This allows users to import small
to moderate amounts of RDF data without the need for
command-line access to the computer where the wiki is
stored, as is often required for batch import operations.
The drawback of this method is that since the import
operation is run as part of the web server process, it is not
suited for large amounts of data. This is because it would
then risk using up too much computational resources
from the web server and making the website unresponsive
for other users for a single-server setting, which is often
used in the biomedical domain.

SPARQL import web form
The SPARQL import web form allows importing all
data from an external triple store exposed by a publicly
accessible SPARQL endpoint. Based on an URL pointing

Lampa et al. Journal of Biomedical Semantics (2017) 8:35 Page 5 of 13

to an endpoint it will in principle create a mirror of it,
since the data imported into the wiki will in turn be
exposed as a SPARQL endpoint (see the corresponding
section below). The import is done with a query that
matches all triples in the external triple store (In technical
terms, a SPARQL clause of the form: WHERE { ?s ?p
?o }). In order not to put too much load on the web
server, the number of triples imported per execution is
by default limited by a pre-configured limit. This enables
performing the import in multiple batches. The user can
manually control the limit and offset values, but the off-
set value will also be automatically increased after each
import, so that the user can simply click the import but-
ton multiple times, to import a number of batches with
the selected limit of triples per batch.

SPARQL endpoint
The SPARQL endpoint (see Fig. 2) exposes all the seman-
tic data in the wiki as a web form where the data can
be queried using the SPARQL query language. The end-
point also allows external services to query it via the
GET or POST protocols. It can output either a formatted
HTML table for quick previews and debugging of queries,
a machine-readable XML result set, or full RDF triples
in RDF/XML format. The RDF/XML format requires the
use of the CONSTRUCT keyword in the SPARQL query
to define the RDF structure to use for the output. Using

CONSTRUCT to output RDF/XML basically amounts to a
web based RDF export feature, which is why a separate
RDF export web form was not deemed necessary.
The SPARQL endpoint also allows adding new data to

the wiki using the INSERT INTO statement available in
the SPARQL+ extension supported by ARC2.

RDF import batch script
The batch RDF import batch script (importRdf.php) is
executed on the command-line, and allows robust import
of large data sets. By being executed using the standalone
PHP or HHVM (PHP virtual machine) [36, 37] executable
and not the web server process, it will not interfere with
the web server process as much as the web form based
import. It will also not run into the various execution time
limits that are configured for the PHP process or the web
server. While a batch-import could also be implemented
using the web form by using a page reload feature, or an
AJAX-based JavaScript solution, this is a more complex
solution that has not yet been addressed due to time con-
straints. Executing the batch RDF import script in the
terminal can look like in Fig. 3.

Stand-alone RDF-to-MediaWiki-XML conversion tool
(rdf2smw)
The rdf2smw tool uses the same strategy for conversion
from RDF data to a wiki page structure as the RDFIO

Fig. 2 A screenshot of the SPARQL endpoint web form in RDFIO. A key feature of the SPARQL endpoint is the ability to output the original RDF
resource URIs of wiki pages, that were used in the original data imported. This can be seen by the checkbox option named “Query by Equivalent
URIs” and “Output Equivalent URIs”, named so because the original URIs are stored using the “Equivalent URI” special property, on each page created
in the import

Lampa et al. Journal of Biomedical Semantics (2017) 8:35 Page 6 of 13

Fig. 3 Usage of the command-line import tool in RDFIO. The figure shows examples of shell commands to use to import an RDF dataset, in this case
in N-triples format, saved in a file named dataset.nt. The steps are: i) Change directory into the RDFIO/maintenance folder, and then ii)
execute the importRdf.php script. One can set the variables --chunksize to determine how many triples will be imported at a time, and
--offset to determine how many triples to skip in the beginning of the file, which can be useful if restarting an interrupted import session. The
$WIKIDIR variable represents the MediaWiki base folder

extension but differs in the following way: Whereas the
RDFIO extension converts RDF to wiki pages and writes
these pages to the wiki database in one go, the standalone
tool first converts the full RDF dataset to a wiki page
structure and writes it to an XML file in MediaWiki’s
XML import format, as illustrated in Fig. 1. This for-
mat is very straightforward, storing the wiki page data as
plain text, which allows to manually inspect the file before
importing it.
Programs written in Go are generally orders of magni-

tude faster than similar programs written in PHP. This
performance difference together with the fact that the exe-
cution of the standalone rdf2smw tool is separate from
the web server running the wiki is crucial when import-
ing large data sets (consisting of more than a few hundred
triples) since the import requires demanding data opera-
tions in memory such as sorting and aggregation of triples
per subjects. This is themain reason why this external tool
was developed.
The usage of the tool together with MediaWiki’s built-in

XML import script is illustrated in Fig. 4.

RDF export batch script
The RDF export batch script (exportRdf.php) is a
complement to the RDF export functionality available in
the SPARQL endpoint, which analogously to the import
batch script allows robust export of large data sets with-
out the risk for time-outs and other interruptions that
might happen to the web server process or the user’s web
browser.

Executing the batch RDF export script in the terminal
can look like in Fig. 5.

An overview of the RDF import process
As can be seen in Fig. 1, all of the import functions run
through the same RDF-to-wiki conversion code except for
the rdf2smw tool which has a separate implementation of
roughly the same logic in the Go programming language.
The process is illustrated in some detail in Fig. 6 and

can be briefly be described with the following processing
steps:

• All triples in the imported chunk (number of triples
per chunk can be configured for the commandline
import script while the web form imports a single
chunk) are aggregated per subject resource. This is
done since each subject resource will be turned into a
wiki page where predicate-object pairs will be added
as SMW fact statements consisting of a
corresponding property-value pair.

• WikiPage objects are created for each subject
resource. The title for this page is determined from
the Uniform Resource Identifier (URI) of the subject,
or from some of the predicates linked to this subject,
according to a scheme described in more detail below.

• All triples with the same subject, which have now
been aggregated together, are turned into SMW facts
(property-value pairs), to be added to the wiki page.
Predicate and object URIs are converted into wiki
page titles in the process, so that the corresponding

Fig. 4 Command-line usage of the rdf2smw tool. The figure shows the intended usage of the rdf2smw command line tool. The steps are, one per
line in the code example: i) Execute the rdf2smw tool to convert the RDF data into a MediaWiki XML file. ii) Change directory into the MediaWiki
maintenance folder. iii) Execute the importDump.php script, with the newly created MediaWiki XML file as first argument. The $WIKIDIR
variable represents the MediaWiki base folder

Lampa et al. Journal of Biomedical Semantics (2017) 8:35 Page 7 of 13

Fig. 5 Usage of the command-line export tool in RDFIO. The figure shows examples of shell commands to use to export an RDF dataset, in this case
in N-triples format, into a file named dataset.nt. The steps are: i) Change directory into the RDFIO/maintenance folder, and then ii) execute
the exportRdf.php script, selecting the export format using the --format parameter. The --origuris flag tells RDFIO to convert SMW’s
internal URI format back to the URIs used when originally importing the data, using the linking information added via SMW’s “Equivalent URI” property

Fig. 6 A simplified overview of the RDF to wiki page conversion
process. The figure shows in a somewhat simplified manner, the
process used to convert from RDF data to a wiki page structure. Code
components are drawn as grey boxes with cog wheels in the right
top corner, while data are drawn as icons without a surrounding box.
From top to bottom, the figure shows how RDF triples are first
aggregated per subject, then converted into one wiki page per
subject, while converting all URIs to wiki titles, for new pages and links
to pages, where-after the pages are either written directly to the wiki
database (the RDFIO SMW extension), or converted to XML and
written to files (the standalone rdf2smw tool)

property and value will be pointing to valid wiki page
names. Naturally, if the object is a literal rather than
an URI, no transformation will be done to it. During
this process the pages corresponding to the created
property titles are also annotated with SMW data
type information, based on XML Schema type
information in the RDF source data.

• Optionally, the facts can be converted into a
MediaWiki template call, if there is a template
available that will write the corresponding fact, by the
use of its parameter values.

• In the rdf2smw tool only, the wiki page content is
then wrapped in MediaWiki XML containing meta
data about the page, such as title and creation date.

• In the RDFIO SMW extension only, the wiki page
objects are now written to the MediaWiki database.

Converting URIs to user friendly wiki page titles
The primary challenge in the described process is to figure
out user friendly wiki titles for the resources represented
by URIs in the RDF data. This is done by trying out a
defined set of strategies, stopping as soon as a title could
be determined. The strategies start with checking if there
is already a page available connected to the URI via an
Equivalent URI fact in the wiki text. If this is the case, this
existing title (and page) will be used for this triple. If that is
not the case, the following strategies are tried in the stated
order: 1) If there are any properties commonly used to
provide a title or label for a resource, such as dc:title
from the Dublin Core ontology [38], the value of that
property is used. 2) If a title is still not found, the base part,
or “namespace” of the URI is shortened according to an
abbreviation scheme provided in the RDF dataset in the
form of namespace abbreviations. 3) Finally, if none of the
above strategies could provide an accepted title, the “local
part” of the URI (The part after the last / or # character
in the URL) is used.

Performance
Table 1 provides information about the time needed
to import a given number of triples (100, 1000, 10000
or 100000) drawn as subsets from a test dataset (the

Lampa et al. Journal of Biomedical Semantics (2017) 8:35 Page 8 of 13

Table 1 Execution times for importing RDF data into SMW using
the importRdf.php script in the RDFIO extension (column 2) and
converting to MediaWiki XML files using the rdf2smw tool and
then importing the generated XML files with MediaWiki’s built-in
XML import tool respectively (column 3 and 4), for a few different
dataset sizes (column 1)

Number of Import RDF Convert to XML Import XML

Triples (RDFIO extension) (rdf2smw tool) (MediaWiki XML import)

100 24 s 0.00 s 17 s

1000 179 s (2m59s) 0.02 s 81 s (1m21s)

10000 1652 s (27m32s) 0.3 s 683 s (11m23s)

100000 16627 s (4h37m7s) 18 s 7063 s (1h57m43s)

Comparative Toxicogenomics Database [39], converted
to RDF by the Bio2RDF project), using the RDF SMW
extension directly via the importRdf.php command-
line script, as well as by alternatively converting the data
to MediaWiki XML files with the rdf2smw tool and then
importing them using MediaWiki’s importDump.php
script. Note that when importing using the rdf2smw tool
the import is thus performed in two phases.
The tests were performed in a VirtualBox virtual

machine running Ubuntu 15.10 64bit, on a laptop running
Ubuntu 16.04 64bit. The laptop used was a 2013 Lenovo
Thinkpad Yoga 12 with a 2-core Intel i5-4210U CPU, with
base and max clock frequencies of 1.7 GHz and 2.7 GHz
respectively, and with 8 GB of RAM. The PHP version
used was PHP 5.6.11. Time is given in seconds and where
applicable also in minutes and seconds, or hours, minutes
and seconds.
Manual testing by the authors show that the perfor-

mance of an SMWwiki is not noticeably affected bymulti-
ple users reading or browsing the wiki. An import process
of many triples can temporarily slow down the brows-
ing performance for other users because of table locking
in the database, though. This is a characteristic common
to MediaWiki wikis, when a large import operation is in
progress, or if multiple article updates are done at the
same time, unless special measures are taken, such as hav-
ing separate, replicated, database instances for reading, to
alleviate the load on the primary database instance.

Continuous integration and testing
The fact that RDFIO is an extension to a larger software
(SMW), which itself is an extension of MediaWiki and
that much of their functionality depends on state in a
relational database, has added complexity to the testing
process. Recently though, continuous integration systems
as well as improved test tooling for MediaWiki and SMW
has enabled better automated testing also for RDFIO.
We use CircleCI as continuous integration system and
results from this and other services are added as indicator

buttons on the README file on the respective GitHub
repositories.
As part of the build process, system tests are run for the

RDF import function and for the RDF export function,
verifying that the exported content matches the data that
was imported. In addition, work has been started to add
unit tests. User experience testing has been carried out in
real-world projects mentioned in the introduction, where
some of the authors were involved [16, 17].

Round-tripping
As mentioned above, a system test for the round-tripping
of data via the RDF and import and export functions is
run, to ensure that no data is corrupted in the process. It
is worth noting though that the RDF export will generally
output more information than what is imported. This is
because SMWdoes store certainmeta data about all pages
created, such as modification date etc. In the system test,
these data are filtered out so that the test checks only con-
sistency of the triples that were imported using RDFIO.
An example of the difference between the imported and
exported data can be seen in Fig. 7.

Known limitations
At the time of writing this, we are aware of the following
limitations in the RDFIO suite of tools:

• The rdf2smw tool supports only N-Triples format as
input.

• There is currently no support for importing triples
into separate named graphs, such that e.g. imported
and manually added facts could be separated and
exported separately.

• There is no functionality to detect triples for removal,
if updating the wiki with a new version of a previously
imported dataset, containing deprecated or having
some triples simply removed.

• Cases with thousands of triples for a single subject
leading to thousands of fact statements on a single
wiki page – while technically possible – could lead to
cumbersome manual editing.

These limitations are planned to be addressed in future
versions of the tool suite.

Demonstrators
Demonstrator I: Orphanet - rare diseases linked to genes
An important usage scenario for RDFIO is to visualise
and enable easy navigation of RDF data by bootstrap-
ping an SMW instance from an existing data source.
To demonstrate this, the open part of the Orphanet
dataset [40] was imported into SMW. Orphanet con-
sists of data on rare disorders, including associated genes.
The dataset was already available in RDF format through

Lampa et al. Journal of Biomedical Semantics (2017) 8:35 Page 9 of 13

Fig. 7 A comparison between data before and after an import/export round-trip. This figure shows to the left a dataset containing one single triple
in turtle format. To the right is shown the data resulting from performing an import/export round-trip – that is, importing the initial data into a
virtually blank wiki (The wiki front page “Main Page” being the only page in the wiki) and then running an export again. It can be seen in the
exported data how i) The “Main Page” adds a certain amount of extra data, and ii) how there is a substantial amount of extra metadata about each
resource added by SMW. The subject, predicate and value of the initial triple is color-coded with the same colours in both code examples (both
before and after) to make it easier to find

the Bio2RDF project [12], from where the dataset was
accessed and imported into SMW. This dataset consisted
of 29059 triples and was first converted to MediaWiki
XML using the standalone rdf2smw tool, which was then
imported using MediaWiki’s built-in XML import script.
This presented an easy to use platform for navigating the
Orphanet data, including creating listings of genes and
disorders. Some of these listings are created automatically
by SMW but additional listings can also be created on
any page in the wiki, including on the wiki pages repre-
senting RDF resources, by using the template feature in
MediaWiki in combination with the inline query language
in SMW [41].
An example of a useful user-created listing on an RDF

node, was to create a listing of all the disorder-gene
associations linking to a particular gene and the corre-
sponding disorder, on the templates for the corresponding
gene pages (For an example, see Fig. 8). In the same way,
a listing of the disorder-gene association linking to partic-
ular disorders and the corresponding genes, was created
on the templates for the corresponding disorder pages.
This example shows how it is possible, on a wiki page

representing an RDF resource, to list not only information
directly linked to this particular resource, but also infor-
mation connected via intermediate linking nodes. Con-
cretely, in the example shown in Fig. 8 we list a resource
type (diseases) on a page representing a gene even though
in the RDF data diseases are not directly linked to genes.
Instead they are linked via an intermediate “gene-disorder
association” node.

Demonstrator II: DrugMet - cheminformatics/metabolomics
The DrugMet dataset is an effort at collecting experi-
mental pKa values extracted from the literature, linked
to the publication from which it was extracted, and to
the chemical compounds for which it was measured. The
DrugMet dataset was initially created by manually adding
the details in a self-hosted Semantic MediaWiki. The data
was later transferred to the Wikidata platform [21] for
future-proofing and enabling access to the data for the
wider community.
This demonstrator highlights how this data could be fur-

ther curated by extracting the data again from Wikidata
into a locally hosted SMW for further local curation.
The data was exported fromWikidata using its publicly

available SPARQLREST interface [42]. The extraction was
done using a CONSTRUCT query in SPARQL allowing to
create a custom RDF format specifically designed for the
demonstrator. For example, in addition to the publication
and compound data, the query was modified to include
rdf:type information for all the compounds, which is
used by the RDFIO command line tool to generate aMedi-
aWiki template call and corresponding template, for all
items of this type.
After the data was imported into a local SMW wiki, it

allowed to create a page with an SMW inline query dis-
playing a dynamically sorted list of all the compounds,
their respective pKa values, and links to the publications
from where the pKa values were originally extracted. The
query for this extraction is shown in Fig. 9, and the list is
shown in Fig. 10.

Lampa et al. Journal of Biomedical Semantics (2017) 8:35 Page 10 of 13

Fig. 8 Screenshot of a wiki page for a gene in the Orphanet dataset. In the middle of the page, the listing of gene disorder associations and the
corresponding disorders is shown. Note that these details are not entered on this page itself, but are queried using SMW’s inline query language
and dynamically displayed. To the right are details entered directly on the page

Implications of the developed functionality
The demonstrators above show that the RDFIO suite of
tools is successfully bridging the worlds of the easy-to-use
wiki systems and the somewhatmore technically demand-
ing wider Semantic Web. This bridging has opened up
a number of useful scenarios for working with seman-
tic data in a flexible way, where existing data in semantic
formats can easily and flexibly be combined by using the
templating and querying features in SMW. This leads to

a powerful experimentation platform for exploring and
summarising biomedical data, which earlier was not read-
ily accessible.
Availability

• Complete information about the RDFIO project can
be found at pharmb.io/project/rdfio

• A canonical location for information about the
RDFIO SMW extension is available at MediaWiki.org
at www.mediawiki.org/wiki/Extension:RDFIO

Fig. 9 The SPARQL query for extracting DrugMet data. This screenshot shows the SPARQL query for extracting DrugMet data in Wikidata’s SPARQL
endpoint web form. This query can be accessed in the Wikidata SPARQL endpoint via the URL: goo.gl/C4k4gx

https://pharmb.io/project/rdfio
https://www.mediawiki.org/wiki/Extension:RDFIO
https://goo.gl/C4k4gx

Lampa et al. Journal of Biomedical Semantics (2017) 8:35 Page 11 of 13

Fig. 10 A dynamic listing of DrugMet data. The listing shows a locally hosted SMWwiki with a list of compounds and related information. The list is a
custom, dynamically generated listing of Compound name, pKa value and a link to the publication from which each pKa value was extracted,
created using SMW’s inline query language

• All the software in the RDFIO suite is available for
download on GitHub, under the RDFIO GitHub
organisation, at github.com/rdfio where the RDFIO
SMW extension is available at github.com/rdfio/rdfio,
the rdf2smw tool at github.com/rdfio/rdf2smw and
an automated setup of a virtual machine with a fully
configured SMW wiki with RDFIO installed is
available at github.com/rdfio/rdfio-vagrantbox.

Outlook
Planned future developments include enhancing the
rdf2smw tool with support formore RDF formats as input.
Further envisioned development areas are:
iv) Separating the ARC2 data store and SPARQL

endpoint into a separate extension, so that the core
RDFIO SMW extension does not depend on it. This
could potentially improve performance of data import
and querying, as well as make the core RDFIO exten-
sion easier to integrate with external triple stores via
SMW’s triple store connector. v) Exposing the RDF import
functionality as a module via MediaWiki’s action API
[43]. This would allow external tools to talk to SMW
via an established web interface. vi) Allowing to store
domain specific queries tied to certain properties that
can, on demand, pull in related data for entities of a
certain ontology such as gene info from Wikidata, for
genes.

Availability and requirements
Project name: RDFIO
Project home page: https://pharmb.io/project/rdfio

Operating system(s): Platform-independent (Linux,
Windows, Mac)
Programming language: PHP (The RDFIO SMW exten-
tion), Go (The rdf2smw tool)
Other requirements: A webserver (Apache or Nginx), A
MySQL compatible database,MediaWiki, SemanticMedi-
aWiki, ARC2 (RDF library)
License: GPL2 (The RDFIO SMW extention), MIT (The
rdf2smw tool)

Conclusions
The RDFIO suite of tools for importing RDF data into
SMW and exporting it again in the same RDF format
(expressed in the same ontology) has been presented. It
has been shown how the developed functionality enables
a number of usage scenarios where the interoperabil-
ity of SMW and the wider Semantic Web is leveraged.
The enabled usage scenarios include; i) Bootstrapping
a non-trivial wiki structure from existing RDF data, ii)
Round-tripping of semantic data between SMW and the
RDF data format, for community collaboration of the
data while stored in SMW, and iii) Creating mash-ups of
existing, automatically imported data and manually cre-
ated presentations of this data. Being able to combine
the powerful querying and templating features of SMW
with the increasing amounts of biomedical datasets avail-
able as RDF has enabled a new, easy to use platform
for exploring and working with biomedical datasets. This
was demonstrated with two case studies utilising link-
ing data between genes and diseases as well as data from
cheminformatics/metabolomics.

https://github.com/rdfio
https://github.com/rdfio/rdfio
https://github.com/rdfio/rdf2smw
https://github.com/rdfio/rdfio-vagrantbox
https://pharmb.io/project/rdfio

Lampa et al. Journal of Biomedical Semantics (2017) 8:35 Page 12 of 13

Abbreviations
AJAX: Asynchronous Javascript and XML. A technology to access a web service
from Javascript, for receiving content or performing actions; OWL: Web
ontology language; RAM: Random-access memory; RDF: Resource description
framework; SMW: Semantic MediaWiki; SPARQL: SPARQL protocol and RDF
query language; URI: Uniform resource identifier

Acknowledgements
The authors thank Joel Sachs for mentoring AK during the Gnome FOSS OPW
2014 project.

Funding
The work was supported by the Google Summer of Code program of 2010
granted to WikiMedia Foundation, the Gnome FOSS OPW program for 2014
granted to WikiMedia foundation, the Swedish strategic research programme
eSSENCE, the Swedish e-Science Research Centre (SeRC), and the
eNanoMapper project EU FP7, technological development and demonstration
(FP7-NMP-2013-SMALL-7) under grant agreement no. 604134.

Authors’ contributions
DV, SL: original concept; SL, OS, EW: planning and design; SL, AK:
implementation; SL, PK, EW, RG: applications. All authors read and approved
the manuscript.

Availability of data andmaterial
The source code of the published software is available at GitHub, http://
github.com/rdfio.

The data used in Demonstrator I in this study are available from the Bio2RDF
website, http://download.bio2rdf.org/release/3/orphanet/orphanet.html.

The data used in Demonstrator II in this study are available from a custom
query in the Wikidata SPARQL Endpoint, https://query.wikidata.org.

The query used in the Wikidata SPARQL endpoint is available on GitHub,
together with a direct link to the Wikidata SPARQL Endpoint with the query
prefilled, https://gist.github.com/samuell/45559ad961d367b5d6a2626
9260dc29a.

The authors declare that all other data supporting the findings of this study
are available within the article.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24,
Uppsala, Sweden. 2Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht
University, P.O. Box 616, UNS50 Box 19, NL-6200 MD Maastricht, The
Netherlands. 3Institute of Environmental Medicine, Karolinska Institutet, SE-171
77 Stockholm, Sweden. 4Division of Toxicology, Misvik Biology Oy, Turku,
Finland. 5FanDuel Inc, Edinburgh, UK. 6Google Inc., 345 Spear Street, San
Francisco, USA.

Received: 2 May 2017 Accepted: 1 August 2017

References
1. Marx V. Biology: The big challenges of big data. Nature. 2013;498(7453):

255–60. doi:10.1038/498255a.
2. Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, Iyer R,

Schatz MC, Sinha S, Robinson GE. Big data: Astronomical or genomical?
PLOS Biol. 2015;13(7):1–11. doi:10.1371/journal.pbio.1002195.

3. Searls DB. Data integration: challenges for drug discovery. Nat Rev Drug
Discov. 2005;4(1):45–58. doi:10.1038/nrd1608.

4. Stein LD. Integrating biological databases. Nat Rev Genet. 2003;4(5):
337–45. doi:10.1038/nrg1065.

5. Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak
A, Blomberg N, Boiten JW, da Silva Santos LB, Bourne PE, Bouwman J,
Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT,
Finkers R, Gonzalez-Beltran A, Gray AJG, Groth P, Goble C, Grethe JS,
Heringa J, aC ’t Hoen P, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ,
Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M,
van Schaik R, Sansone SA, Schultes E, Sengstag T, Slater T, Strawn G,
Swertz Ma, Thompson M, van der Lei J, van Mulligen E, Velterop J,
Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B. The FAIR
guiding principles for scientific data management and stewardship. Sci
Data. 2016;3:160018. doi:10.1038/sdata.2016.18.

6. Antezana E, Kuiper M, Mironov V. Biological knowledge management:
the emerging role of the Semantic Web technologies. Brief Bioinform.
2009;10(4):392–407. doi:10.1093/bib/bbp024.

7. Chen H, Yu T, Chen JY. Semantic web meets integrative biology: A
survey. Brief Bioinform. 2013;14(1):109–25. doi:10.1093/bib/bbs014.

8. Guha R, Brickley D. RDF schema 1.1. W3C recommendation, W3C. 2014.
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/. Accessed 17
Nov 2016.

9. Brickley D, Guha R. RDF vocabulary description language 1.0: RDF
schema. W3C recommendation, W3C. 2004. http://www.w3.org/TR/2004/
REC-rdf-schema-20040210/. Accessed 17 Nov 2016.

10. Seaborne A, Prud’hommeaux E. SPARQL query language for RDF. W3C
recommendation, W3C. 2008. http://www.w3.org/TR/2008/REC-rdf-
sparql-query-20080115/. Accessed 17 Nov 2016.

11. van Harmelen F, McGuinness D. OWL web ontology language overview.
W3C recommendation, W3C. 2004. http://www.w3.org/TR/2004/REC-
owl-features-20040210/. Accessed 17 Nov 2016.

12. Belleau F, Nolin MA, Tourigny N, Rigault P, Morissette J. Bio2rdf: Towards
a mashup to build bioinformatics knowledge systems. J Biomed Inform.
2008;41(5):706–16. doi: 10.1016/j.jbi.2008.03.004. Semantic Mashup of
Biomedical Data.

13. Williams AJ, Harland L, Groth P, Pettifer S, Chichester C, Willighagen EL,
Evelo CT, Blomberg N, Ecker G, Goble C, Mons B. Open PHACTS:
semantic interoperability for drug discovery. Drug Discov Today.
2012;17(21-22):1188–98. doi:10.1016/j.drudis.2012.05.016.

14. Gray AJG, Groth P, Loizou A, Askjaer S, Brenninkmeijer C, Burger K,
Chichester C, Evelo CT, Goble C, Harland L, Pettifer S, Thompson M,
Waagmeester A, Williams AJ. Applying linked data approaches to
pharmacology: Architectural decisions and implementation. Semant
Web. 2014;5(2):101–13. doi:10.3233/SW-2012-0088.

15. Jupp S, Malone J, Bolleman J, Brandizi M, Davies M, Garcia L, Gaulton A,
Gehant S, Laibe C, Redaschi N, Wimalaratne SM, Martin M, Le Novère N,
Parkinson H, Birney E, Jenkinson AM. The EBI RDF platform: Linked open
data for the life sciences. Bioinformatics. 2014;30(9):1338–9.
doi:10.1093/bioinformatics/btt765.

16. Kohonen P, Benfenati E, Bower D, Ceder R, Crump M, Cross K,
Grafström RC, Healy L, Helma C, Jeliazkova N, Jeliazkov V, Maggioni S,
Miller S, Myatt G, Rautenberg M, Stacey G, Willighagen E, Wiseman J,
Hardy B. The ToxBank data warehouse: Supporting the replacement of in
vivo repeated dose systemic toxicity testing. Mol Inf. 2013;32(1):47–63.
doi:10.1002/minf.201200114.

17. Jeliazkova N, Chomenidis C, Doganis P, Fadeel B, Grafström R, Hardy B,
Hastings J, Hegi M, Jeliazkov V, Kochev N, Kohonen P, Munteanu CR,
Sarimveis H, Smeets B, Sopasakis P, Tsiliki G, Vorgrimmler D, Willighagen
E. The eNanoMapper database for nanomaterial safety information.
Beilstein J Nanotechnol. 2015;6(1):1609–34. doi:10.3762/bjnano.6.165.

18. Huss JW, Orozco C, Goodale J, Wu C, Batalov S, Vickers TJ, Valafar F, Su
AI. A gene wiki for community annotation of gene function. PLoS Biol.
2008;6(7):1398–402. doi:10.1371/journal.pbio.0060175.

19. Mons B, Ashburner M, Chichester C, van Mulligen E, Weeber M,
den Dunnen J, van Ommen G-J, Musen M, Cockerill M, Hermjakob H,
Mons A, Packer A, Pacheco R, Lewis S, Berkeley A, Melton W, Barris N,
Wales J, Meijssen G, Moeller E, Roes PJ, Borner K, Bairoch A. Calling on a
million minds for community annotation in WikiProteins. Genome Biol.
2008;9(5):89. doi:10.1186/gb-2008-9-5-r89.

20. Bry F, Schaffert S, Vrandečić D, Weiand K. Semantic Wikis: Approaches,
applications, and perspectives. Lect Notes Comput Sci (Including
Subseries Lect Notes Artif Intell Lect Notes Bioinformatics). 2012;7487
LNCS:329–69. doi:10.1007/978-3-642-33158-9_9.

http://github.com/rdfio
http://github.com/rdfio
http://download.bio2rdf.org/release/3/orphanet/orphanet.html
https://query.wikidata.org
https://gist.github.com/samuell/45559ad961d367b5d6a26269260dc29a
https://gist.github.com/samuell/45559ad961d367b5d6a26269260dc29a
http://dx.doi.org/10.1038/498255a
http://dx.doi.org/10.1371/journal.pbio.1002195
http://dx.doi.org/10.1038/nrd1608
http://dx.doi.org/10.1038/nrg1065
http://dx.doi.org/10.1038/sdata.2016.18
http://dx.doi.org/10.1093/bib/bbp024
http://dx.doi.org/10.1093/bib/bbs014
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://dx.doi.org/10.1016/j.jbi.2008.03.004.
http://dx.doi.org/10.1016/j.drudis.2012.05.016
http://dx.doi.org/10.3233/SW-2012-0088
http://dx.doi.org/10.1093/bioinformatics/btt765
http://dx.doi.org/10.1002/minf.201200114
http://dx.doi.org/10.3762/bjnano.6.165
http://dx.doi.org/10.1371/journal.pbio.0060175
http://dx.doi.org/10.1186/gb-2008-9-5-r89
http://dx.doi.org/10.1007/978-3-642-33158-9_9

Lampa et al. Journal of Biomedical Semantics (2017) 8:35 Page 13 of 13

21. Vrandečić D, Krötzsch M. Wikidata: A Free Collaborative Knowledgebase.
Commun ACM. 2014;57(10):78–85. doi:10.1145/2629489.

22. Mietchen D, Hagedorn G, Willighagen E, Rico M, Gómez-Pérez A, Aibar
E, Rafes K, Germain C, Dunning A, Pintscher L, Kinzler D. Enabling open
science: Wikidata for research (Wiki4R). Res Ideas Outcomes. 2015;1:7573.
doi:10.3897/rio.1.e7573.

23. Burgstaller-Muehlbacher S, Waagmeester A, Mitraka E, Turner J, Putman
T, Leong J, Naik C, Pavlidis P, Schriml L, Good BM, Su AI. Wikidata as a
semantic framework for the gene wiki initiative. Database. 2016;2016:015.
doi:10.1093/database/baw015.

24. Krötzsch M, Vrandečić D, Völkel M. Semantic MediaWiki. In: International
semantic web conference, vol 4273; 2006. p. 935–942.

25. MediaWiki. https://www.mediawiki.org. Accessed 16 Nov 2016.
26. Bolser DM, Chibon PY, Palopoli N, Gong S, Jacob D, Angel VDD, Swan

D, Bassi S, González V, Suravajhala P, Hwang S, Romano P, Edwards R,
Bishop B, Eargle J, Shtatland T, Provart NJ, Clements D, Renfro DP, Bhak
D, Bhak J. Metabase-the wiki-database of biological databases. Nucleic
Acids Res. 2012;40(D1):1250. doi:10.1093/nar/gkr1099.

27. Cariaso M, Lennon G. Snpedia: a wiki supporting personal genome
annotation, interpretation and analysis. Nucleic Acids Res. 2012;40(D1):
1308. doi:10.1093/nar/gkr798.

28. Good BM, Clarke EL, Loguercio S, Su AI. Building a biomedical semantic
network in wikipedia with semantic wiki links. Database. 2012;2012:060.
doi:10.1093/database/bar060.

29. Abugessaisa I, Shimoji H, Sahin S, Kondo A, Harshbarger J, Lizio M,
Hayashizaki Y, Carninci P, The FANTOM consortium, Forrest A,
Kasukawa T, Kawaji H. Fantom5 transcriptome catalog of cellular states
based on semantic mediawiki. Database. 2016;2016:105.
doi:10.1093/database/baw105.

30. Help:Concepts - Semantic-mediawiki.org. https://www.semantic-
mediawiki.org/wiki/Help:Concepts. Accessed 16 Nov 2016.

31. Help:RDF Export. https://www.semantic-mediawiki.org/wiki/Help:
RDF_export. Accessed 25 April 2017.

32. Help:Import Vocabulary. https://www.semantic-mediawiki.org/wiki/Help:
Import_vocabulary. Accessed 25 April 2017.

33. Rutledge L, Brenninkmeijer T, Zwanenberg T, van de Heijning J,
Mekkering A, Theunissen JN, Bos R. From Ontology to Semantic Wiki -
Designing Annotation and Browse Interfaces for Given Ontologies. In:
Lecture Notes in Computer Science (including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) vol. 9507; 2016.
p. 53–72. doi:10.1007/978-3-319-32667-2.

34. The LinkedWiki Semantic MediaWiki Extension. https://www.mediawiki.
org/wiki/Extension:LinkedWiki. Accessed 11 Nov 2016.

35. ARC RDF Classes for PHP. https://github.com/semsol/arc2. Accessed 29
Aug 2016.

36. Zhao H, Proctor I, Yang M, Qi X, Williams M, Gao Q, Ottoni G, Paroski A,
MacVicar S, Evans J, Tu S. The hiphop compiler for php. SIGPLAN Not.
2012;47(10):575–86. doi:10.1145/2398857.2384658.

37. Adams K, Evans J, Maher B, Ottoni G, Paroski A, Simmers B, Smith E,
Yamauchi O. The hiphop virtual machine. SIGPLAN Not. 2014;49(10):
777–90. doi:10.1145/2714064.2660199.

38. Weibel S. The dublin core: A simple content description model for
electronic resources. Bull Am Soc Inf Sci Technol. 1997;24(1):9–11.
doi:10.1002/bult.70.

39. Mattingly CJ, Colby GT, Forrest JN, Boyer JL. The Comparative
Toxicogenomics Database (CTD). Environ Health Perspect. 2003;111(6):
793. doi:10.1289/txg.6028.

40. Rath A, Olry A, Dhombres F, Brandt MM, Urbero B, Ayme S.
Representation of rare diseases in health information systems: The
orphanet approach to serve a wide range of end users. Hum Mutation.
2012;33(5):803–8. doi:10.1002/humu.22078.

41. Help:Inline Queries - Semantic-mediawiki.org. https://www.semantic-
mediawiki.org/wiki/Help:Inline_queries. Accessed 16 Nov 2016.

42. WikiData Query Service. https://query.wikidata.org. Accessed 29 Aug 2016.
43. API:Main Page - MediaWiki. https://www.mediawiki.org/wiki/API:

Main_page. Accessed 23 Nov 2016.
44. SPARQL+ - Semsol/arc2 Wiki. https://github.com/semsol/arc2/wiki/

SPARQL-. Accessed 23 Nov 2016.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://dx.doi.org/10.1145/2629489
http://dx.doi.org/10.3897/rio.1.e7573
http://dx.doi.org/10.1093/database/baw015
https://www.mediawiki.org
http://dx.doi.org/10.1093/nar/gkr1099
http://dx.doi.org/10.1093/nar/gkr798
http://dx.doi.org/10.1093/database/bar060
http://dx.doi.org/10.1093/database/baw105
https://www.semantic-mediawiki.org/wiki/Help:Concepts
https://www.semantic-mediawiki.org/wiki/Help:Concepts
https://www.semantic-mediawiki.org/wiki/Help:RDF_export
https://www.semantic-mediawiki.org/wiki/Help:RDF_export
https://www.semantic-mediawiki.org/wiki/Help:Import_vocabulary
https://www.semantic-mediawiki.org/wiki/Help:Import_vocabulary
http://dx.doi.org/10.1007/978-3-319-32667-2
https://www.mediawiki.org/wiki/Extension:LinkedWiki
https://www.mediawiki.org/wiki/Extension:LinkedWiki
https://github.com/semsol/arc2
http://dx.doi.org/10.1145/2398857.2384658
http://dx.doi.org/10.1145/2714064.2660199
http://dx.doi.org/10.1002/bult.70
http://dx.doi.org/10.1289/txg.6028
http://dx.doi.org/10.1002/humu.22078
https://www.semantic-mediawiki.org/wiki/Help:Inline_queries
https://www.semantic-mediawiki.org/wiki/Help:Inline_queries
https://query.wikidata.org
https://www.mediawiki.org/wiki/API:Main_page
https://www.mediawiki.org/wiki/API:Main_page
https://github.com/semsol/arc2/wiki/SPARQL-
https://github.com/semsol/arc2/wiki/SPARQL-

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Results and discussion
	RDF import web form
	SPARQL import web form
	SPARQL endpoint
	RDF import batch script
	Stand-alone RDF-to-MediaWiki-XML conversion tool (rdf2smw)
	RDF export batch script
	An overview of the RDF import process
	Converting URIs to user friendly wiki page titles
	Performance
	Continuous integration and testing
	Round-tripping
	Known limitations
	Demonstrators
	Demonstrator I: Orphanet - rare diseases linked to genes
	Demonstrator II: DrugMet - cheminformatics/metabolomics
	Implications of the developed functionality

	Availability
	Outlook

	Availability and requirements
	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Authors' contributions
	Availability of data and material
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

