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Abstract

Background: Biological environment is uncertain and its dynamic is similar to the multiagent environment, thus the
research results of the multiagent system area can provide valuable insights to the understanding of biology and are
of great significance for the study of biology. Learning in a multiagent environment is highly dynamic since the
environment is not stationary anymore and each agent’s behavior changes adaptively in response to other coexisting
learners, and vice versa. The dynamics becomes more unpredictable when we move from fixed-agent interaction
environments to multiagent social learning framework. Analytical understanding of the underlying dynamics is
important and challenging.

Results: In this work, we present a social learning framework with homogeneous learners (e.g., Policy Hill Climbing
(PHC) learners), and model the behavior of players in the social learning framework as a hybrid dynamical system. By
analyzing the dynamical system, we obtain some conditions about convergence or non-convergence. We
experimentally verify the predictive power of our model using a number of representative games. Experimental
results confirm the theoretical analysis.

Conclusion: Under multiagent social learning framework, we modeled the behavior of agent in biologic
environment, and theoretically analyzed the dynamics of the model. We present some sufficient conditions about
convergence or non-convergence and prove them theoretically. It can be used to predict the convergence of the
system.

Keywords: Multiagent learning, Cell interaction, Nonlinear dynamic

Background
All living systems live in environments that are uncertain
and dynamically-changing. However, it is remarkable that
these systems survive and achieve their goals by exhibiting
intelligent features such as adaption and robustness. Bio-
logical system behaviors [1] and human diseases [2] are
often the outcome of complex interactions among a very
large number of cells and their environments [3, 4].
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Similarly, in the multiagent system [5–9], an important
ability of an agent is to adjust its behavior adaptively to
facilitate efficient coordination among agents in unknown
and dynamic environments. If we regard the cells in the
biological system as the agents in the multiagent system,
we can analyse the cells’ behavior using the theory of
multiagent system. So understanding collective decision
made by such intelligent multiagent system is an inter-
esting research topic not only for artificial intelligent but
also for biology. The conclusion of the theoretical analy-
sis can be applied to the research of biology, for example,
the results of convergence can be used for explaining the
phenomenon of cell’s group behaviour.
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Now, computational methods have been widely used to
solve biological problems [10, 11]. Many researchers have
investigated biological systems which are composed of
cells and their environments via modeling and simulation
[1, 12]. There are two principal approaches: population
based modeling and discrete agent based modeling. Pop-
ulation based modeling approximates the cells within any
grid box by a set of variables associated with the grid box
[13, 14]. Discrete agent based modeling maps each cell to
a discrete simulation entity [13, 15, 16].
We use multiagent learning techniques to model the

behaviors of each cell agent, which is an important tech-
nique to achieve efficient coordination in multiagent sys-
tem area [9, 17–19]. Until now, significant amount of
efforts have been devoted to develop effective learning
techniques for different multiagent interaction environ-
ments [20–23]. In the multiagent environments, each
agent interacts with the agent selected from its neigh-
borhood randomly each round, and updates its strategy
based on the feedback in the current round. To describe
the behavior of an agent, one common line of researches
is to extend existing reinforcement learning techniques
in single-agent environment to multiple-agent interaction
environment. However, due to the violation of Markov
property, the existing theoretical guarantees do not hold
any more in multiagent environment. It is important and
challenging for us to model the multi-agent environ-
ment and analyse the learning dynamics of multiagent
environments.
This paper presents a social learning framework to sim-

ulate the dynamics of multiagent system in biological
environment and a theoretical analysis of the learning
dynamics of this model is also given. The analysis results
shed lights on how and when the consistent knowledge in
terms of equilibrium can be or not be evolved among the
population of agents. In the social learning framework, all
agents play PHC strategy [24] for decisionmaking, and use
a weighted graphmodel for neighbor selection. In the part
of theoretical analysis, we present a theoretical model to
analyze the learning dynamics of the learning framework.
The purpose of analysing the learning dynamics is to judge
whether the learning algorithm that the agent adopt can
converge or not. The intention behind is that convergence
to an equilibrium has been the most commonly accepted
goal to pursue in multiagent learning literature. Firstly, we
model the overall dynamics among agents as a system of
differential equations. Then, some conditions are proved
to be the sufficient condition of convergence or non-
convergence. It can be used to predict the convergence
of the system. Finally, we estimate the prediction through
simulation experiment. The experimental results confirm
the predictive outcomes of our theoretical analysis.
The remainder of the paper is organized as follows.

“Method” section first reviews normal-form game and the

basic gradient ascent approach with a GA-based algo-
rithm named PHC, and then introduces the multiagent
learning framework where all the agents are PHC learn-
ers. In the “Result and discussion” section, we present
the theoretical model of the learning dynamics of agents,
and prove convergence and non-convergence conditions
by analyze geometrical behaviors of the hybrid dynamic
system in the help of nonlinear dynamic theory. In the
“Experimental simulation” section, we evaluate the pre-
dictive ability of our theoretical model by comparing it
with the simulation results. Lastly we conclude the paper
and point out future directions in “Conclusion” section.

Method
Notation and definition
Normal-form games
In a two-player, two-action, general-sum normal-form
game, the payoff for each player i ∈ {k, l} can be specified
by a matrix as follows,

Ri =
[
r11i r12i
r21i r22i

]
(1)

Each player i selects an action simultaneously from its
action set Ai = {1, 2}, and the payoff of each player is
determined by their joint actions. For example, if player k
selects the pure strategy of action 1 while player l selects
the pure strategy of action 2, then player k receives a
payoff of r12k and player l receives the payoff of r21l .
Apart from pure strategy, each player can also employ a

mixed strategy to make decisions. Amixed strategy can be
represented as a probability distribution over the action
set and a pure strategy is a special case of mixed strate-
gies. Let pk ∈ [0, 1] and pl ∈ [0, 1] denote the probability
of choosing action 1 by player k and player l, respec-
tively. Given a joint mixed strategy profile (pk , pl), the
expected payoffs of player l and player k can be computed
as follows,

Vk (pk , pl) =r11k pkpl + r12k pk (1 − pl) + r21k (1 − pk) pl
+ r22k (1 − pk) (1 − pl) (2)

Vl (pk , pl) =r11l pkpl + r21l pk (1 − pl) + r12l (1 − pk) pl
+ r22l (1 − pk) (1 − pl) (3)

A strategy profile is a Nash Equilibrium (NE) if no player
can get a better expected payoff by changing its current
strategy unilaterally. Formally,

(
p∗
k , p

∗
l
) ∈ [0, 1]2 is a NE, iff

Vk
(
p∗
k , p

∗
l
) ≥ Vk

(
pk , p∗

l
)
and Vl

(
p∗
k , p

∗
l
) ≥ Vl

(
p∗
k , pl

)
for

any (pk , pl) ∈ [0, 1]2.

Gradient ascent (GA) and PHC algorithm
When a game is repeatedly played, an individually ratio-
nal agent updates its strategy with the propose of max-
imizing its expected payoff. We know that the gradient
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direction is the fastest increasing direction, thus it is a
well-deserved way to model the behavior of agent using
gradient ascent algorithm. Agent i that employs GA-based
algorithm updates its policy towards the direction of its
expected reward gradient, which is shown in the following
equations.

�p(t+1)
i ← η

∂Vi
(
p(t))

∂pi
(4)

p(t+1)
i ← �[0,1]

(
p(t)
i + �p(t+1)

i

)
(5)

The parameter η is the size of gradient step. �[0,1] is
the projection function mapping the input value to the
valid probability range of [ 0, 1], which is used for prevent-
ing the gradient from moving the strategy out of the valid
probability space. Formally, we have

�[0,1](x) = argminz∈[0,1] |x − z| . (6)

To simplify the notation, let us define ui = r11i + r22i −
r12i − r21i and ci = r12i − r22i . For the two-player case, the
Eqs. 4 and 5 can be represented as follows,

p(t+1)
k ← �[0,1]

(
p(t)
k + η

(
ukp(t)

l + ck
))

(7)

p(t+1)
l ← �[0,1]

(
p(t)
l + η

(
ulp(t)

k + cl
))

. (8)

In the case of infinitesimal size of gradient step (η → 0),
the learning dynamics of the agent can be modeled as a
system of differential equations. Further, it can be ana-
lyzed using dynamic system theory [25]. It is proved that
the strategies of all agents will converge to a Nash equilib-
rium, or if the strategies do not converge, agents’ average
payoff will converge to the average payoff of Nash equilib-
rium [26]. The policy hill-climbing algorithm (PHC) is a
combination of gradient ascent algorithm and Q-learning
where each agent i adjusts its policy p to follow the gra-
dient of expected payoff (or the value function Q). It is
shown in the Algorithm 1.

Here, α ∈ (0, 1] and δ ∈ (0, 1] are learning rate, and
Q values are maintained just as in normal Q-learning.
The policy is improved by increasing the probability of
selecting the highest valued action based on the learning
rate δ.

Modeling multiagent learning
Under the multiagent social learning framework with N
agents, each agent interacts with one of its neighbors
selected randomly from its neighborhood each round.
The neighborhood of each agent is determined by its
underlying network topology. The interaction between
each pair of agents is modeled as a two-player normal-

Algorithm 1 The policy hill-climbing algorithm (PHC)
for agent i ∈ {r, c}
1: Let α ∈ (0, 1] and δ ∈ (0, 1] be learning rates.

Initialize Qi (a) ← 0, pi (a) ← 1
|Ai| .

2: repeat
3: Select action a ∈ Ai according to mixed strategy pi

with suitable exploration.
4: Observe reward r and update Q value

Qi (a) ← (1 − α)Qi(a) + αr
5: Step p closer to the optimal policy w.r.t. Q,

pi(a) ← pi(a) + �a
while constrained to a legal probability distribution,

�a =
{ −δa a �= argmaxa′Qi(a′)∑

a′ �=a δa′ otherwise
δa = min

(
pi(a), δ

|Ai|−1

)
6: until the repeated game ends

form game. During each interaction, each agent selects
its action following a specified learning strategy, which
is updated repeatedly based on the feedback from the
environment at the end of interaction. The framework is
presented in Algorithm 2.

Algorithm 2 Overall interaction protocol of the social
learning framework
1: repeat
2: for each agent in the population do
3: Chose one of its neighbors with a certain proba-

bility.
4: Play a two-player normal-form game with this

neighbor.
5: Select a action according to its mixed strategy

with suitable exploration.
6: end for
7: Environmental feedback.
8: for each agent in the population do
9: Observing reward r and update its policy based

on its past experience according to specific poli-
cies.

10: end for
11: until the repeated game ends

We use graph G = (V ,E) to model the underlying
neighborhood network, which is composed by N = |V |
agents. The edges E = {eij}, i, j ∈ V represent social
contacts among agents, where eij denotes the probabil-
ity that agent i chooses agent j to interact with. We have∑

j∈V eij = 1∧eii = 0. Here, we propose an adaptive strat-
egy for agents to make their decisions in social learning
framework with PHC learning strategy, which is shown in
Algorithm 3.
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Algorithm 3 Learning process in the multiagent
framework for agent i ∈ V
1: Let α ∈ (0, 1] and δ ∈ (0, 1] be learning rates.

Initialize Qi (a) ← 0, pi (a) ← 1
|Ai| .

2: repeat
3: Select agent j ∈ V according to E with probability

eij.
4: Select action a ∈ Ai according to mixed strategy pi

with suitable exploration.
5: Observe reward r according to interaction between

i and j.
6: Update Q value

Qi (a) ← (1 − α)Qi(a) + αr
7: Step p closer to the optimal policy w.r.t. Q,

pi(a) ← pi(a) + �a
while constrained to a legal probability distribution,

�a =
{ −δa a �= argmaxa′Qi(a′)∑

a′ �=a δa′ otherwise
δa = min

(
pi(a), δ

|Ai|−1

)
8: until the repeated game ends

Result and discussion
Analysis of the multiagent Learning Dynamics
In this section, we present a theoretical model to estimate
and analyze the learning dynamics of the abovemultiagent
learning framework in Algorithm 3. We extend notations
in section to the multiagent environment. Without loss of
generality, we consider the case with two-action only.
Assume that the payoff that an agent receives only

depends on the joint action, then the payoff for agent
i ∈ V can be defined as a fixed matrix Ri,

Ri =
[
r11i r12i
r21i r22i

]
(9)

where rmn
i denotes the payoff received by agent i when

i selects action m and its neighbor selects n. Here, we
use the pi to denote the probability that the player i
selects action 1. Then the mixed strategy (p1, p2, . . . , pN )

in multiagent framework can be considered as a point in
R
N constrained to the unit square. The expected payoff

Vi (p1, p2, . . . , pN ) of player i can be computed as follows,

Vi(p1, p2, . . . , pn)

=
∑

j∈V eijVi,j
(
pi, pj

)

=uipi
∑

j∈V eijpj + cipi +
(
r21i − r22i

)
pj + r22i

(10)

where ui = r11i + r22i − r12i − r21i , ci = r12i − r22i ,
Vi,j

(
pi, pj

) = r11i pipj + r12i pi
(
1 − pj

) + r21i (1 − pi) pj +
r22i (1 − pi)

(
1 − pj

)
, and eij is the probability that the

agent i selects agent j to interact with.

Each agent i updates its strategy in order to maximize
the value of Vi. Recall the Eqs. 4 and 5, we can obtain

p(k+1)
i =

∏
�

[
p(k)
i + η∂piVi(p1, p2, . . . , pN )

]

=
∏

�

[
p(k)
i + η

(
ui

∑
j∈V eijpj + ci

)] (11)

where parameter η is the size of gradient step.
As ηp → 0, it is straightforward that the Eq. 11 becomes

differential equation. Considering the step size to be
infinitesimal, the unconstrained dynamics of the all play-
ers’ strategies can be modeled by the following differential
equations.

ṗi = ui
∑

j∈V eijpj + ci, i ∈ {1, 2, . . . ,N} (12)

Equation 12 can be simplified as follows using some
notation,

Ṗ = UEP + C (13)

where P = (p1, p2, . . . , pN )T , Ṗ = (ṗ1, ṗ2, . . . , ṗN )T

and C = (c1, c2, . . . , cN )T . The matrix U =
diag(u1,u2, . . . ,uN ) is the diagonal matrix generated by
(u1,u2, . . . ,uN ).
For the constrained dynamics of the strategies, we can

model it as the following equations,⎧⎨
⎩
ṗi = 0 pi = 0 ∧ Gi ≤ 0
ṗi = 0 pi = 1 ∧ Gi ≥ 0
ṗi = Gi otherwise

(14)

where Gi = ui
∑

j∈V eijpj + ci.
Notice that Eq. 14 is a hybrid system composed of two

parts: a series of continuous linear differential dynamic
systems in the respective domain space and a switch
mechanism between differential dynamic systems when
dynamic touch the boundary. Generally, it is hard to
obtain a complete conclusion by analyzing dynamics of a
general hybrid system, even though the differential sys-
tem is linear. But we can still find some convergence and
non-convergence conditions under certain instances(i.e.,
Eq. 14).

Non-convergence condition of the multiagent learning
framework
According to the above definition, we have the fol-
lowing general result under which non-convergence is
guaranteed.

Theorem 1 In an N agent, two-action, integrated gen-
eral sum game, every player follows the constrained
dynamics of the strategy we defined in Eq. 14. If the follow-
ing two conditions are met,

1. There exists a point P∗ = (
p∗
1, p∗

2, . . . , p∗
N

) ∈ (0, 1)N ,
that UEP∗ + C = 0,
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2. There exists a pair of pure imaginary eigenvalues of
matrix UE,

then there exists a set P ⊂ [ 0, 1]N , that the solution of
the initial value problem of Eq. 14 with P(0) ∈ P can not
converge.

Proof Considering the complexity of the hybrid system
represented by Eq. 14, we begin with the unconstrained
ones. Based on the theorems of differential equations
dynamical systems [25], we calculate the analytic solution
of Eq. 13. Homogenizing the in-homogeneous equation by
substituting P with P = X + P∗, where UEP∗ + C = 0, we
get

Ẋ = UEX.

Here, UE is an N × N matrix, then there is a invertible
matrix T = (v1, . . . , vN ) that can transform UE into J,

T−1UET = J =
⎡
⎢⎣
J1 · · ·
...

. . .
...

· · · Jm

⎤
⎥⎦

The Ji is a square matrix and its form is one of the
following two,

(1)

⎡
⎢⎢⎢⎣

λ 1 · · ·
λ 1

...
. . .

...
· · · λ

⎤
⎥⎥⎥⎦ (2)

⎡
⎢⎢⎢⎣
D2 I2 · · ·

D2 I2
...

. . .
...

· · · D2

⎤
⎥⎥⎥⎦

where D2 =
[

α β

−β α

]
, I2 =

[
1 0
0 1

]
, α,β , λ ∈ R and

β �= 0. Here, J is the Jordan normal form of matrixUE. Ji is
the Jordan block corresponding to λi, which is a repeated
eigenvalue of UE with multiplicity ni. If eigenvalue λi is a
real number, then Ji is in the form (1), else Ji is in the form
(2). Suppose that λ1, . . . , λk are matrix UE’s real eigenval-
ues, and λk+1, . . . , λm is matrix UE’s complex eigenvalues,
then we have n1 + . . . + nk + 2

(
nk+1 + . . . nm

) = N .
Then the analytic solution of function Ẋ = UEX with

initial value X(0) will be

X(t) = exp (tUE)X(0) = T

⎡
⎢⎣
etJ1

. . .
etJm

⎤
⎥⎦T−1X(0).

Using the notation Y (t) = T−1X(t), we have

Y (t) = exp (tJ)Y (0) =
⎡
⎢⎣
etJ1

. . .
etJm

⎤
⎥⎦Y (0).

Suppose that λk = βi is a pure imaginary eigenvalue
of UE with multiplicity nk , so λ̄k = −βi is an eigenvalue

of UE with multiplicity nk . Then J has a block Jk , Jk =⎡
⎢⎢⎢⎣
D2 I2 · · ·

D2 I2
...

. . .
...

· · · D2

⎤
⎥⎥⎥⎦, where D2 =

[
0 β

−β 0

]
.

Due to etD2 = exp
(
t
[

0 β

−β 0

])
=

[
cosβt sinβt

− sinβt cosβt

]
,

there must exist a pair of items about vector Y (t) as
follows.

{
yi(t) = yi(0) cosβt + yi+1(0) sinβt
yi+1(t) = −yi(0) cosβt + yi+1(0) sinβt

If yi(0) �= 0 ∨ yi+1(0) �= 0, then Eq. 14 has a peri-
odic solution. Let vi and vi+1 to denote eigenvector of
T = (v1, . . . , vN ) corresponding to λk and λ̄k , respectively.
Note that X(t) = TY (t), then the solution of Eq. 13 with
the initial value P(0) ∈ S is cyclical, where

S = {
P ∈ [ 0, 1]N |P = k1v1 + k2v2 + P∗, k1, k2 ∈ R

}
.

Because of P∗ ∈ (0, 1)N , there must exists a ε > 0 for
the deleted neighborhood B(P∗; ε) ⊂ (0, 1)N of P∗,

B(P∗; ε) = {
x ∈ R

N |0 < ||x − P∗||2 < ε
} ⊂ (0, 1)N

Let P denote S
⋂

B(P∗; ε), the solution of the Eq. 14 with
any initial value belongs to P is cyclical, which means the
algorithm corresponding to the Eq. 14 can not converge.

Theorem 1 shows that there exist some situations in
which the agents fail to converge under the multiagent
social learning framework. Before giving the details of
those situations, we need to introduce the following nota-
tions first.
According to the theorem 1, T is the transformation

matrix for T−1UET = J , T = (v1, v2, . . . , vN ). Let
vj1, vj2, . . . , vjnj denote eigenvectors associated to eigen-
value λj, j = 1, 2, . . . ,m. According to properties of the
matrix transformations [27], vj1, vj2, . . . , vjnj are linearly
independent. Classify column vectors of the transfor-
mation matrix T into three parts corresponding to λ,
V1 = {vi|Re(λi) < 0}, V2 = {vi|Re(λi) = 0} and
V3 = {vi|Re(λi) > 0}. Now we are ready to give the pre-
cise description of the subspace where the agents fail to
converge, which is summarized in the following theorem.

Theorem2 If Eq. 14meets both conditions of Theorem 1,
and λk = βi, λk = −βi are a pair of pure imaginary eigen-
values of UE, then there exists a pair of vectors vk , v′

k ∈ V2,
ε > 0, and a set P = S ∩ B(P∗; ε), where

S=
{
P ∈ [ 0, 1]N |P=X + P∗,X ∈ span(V1 ∪ {vk , v′

k})
}
,

B(P∗; ε) = {
x ∈ R

N |0 < ||x − P∗||2 < ε
} ⊂ [ 0, 1]N ,
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that the solution of the initial value problem of the Eq. 14
with P(0) ∈ P can’t convergence.

Proof According to Theorem 1, we have the solution of
the initial value problem that the Eq. 14 with P(0) ∈ S ∩
B(P∗; ε) can not convergence. Here

S = {
P ∈ [ 0, 1]N |P = X + P∗,X ∈ span({vk , v′

k})
}

For the eigenvalue λi associated to vector vi ∈ V1, there
are Re(λi) < 0. According to conclusions of bifurcation
theory [25], the subspace span(V1) is a stable submanifold
of the unconstrained dynamics (13), which means every
trajectory start from S′ will eventually convergence to P∗,
where

S′ = {
P ∈ [ 0, 1]N |P = X + P∗,X ∈ span(V1)

}
.

Then trajectories start from S will eventually conver-
gence to S, thus we got the final conclusion that the
solution of the initial value problem of the Eq. 14 with
P(0) ∈ P can’t convergence.

Note that Theorem 1 and 2 are just sufficient conditions
of non-convergence.

Convergence condition of the multiagent learning
framework
In most cases, the conditions that guarantee the conver-
gence of a algorithm are more valuable.

Theorem 3 In an N agent, two-action, integrated gen-
eral sum game, every player follows the constrained
dynamics of the strategy we defined in Eq. 14. If the follow-
ing two conditions are met,

1. There exists a point P∗ = (
p∗
1, p∗

2, . . . , p∗
N

) ∈ (0, 1)N ,
that UEP∗ + C = 0,

2. All of the eigenvalues of matrix UE has negative real
part,

then all the solutions of the initial value problem of Eq. 14
with P(0) ∈ [0, 1]N will converge eventually.

Proof The conclusion is obvious. It is known that the
construction of the linear dynamic system is stable. If all
eigenvalues of matrix UE have negative real part, then
point P is a stable equilibrium point. It means that all the
solutions of the initial value problem of the Eq. 14 with
P(0) ∈ [0, 1]N will converge to P.

Theorem 3 proposes a sufficient condition to identify
the convergence of dynamic in Eq. 14. We know that
it is hard to calculate eigenvalues of a matrix with high
dimensional. Here, we propose a more realistic conver-
gence condition which is suitable for multiagent learning
framework shown in Algorithm 3.

Theorem 4 In an N agent, two-action, integrated gen-
eral sum game, every player follows the constrained
dynamics of the strategy we defined in Eq. 14. If matrix
UE is symmetrical, then all the solution of the initial
value problem of Eq. 14 with P(0) ∈ [0, 1]N will converge
eventually.

Proof It is known that the eigenvalues of real symmetric
matrix are real numbers [27]. We analyze all the cases of
Eq. 14 when all of the eigenvalues of matrix UE are real:

1. There exists a point P∗ = (
p∗
1, p∗

2, . . . , p∗
N

) ∈ (0, 1)N ,
that UEP∗ + C = 0.

2. There are no such a point, that UEP∗ + C = 0.

For case 1), if all eigenvalues of matrix UE are negative
number, then point P is a stable equilibrium points; oth-
erwise, all the solutions of the initial value problem of the
hybrid system with P(0) ∈ [0, 1]N will move away from P
toward boundary of the hybrid system [25]. Because the
domain of hybrid system represented by 14 has bound-
ary(i.e., P(t) ∈ [0, 1]N ), then there must exists a point
P′ = (

p′
1, . . . , p′

N
)T in the boundary of the domain, where

(p′
i = 0 ∧ Gi ≤ 0) ∨ (p′

i = 1 ∧ Gi ≥ 0) for all i ∈ V . The
dynamic P(t) will converge to P′ eventually.
Similarly, we can find a point P′ = (

p′
1, . . . , p′

N
)T in the

boundary of the hybrid system domain in case 2) and the
dynamic P(t) will converge to P′ eventually. The theorem
must hold.

Based on conclusions of Subsections Non-convergence
condition of the multiagent learning framework and
Convergence condition of the multiagent learning frame-
work , we can determine the learning dynamics of any
cases we defined in Eqs. 14 and 13. However, the com-
putational complexity may be prohibitive when the model
size becomes too large. In the next section, we consider
a special case under an interesting network structure
which can be analyzed with relatively light computational
complexity for any network size.

The simplest case whose underlying topology is a ring
We consider the case when the underlying topology is a
ring, and each agent only interacts with the neighbor on
its right-hand side in each interaction. As defined in the
previous section, the adjacency matrix E is

E = {eij}N×N , i, j ∈ {1, 2, . . . ,N},

where eij =
{
1 j = (i + 1)modN
0 else .

According to Eq. 14, the constrained dynamics of this
special case can be modeled as follows:⎧⎨

⎩
ṗi = 0 pi = 0 ∧ Gi ≤ 0
ṗi = 0 pi = 1 ∧ Gi ≥ 0
ṗi = Gi otherwise

(15)
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where Gi = uipi+1 + ci, i = {1, 2, . . . ,N − 1}, and GN =
uNp1+cN . Through analyzing the dynamics of this model,
we have the following conclusion.

Theorem 5 In an N-player, two-action, integrated
general-sum game, every agent follows the constrained
dynamics of the model in Eq. 15. If one of the agents
converges to a strategy, then every agent will converges
eventually.

Proof Suppose agent k converges at some time, accord-
ing to the definition, its strategy pk will be a constant. In
Eq. 15, we have Gk−1 = uk−1pk + ck−1 be a constant,
which means convergence of player k implies convergence
of player k − 1. By induction, every agent will converge
eventually.

According to the above theorem, we can easily obtain
the following proposition.

Proposition 1 In Eq. 15, if there exists a dominant
strategy for some players, then their strategies will asymp-
totically converge to a Nash equilibrium.

According to the above conclusion, finally we present
the following unconvergence result.

Theorem 6 In an N agent, two-action, integrated gen-
eral sum game, every player follows the constrained
dynamics of the strategy we defined in Eq. 15. If every
player has no dominant strategy, and met one of the
following conditions,

1. N = 4k, k ∈ N and
∏N

i=1 ui > 0.
2. N = 4k + 2, k ∈ N and

∏N
i=1 ui < 0.

then there exists a set P ⊂ [0, 1]N that the solution of the
initial value problem of the Eq. 15 with P(0) ∈ P can’t
converge.

Proof According to the definitions above, the payoff
matrix of player i is

Ri =
[
r11i r12i
r21i r22i

]
, i ∈ {1, 2, . . . ,N},

and ui = r11i + r22i − r12i − r21i , ci = r12i − r22i . Then we have

uici
= (

r11i + r22i − r12i − r21i
) (
r12i − r22i

)
= (

r11i − r21i
) (
r12i − r22i

) − (
r12i − r22i

)2 (16)

Since every agent has no dominant strategy, we have(
r11i − r21i

) (
r12i − r22i

)
< 0.

Thus we have uici < 0, and

ci
ui

= −
(
r12i − r22i

)
(
r11i − r21i

) − (
r12i − r22i

) = 1

1 +
(
r21i −r11i

)
(
r12i −r22i

)
.

Set p∗
i = − ci

ui and P∗ = (
p∗
1, p∗

2, . . . , p∗
N

)T , then we have
P∗ ∈ (0, 1)N andUEP+C = 0. Considering the Eq. 15, by
calculating the eigenvalue of matrix UE, we have

λN = u1u2 . . .uN =
N∏
i=1

ui.

If N = 4k, k ∈ N and
∏N

i=1 ui > 0, then matrix UE
has a pair of pure imaginary eigenvalue. Otherwise, ifN =
4k+2, k ∈ N and

∏N
i=1 ui < 0, thenmatrixUE has a pair of

pure imaginary eigenvalue. According to Theorem 1, there
exists a set P ⊂ [0, 1]N that the solution of the initial value
problem of Eq. 15 with P(0) ∈ P can not convergence.

Experimental simulation
In this section, we compare the empirical dynamics of
the multiagent social learning framework composed by
PHC learners with theoretical prediction of our hybrid
dynamic model. We perform two experiments that satisfy
the Theorem 1 and 4, respectively.

A non-convergence multiagent Game
In this subsection, we consider a 4-player, two-action
game. The game is defined as follows,

R1 =
[
1 0
0 1

]
,R2 =

[
1 0
0 1

]
,R3 =

[
1 0
0 1

]
,R4 =

[
1 0
0 1

]

E =

⎡
⎢⎢⎣

0 1/2 0 1/2
1/2 0 1/2 0
0 1/2 0 1/2
1/2 0 1/2 0

⎤
⎥⎥⎦

Metrix Ri, i ∈ {1, 2, 3, 4} is the payoff matrix of agent i,
and element eij of matrix E is the probability that player i
selects player j in each interaction. In this game, we have
u1 = u3 = 2, u2 = u4 = −2, c1 = c3 = −1, and c2 = c4 =
1. Then the unconstrained dynamic model of this game is
Ṗ = UEP + C, where

UE =

⎡
⎢⎢⎣

0 1 0 1
−1 0 −1 0
0 1 0 1

−1 0 −1 0

⎤
⎥⎥⎦ ,C = (−1, 1,−1, 1)T .

This game has a P∗ = (1/2, 1/2, 1/2, 1/2)T ∈ (0, 1)4,
which satisfies UEP∗ + C = 0. Matrix UE has a pair of
pure imaginary eigenvalues which is λ1 = 2i and λ1 =
2i. The eigenvectors are v1 = (0, 1/2, 0, 1/2)T and v2 =
(1/2, 0, 1/2, 0)T corresponding to λ1 and λ2. Let P(0) =
P∗+k1v1+k2v2. As long as k1 and k2 are sufficiently small,
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Fig. 1 Agent dynamics of game satisfying the conditions of Theorem 1

according to Theorem 1, the solution of the initial value
problem of game 1 with P(0) can’t converge.
In Fig. 1, the dynamic solution of the game with initial

value P(0) is plotted, where k1 = k2 = 0.1. Each of the
four lines in Fig. 1 shows the strategy’s dynamic changing
of each agent, respectively. We can see that the strategies
of those agents do not converge. Obviously, the simulation
results are consistent with the theoretical prediction.

A convergence multi-agent Game
In this subsection, we consider a 4-player, two-action
game. The game is defined as follows,

Ri =
[
1 0
0 1

]
, i ∈ {1, 2, 3, 4}

E =

⎡
⎢⎢⎣

0 1/2 0 1/2
1/2 0 1/2 0
0 1/2 0 1/2
1/2 0 1/2 0

⎤
⎥⎥⎦

Metrix Ri, i ∈ {1, 2, 3, 4} is the payoff matrix of agent i,
and element eij of matrix E is the probability that player i
selects player j in each interaction. In this game, we have
ui = 2 and ci = −1, i ∈ {1, 2, 3, 4}. Then the uncon-
strained dynamic model of this game is Ṗ = UEP + C,
where

UE =

⎡
⎢⎢⎣
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤
⎥⎥⎦ ,C = (−1,−1,−1,−1)T .

Because matrix UE is symmetrical, according to
Theorem 4, the solution of the initial value problem of this
game with any P(0) ∈ [0, 1]4 will converge eventually.
Figure 2 illustrates dynamics of the PHC learners’ strat-

egy for the game with initial value initial value P(0) =
(1/2, 1/2, 1/2, 1/2)T . Each of the four lines in Fig. 2 shows

Fig. 2 Agent dynamics of game satisfying the conditions of Theorem 4
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the strategy’s dynamic changing of each agent, respec-
tively. We can see that the strategies of those agents con-
verge eventually, which are consistent with the theoretical
prediction.

Conclusion
In this work, we proposed a multiagent social learning
framework to model the behavior of agent in biologic
environment, and theoretically analyzed the dynamics of
multiagent social learning framework using non-linear
dynamic theories. We present some sufficient conditions
about convergence or non-convergence and prove them
by the theoretically analysis. It can be used to predict the
convergence of the system. Experimental results show that
the predictions of our dynamic model are consistent with
the simulation results.
As future work, more extensive study of the dynam-

ics of multiagent social learning framework with PHC
learners is needed. Other worthwhile directions include
to improve the PHC algorithm, to develop more realistic
multiagent social learning framework to model the realis-
tic interactions among cells in biologic environments, and
to achieve better convergence performance based on our
theoretical findings.
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