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Abstract

Background: Next Generation Sequencing (NGS) is playing a key role in therapeutic decision making for the cancer
prognosis and treatment. The NGS technologies are producing a massive amount of sequencing datasets. Often,
these datasets are published from the isolated and different sequencing facilities. Consequently, the process of
sharing and aggregating multisite sequencing datasets are thwarted by issues such as the need to discover relevant
data from different sources, built scalable repositories, the automation of data linkage, the volume of the data,
efficient querying mechanism, and information rich intuitive visualisation.

Results: We present an approach to link and query different sequencing datasets (TCGA, COSMIC, REACTOME, KEGG
and GO) to indicate risks for four cancer types – Ovarian Serous Cystadenocarcinoma (OV), Uterine Corpus
Endometrial Carcinoma (UCEC), Uterine Carcinosarcoma (UCS), Cervical Squamous Cell Carcinoma and Endocervical
Adenocarcinoma (CESC) – covering the 16 healthy tissue-specific genes from Illumina Human Body Map 2.0. The
differentially expressed genes from Illumina Human Body Map 2.0 are analysed together with the gene expressions
reported in COSMIC and TCGA repositories leading to the discover of potential biomarkers for a tissue-specific cancer.

Conclusion: We analyse the tissue expression of genes, copy number variation (CNV), somatic mutation, and
promoter methylation to identify associated pathways and find novel biomarkers. We discovered twenty (20) mutated
genes and three (3) potential pathways causing promoter changes in different gynaecological cancer types. We
propose a data-interlinked platform called BIOOPENER that glues together heterogeneous cancer and biomedical
repositories. The key approach is to find correspondences (or data links) among genetic, cellular and molecular
features across isolated cancer datasets giving insight into cancer progression from normal to diseased tissues. The
proposed BIOOPENER platform enriches mutations by filling in missing links from TCGA, COSMIC, REACTOME, KEGG
and GO datasets and provides an interlinking mechanism to understand cancer progression from normal to diseased
tissues with pathway components, which in turn helped to map mutations, associated phenotypes, pathways, and
mechanism.

Keywords: Cancer genomics, Biomarkers, Multi-Omics, Pathways, Gynecological cancer, Linked data,
Semantic technologies

Background
Next Generation Sequencing (NGS) technologies open
new diagnostic and therapeutic ways for cancer research.
The resulting high-throughput sequencing data has to be
processed in complex data analytics pipelines including
annotation services. Unfortunately, there is not yet a

*Correspondence: ratnesh.sahay@insight-centre.org
Insight Centre for Data Analytics, NUIG, Galway, Ireland

well-integrated platform available for both clinical and
translational [1–5] research to fulfill these annotation
and analytical tasks. In addition, the large volumes and
growing variety of NGS data sources pose another chal-
lenge, since the computational infrastructure for the
biological interpretation will have to cope with very
large quantities and heterogeneities of data originating
from sequencing facilities [6–8]. More importantly, the
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functional annotation of genomics data for cancer has
to take tissue-specificity into consideration and thus has
to avoid ambiguity while consolidating and aggregating
clinical outcomes from disparate resources. Similarly, a
computational platform that can consolidate variety of
data derived from electronic health records (EHRs), omics
technologies, imaging, and mobile health is a funda-
mental requirement to accelerate the recent precision
medicine initiative1 [9]. In our initial work [10] we pre-
sented an approach to link and query three large repos-
itories – TCGA2, COSMIC3, and Illumina Human Body
Map 2.04 – to analyse the expression of specific genes in
different tissues and its variants by:

− Linking of gene expression, copy number variation
(CNV), somatic mutation data from two disjoint
resources (i.e., COSMIC and TCGA).

− Identifying sets of genes using the Illumina Human
Body Map 2.0 with relevance for ovarian cancer with
a comprehensive set of mutations.

In order to analyse the tumorigenesis of female gyneco-
logical cancer types, in this article we extend our previous
work [10] by including:

− Ovarian Serous Cystadenocarcinoma (OV), Uterine
Corpus Endometrial Carcinoma (UCEC), Uterine
Carcinosarcoma (UCS), Cervical Squamous Cell
Carcinoma and Endocervical Adenocarcinoma
(CESC) datasets.

− Methylation data to further understand potential
promoter genes based on methylation change and
biomarkers.

− REACTOME, KEGG and GO biological processes
datasets to understand cancer causing gene regulation
through associated pathways and biological processes.

To further understand the epigenetics, we retrieved the
genomic positions (loci), mutation frequency, change in
promotormethylation for each gene in the above four can-
cer types (OV, UCS, UCEC, & CESC). These are further
classified by biological processes involved in understand-
ing the mechanism and associated pathways. By doing this
we explore the variant and mutation prioritization using
16 different tissue types reported in the Illumina Body
Map 2.0. The differential expressed genes derived from
Illumina Human BodyMap 2.0 – using the procedure sug-
gested by Trapnell, C. et al. [11] – are linked with different
tissue types and gene expressions in COSMIC and TCGA
datasets leading to a potential biomarker for a particular
tissue-specific cancer.
The proposed approach enriches mutations and methy-

lation by filling in missing links from COSMIC, TCGA,
REACTOME, KEGG and GO datasets providing a mech-
anism to analyse cancer progression from normal to

diseased tissues with key pathway components. Our key
objective is to understand the tumorigenesis of these four
gynecological cancer types (OV, UCS, UCEC, & CESC). In
order to retrieve the patterns of genes and tissue-specific
information from various cancer mutations reported in
multiple repositories; we encountered three computa-
tional challenges for linking and querying these multiple
distributed repositories: (i) transform heterogeneous data
repositories and their storage formats into standard RDF;
(ii) discovering links by finding specific patterns, i.e., cor-
relations for a gene with regards to CNV, mutation, gene
expression, and methylation datasets; and (iii) scalable
querying over the large volume datasets covering 16 dif-
ferent tissue types and the gene expression data from
different repositories. We propose a data-interlinked plat-
form called BIOOPENER5 that enables automated dis-
covery of data linkages and querying of information from
large-scale cancer and biomedical repositories.
The experiments conducted in this paper is aligned to

the transcriptome and epigenetics studies based on the
Human Body Map 2.0 (HBM) from Illumina which cov-
ers the following tissues: adrenal, adipose, brain, breast,
colon, heart, kidney, liver, lung, lymph, ovary, prostate,
skeletal muscle, testes, thyroid, and white blood cells. The
HBM provides gene-specific information across one or
more tissue types and intends to support the identifica-
tion of potential biomarkers for a targeted therapy. In this
study, our results not only discover novel biological out-
comes but also provides a linked datasets that assimilates
clinical outcomes from related data repositories.
The rest of the paper is structured as follows:

“Motivation” section motivates our working scenario
based on Illumina Human Body Map (HBM) 2.0,
cancer and biomedical databases (COSMIC, TCGA,
REACTOME, KEGG and GO); “Methods” section
presents the BIOOPENER methodology and architec-
ture; “Results” section discusses the results obtained
from the BIOOPENER platform; “Related work” section
presents the related work in linking and querying cancer
genomics repositories; and “Conclusion” section draws
the conclusion from our work.

Motivation
In order to understand the tumorigenesis, it is one
approach to compare normal and diseased tissue sam-
ples to interpret the changes in the expression patterns of
the genes with regards to the observed disease status. In
our case, Illumina Human Body Map (HBM) 2.0 serves
the purpose to identify similarities in gene expression
patterns using the studies across different tissue types,
where HBM discloses the similarities between human
tissues on the molecular and genetic level. Due to over-
laps between cancer behaviors, progression, and mutated
genes, we have selected top 1006 genes by a filtering
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criteria based on the Reads Per Kilobase of transcript per
Million mapped reads (RPKM) values. Further, these top
100 genes identified are linked using the genetic features
such as genomic loci (start, end), beta value, cell cycle etc.
from previously observed studies in COSMIC and TCGA
repositories. The work presented in this article covers only
non-synonymous (NS) mutations. Since many somatic
mutations are passenger – synonymous mutations – and
do not impact tumorigenesis, we first select those genes
that are more likely to be drivers. The selection of driver
genes is based on the mutations frequency (RPKM value).

Illumina Human Body Map (HBM) 2.0: HBM covers
data from transcriptome studies for 16 tissue types. Sam-
ples for these 16 tissue types have been processed, aligned
and finally expression level have been determined [12].
Sequencing has been performed to provide both paired-
end and single-end libraries (read-length of 50bp and
75bp). A list of differentially expressed genes are extracted
using the step 2 (assemble expressed genes and tran-
scripts) of procedure suggested by Trapnell, C. et al. [11].
The gene expression data extracted from HBM samples
returns a very large list of more than 52000 genes. For
data processing reasons we chose to reduce the list and
therefore defined the cut-off for each RPKM value accord-
ing to the method suggested by Sandberg et.al [13]. As
a result, the data for each tissue type includes both the
coverages and the RPKM values as the corresponding
expression level. The RNA seq dataset provides addi-
tional relevant data such as CNV, fusion genes, structural
variation, differentially expressed genes, novel mutations,
splice junctions and transcriptome variations [14].

Annotation Databases (COSMIC & TCGA): The main
focus of this work is the identification of patterns
for cancer mutations and globally known mutations
and their types for selected differentially expressed
genes across different tissue types. Figure 1 shows the

correspondences, i.e., the associations or links that have
been established between the TCGA and COSMIC
databases for this purpose. For this task, our primary con-
cern has been the associations between the CNV, the
known mutations, and the gene expression data.
As part of our initial work [10], we have identified

instances to link in the COSMIC and TCGA datasets
(see Fig. 1). For example, GENE_NAME is used to
establish links between COMPLETE_MUTATION and
GENE_EXPRESSION datasets between both the repos-
itories. Similarly, GENE_NAME and HUGO_SYMBOL
has been used to link COMPLETE_MUTATION from
both the datasets. Further, CNV datasets from COS-
MIC and TCGA have been linked based on chr:start_end
position. From the computational perspective, the links
(owl:sameAs) between COMPLETE_MUTATION and
GENE_EXPRESSION datasets using the GENE_NAME
property allow to create a subset of driver genes from a
larger complete set of mutations.

Annotation Databases (REACTOME, KEGG, & GO
processes): Weobserve a set of prospective links through
the DNA methylation datasets – from COSMIC and
TCGA – to GO proliferation Ids. These links broaden our
understanding of the cell proliferation (with frequently
mutated genes) where changes in methylation level regu-
late the gene expression. In order to target certain genes,
it is important to find the affected cancer types and the
common pathways associated with the cell proliferation.
The KEGG and REACTOME datasets provide additional
links to identify genetic profiles from already identified
mutations in COSMIC and TCGA datasets. Clinical vari-
ations of any mutation from the REACTOME dataset will
help to explore clinical relevant targets, effects of down-
regulation of each pathway and alternate pathways for the
cell.
Figure 2 shows a set of prospective owl:sameAs

links between COSMIC, TCGA, REACTOME, KEGG,

Fig. 1 Links between COSMIC and TCGA datasets
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Fig. 2 Links between COSMIC, TCGA, REACTOME, KEGG, and GO datasets

GO datasets. For example: (i) if “Gene Symbol” used
in the TCGA gene expression gets linked (through
owl:sameAs) with the “Gene Symbol” of COSMIC methy-
lation datasets, then a simple query can fetch result about
the changes in a promotor region associated with muta-
tions already identified in TCGA and COSMIC datasets;
(ii) similarly, “ENSEMBL ID” used in COMSIC, TCGA,
and Gene Ontology datasets can be linked to obtain the
transcript level changes with mutated gene in order to
understand the disease progression; (iii) finally, by linking
COSMIC and TCGA “Methylation” datasets provides us
the measure of beta value changes, the responders, and
non-responders based on hyper and hypomethylation. In
our initial work [10], we have identified MYH7 as one of
the potential biomarker based on copy number variation
(CNV) frequencies. In this article, we are aiming to link
the identified mutations (from COSMIC & TCGA) across
KEGG, REACTOME, and GO datasets to understand the
metabolic process of each reaction and the localization
of each component of a reaction further connecting the
metabolic process to pathways described in the KEGG
dataset.

Methods
The BIOOPENER approach is fundamentality similar to
the Bio2RDF7[15, 16] framework that created a mashup of
linked data connected through various linking properties
(e.g., xRef, owl:sameAs, x-relation) [17]. BIOOPENER
focus is specifically around discovering and exploiting
the owl:sameAs links for constructing complex feder-
ated queries – due to the precise owl:sameAs seman-
tics [18] – across multiple datasets. We now present
the BIOOPENER’s architectural, linking, and querying
methodology.

BIOOPENER architecture
The BIOOPENER architecture is summarized in Fig. 3
showing all three major components. First, the RDFiza-
tion component that generates Linked Data from the
COSMIC, TCGA, REACTOME, KEGG, GO databases
results into several SPARQL endpoints. It is important
to note that, the two datasets (COSMIC and TCGA)
are converted from the raw format to RDF; further, we
linked COSMIC and TCGA to REACTOME8, KEGG9,
and GO10 datasets hosted at the Bio2RDF11. Second, the
linking component searches and discovers links between
selected datasets. The links discovered by this component
have an effect on the efficiency of the source selection, on
the query planning, and on the overall query execution
over distributed SPARQL endpoints. Third, the scalable
query federation component: it a single-point-of-access
through which distributed data sources can be queried in
the concerto.
The scalable query federation is based on the SPARQL

query federation engine called SAFE [19], which has
been developed for accessing distributed clinical trial
repositories. SAFE provides a single-point-of-access
through which distributed data sources can be queried
in unison. SAFE has been adapted to improve the effi-
cient integration of data from the different COSMIC,
TCGA, REACTOME, KEGG, GO SPARQL endpoints.
More specifically, SAFE makes use of a favorable distribu-
tion of data to reduce the number of sources required for
processing federated SPARQL queries (without compro-
mising recall). SAFE retrieves results from the large-scale
repositories by (i) efficient source selection as per the
capabilities of genomics repositories; (ii) query planning
mechanism to decompose a query and build resultant data
set from several sub-queries; (iii) query optimisation to
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Fig. 3 BIOOPENER: Linking & Querying Cancer Genomic Resources

execute the sub-queries; and (iv) query execution mech-
anism retrieve and integrate results. This approach is
based on the principle that integrated data sources allow
querying of multiple data sources in a single search,
independently of their status being distributed or cen-
tralized, whereas traditional methods of data integra-
tion rather map the data models to a single unified
model.

RDFization
The raw data files – of COSMIC and TCGA repos-
itories – are available in the tab separated text (tsv)
format, which are transformed into the RDF format
using our in-house RDFizer tool that generates the N3
triples. The transformed RDF data from each cancer
type are hosted as different SPARQL endpoints. The four
types of data have been included from COSMIC, i.e.,
gene expression, gene mutation, CNV, and methylation.
From TCGA we have RDFized three types of data, i.e.,
CNV, gene expression and methylation for four cancer
types, namely Ovarian Serous Cystadenocarcinoma (OV),
Cervical Squamous Cell Carcinoma and Endocervical
Adenocarcinoma (CESC), Uterine Corpus Endometrioid
Carcinoma (UCEC) and Uterine Carcinosarcoma (UCS).
Table 1 shows the overall statistics of the RDF datasets:
row 1 represents for the COSMIC gene expression data
the corresponding triples generated (column 3), the num-
ber of subjects (column 4), the number of predicates
(column 5), the number of objects (column 6) and it’s RDF
data size (column 7). Rows 2-4 represent the same type
of data for the COSMIC gene mutation, CNV and methy-

lation data, respectively. A total of 154 million records
has been RDFized, producing approximately 1.2 billion
triples, for COSMIC datasets. Row 5-8 represents the
statistics for the RDF version of TCGA-OV, TCGA-CESC,
TCGA-UCEC, and TCGA-UCS, respectively. Rows 9-10
represent the RDF data statistics for KEGG, REACTOME
and GOA datasets, respectively. These three datasets are
external as we have not transformed them into the RDF
format but instead used the already available RDF versions
from Bio2RDF.

Linking
We propose a linked data based approach to create corre-
spondences (links) between dispersed cancer and biomed-
ical datasets. These datasets contain rich information and
helpful in answering the biological questions targeted in
this article. These links, once identified and established,
will sustain and support the query federation over dis-
tributed repositories (discussed in the “Scalable query
federation” section).

COSMIC and TCGA linking: we perform linking of the
COSMIC and TCGA datasets. We have employed the
owl:sameAs construct to establish links across entities
based on the semantic properties highlighted in Fig. 1.
For example, the entities that contain information about
Gene Symbol, TCGA_ID, ENSEMBL ID have been linked
using owl:sameAs. An example link between COSMIC
and TCGA is shown in the Listing 1, where two COSMIC
sample ids have been identified as being identical to two
TCGA patient bar code ids.
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Table 1 RDF Data Statistics

No. Data Triples Subjects Predicates Objects Size (MB)

1 COSMIC GE 1184971624 148121454 18 148240680 10000

2 COSMIC GM 83275111 3620658 23 9004153 1400

3 COSMIC CNV 8633104 863332 10 921690 122

4 COSMIC Methylation 170300300 8292057 22 603135 2800

5 TCGA-OV 81188714 10974200 15 4774584 3774

6 TCGA-CESC 3763470 627652 43 481227 49557

7 TCGA-UCEC 553271744 19233824 91 68370614 84687

8 TCGA-UCS 1120873 183602 36 188970 10018

9 KEGG 50197150 6533307 141 6792319 4302

10 REACTOME 12471494 2465218 237 4218300 957

11 GOA 28058541 5950074 36 6575678 5858

<Link−1>
<Source>COSMIC</Source>
<Target>TCGA−OV</Target>
<link>
cosmic:TCGA−13−0920
<sameAs>
tcga:TCGA−13−0920
</link>
</Link−1>
<Link−2>
<Source>COSMIC</Source>
<Target>TCGA−OV</Target>
<link>
cosmic:TCGA−24−1850
<sameAs>
tcga:TCGA−24−1850
</link>
</Link−2>

Listing 1 COSMIC and TCGA Linking Example

The example links generated in our use-case are shown
in the Fig. 4. The COSMIC and TCGA datasets have
been integrated using the owl:sameAs construct. For
instance, MYH7 (which is an RDF resource of type Gene
Symbol) in both COSMIC and TCGA datasets is linked
using owl:sameAs. To understand the promotor genes
and their deviation, the methylation datasets of COS-
MIC and TCGA are linked to retrieve beta values for a
given set of CNVs. For instance, cg00000292 which is an
RDF resource of type “Composite Element REF” in both
COSMIC and TCGA datasets have been linked using
owl:sameAs. Similarly, Fig. 4 shows the owl:sameAs
links between COSMIC and TCGA datasets for TCGA-
13-0920 and TCGA-24-1850 (RDF resources of type
Sample_ID).

Linking COSMIC and TCGA with REACTOME,
KEGG, & GO: We link COSMIC and TCGA with Gene
Ontology (GO) datasets to understand the biological pro-
cessed involved with each mutation or CNVs and the
underlying impact of these mutations on cancer and

healthy cells. From the Fig. 4, it is evident that we
have linked ENSMUSP00000018795 – which is an RDF
resource of type Ensemble ID – in COSMIC dataset
with the similar resource in GO dataset. This will help
in retrieving the gene behavior of healthy cells (from
Illumina Body Map) compared to the diseased TCGA
samples by tracking the GO process involved in the onco-
genesis. By enabling links between COSMIC and GO
datasets, we are now able to find links across Reactome
and KEGG datasets. This will allow tracking the changes
in healthy cells based on their pathway activities to iden-
tify the disease and biological process related pathways.
For instance, the “Ensemble ID” from COSMIC is linked
with the “Ensemble ID” in GO dataset providing us the
GO processes and the GO IDs associated with these
processes. These are further linked with their respec-
tive KEGG and Reactome IDs. The linking across these
datasets are shown in Fig. 4.
The number of links generated in case of COSMIC

and TCGA datasets, and the number of identified links
between KEGG, GO, and Reactome datasets are shown in
the Fig. 5. For instance, a total number of 121916 links are
generated in COSMIC to link them with TCGA. Similarly,
46112 links are generated to integrate TCGA with TCGA
Methylation datasets, 891612 links are generated to link
TCGA Methylation dataset with GOA (Gene Ontology
Annotation) dataset, and 41424 links are generated to
integrate TCGAMethylation dataset with Reactome.
On the other hand, we identified a total of 1049858

existing links – within Bio2RDF – between GOA and GO
datasets. A total of 1810 outgoing links to KEGG fromGO
and 7359 incoming links to GO from KEGG were identi-
fied. A total of 28808 links were discovered between GO
and Reactome datasets.

Scalable query federation
We have developed a query federation engine – called
SAFE — for accessing sensitive clinical data at different
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Fig. 4 Example Links between COSMIC, TCGA, KEGG, REACTOME, and GO Datasets

locations [19]. Two main changes have been intro-
duced to SAFE for efficiently querying the COSMIC,
TCGA, KEGG, Reactome, and GO SPARQL endpoints.
First, standardise RDF query representation: in the ini-
tial version [19], SAFE issues queries for statistical clin-
ical information stored within distinct names graphs
for RDF data cubes [20]. Therefore, the internal query
processing (i.e., source selection, query planning, query
execution) had to be adapted to query the regular

RDFized versions of the COSMIC, TCGA, KEGG, Reac-
tome, and GO datasets. Second, access control had
to be disabled: SAFE imposes restrictions for data-
access as a feature (defined as Access Policy Model
[19]) while federating queries over multiple clinical sites,
i.e., imposing the data restrictions for different data
repositories. Since experiments conducted in this paper
mainly involve public repositories this feature has been
disabled.

Fig. 5 Link Statistics
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Figure 3 shows SAFE’s three main components within
the BIOOPENER platform: (i) Source Selection: performs
multilevel source selection based on the capabilities of
data sources; (ii) Query Planning: filters the selected
data sources based on access rights defined for each
user; and (ii) Query Execution: performs the execution of
sub-queries against the selected sources and merges the
results returned.

Source Selection: SAFE performs a tree-based two-level
source selection as shown in Fig. 6. At Level 1, like other
query federation engines [21–23], we do triple-pattern-
wise endpoint selection, i.e., we identify the set of relevant
endpoints that will return non-empty results for the indi-
vidual triple pattern in a query. At Level 2 (unlike other
query federation engines), SAFE performs triple-pattern-
wise named graph selection, i.e., we identify a set of rel-
evant named graphs for all relevant endpoints already
identified at Level 1. SAFE relies on data summaries to
identify relevant named graphs.

Query Execution: The Listing 2 shows an SPARQL
query, which federates across COSMIC and TCGA data
asking for genomic loci of a mutated gene by chro-
mosome start points which then returns the disease
metastasis information along with the mutation type.
Answering such a query requires the integration of
COSMIC with TCGA and merging results from both
TCGA and COSMIC, and thus has to make use of
query federation. The results for the first four triple
patterns in the given query (i.e., cosmic:sample,
cosmic:gene, cosmic:start) are fetched from
COSMIC and the results for the next four triple patterns
(i.e., tcga:hybrid_ref, tcga:gene, tcga:start)
are fetched from TCGA. Further, both results are
merged on the basis of the last triple pattern (gene_c
owl:sameAs gene_t) which integrates COSMIC with

TCGA. Sample results for this query can be seen
in Fig. 9.

?cosmic_meth a cosmic:Methylation;
cosmic:sample ?sample;
cosmic:gene ?gene_c;
cosmic:start ?start_c.
?tcga_meth a tcga:Methylation;
tcga:hybrid_ref ?tcga_id;
tcga:gene ?gene_t;
tcga:start ?start_t.
?gene_c owl:sameAs ?gene_t.
}

Listing 2 SPARQL Query Federation: Genomic loci of a mutated
gene by chromosome start points

In our initial work [10] we queried mutations and CNV
data to identify the novel mutations and their somatic
behavior from healthy to cancer cells. The Listing 3 shows
a SPARQL query, which extracts promoter level changes
occurred due to mutations extracted from query shown
in the Listing 2. This requires linking across the COSMIC
andTCGAMethylation datasets. The first three triple pat-
terns fetch data from COSMIC and the next three triple
patterns fetch data from TCGA. The last triple pattern
provides a link – owl:sameAs between genes – for merging
data from both the data sources.

?cosmic_meth a cosmic:Methylation;
cosmic:gene ?gene_c;
cosmic:beta_value ?beta_value_c.
?tcga_meth a tcga:Methylation;
tcga:gene ?gene_t;
tcga:beta_value ?beta_value_t.
?gene_c owl:sameAs ?gene_t.
}

Listing 3 SPARQL Query Federation: Mutations causing
promoter level changes

The SPARQL query listed in Listing 4 have covered 3
distinct sources, i.e., methylation from TCGA and COS-
MIC datasets with associatedGeneOntology Annotations

Fig. 6 Tree-based two level source selection
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(GOA). TCGA provides the changes in methylation per
composite element, whereas in COSMIC we have such
changes on the gene level. To retrieve both the gene and
promoter level information, we have queried genes from
both data sources and extracted all the promoter regions.
Once the promoter regions are identified, it is essential to
understand the processes involved in these regions. This
helped us to query GOA for extracting the processes on
the promoter and gene levels. If a gene level change do
not comply with promoter level changes, it is an indica-
tion of what processes of the gene have mutated them.
Such results can be obtained through a federated query
with three data sources, i.e. COSMIC, TCGA, and GOA.
The Listing 4 provides an example federated query where
the first three triple patterns are answered fromCOSMIC,
the next three triple patterns are answered from TCGA
and the seventh triple pattern merges result obtained
from COSMIC and TCGA through gene. The eighth
and ninth triple patterns fetch data from GOA which is
finally merged with COSMIC and TCGA datasets using
the gene information.

?cosmic_meth a cosmic:Methylation;
cosmic:gene ?gene_c;
cosmic:beta_value ?beta_value_c.
?tcga_meth a tcga:Methylation;
tcga:gene ?gene_t;
tcga:beta_value ?beta_value_t.
?gene_c owl:sameAs ?gene_t.
?go_gene go−vocab:process ?process.
?process dcterms:title ?cell_cycle.
?gene_t owl:sameAs ?go_gene.
}

Listing 4 SPARQL Query Federation: Methylation changes

The SPARQL query shown in Listing 5 finds associ-
ations between the genes, pathways and biological pro-
cesses. We queried the healthy genes from Illumina Body
Map against all mutations obtained from TCGA and
COSMIC to find their DNA and promoter level methyla-
tion changes. In order to explore the gain and loss on a
disease at the phenotype level, we have included KEGG
and REACTOME sources which map each discovered
gene with its biological process for phenotype and process
driven pathways. The Listing 5 shows a federated SPARQL
query, where the first three triple patterns are answered
from TCGA; and the next five triple patterns fetch and
merge data from REACTOME and GOA. The last five
triple patterns obtain results from KEGG and merge them
with the rest of results.

?tcga_meth a tcga:Methylation;
tcga:gene ?gene_t;
tcga:beta_value ?beta_value_t.
?go_gene go−vocab:process ?process.
?process dcterms:title ?cell_cycle.
?gene_t owl:sameAs ?go_gene.

?pathway a biopax:Pathway;
biopax:displayName ?display_name;
biopax:organism ?organism;
biopax:xref ?id. ?id biopax:id ?go_gene.
?kegg_res a kegg:Resource;
rdfs:label ?label;
dcterms:title ?title;
kegg−vocab:reference ?ref;
kegg−vocab:x−go ?process.
}

Listing 5 SPARQL Query Federation: Genes, pathways, and
biological processes

The Listing 6 retrieves the methylated promotor
regions. The query shown in Listing 6 extracts the location
of methylation based on the input genes, composite ele-
ment REF (promotor region) and chromosome number.
For instance, we have queried MYH7 (gene) for promo-
tor region cg05744229 at the chromosome 14 (region of
methylation) and extracted two promotor regions from
TCGA and COSMIC with the start value of DNA pro-
motor range such as 23904678 (TCGA) and 23435469
(COSMIC).

SELECT ?promoter_region ?start_c ?start_tWHERE {
?cosmic_meth a cosmic:Methylation .
?cosmic_meth cosmic:chromosome ?chr.
?cosmic_meth cosmic:gene ?promoter_region .
?cosmic_meth cosmic:start ?start_c . FILTER (?

promoter_region = <http://sels.insight.org/cancer−
genomics/gene/cg05744229>)

?tcga_meth a tcga:Methylation .
?tcga_meth tcga:gene <http://sels.insight.org/genomics/

gene/MYH7>.
?tcga_meth tcga:chr ?chr.
?tcga_meth tcga:start ?start_t. FILTER (?chr = <http://sels.

insight.org/genomics/chrom/14>)
}}

Listing 6 SPARQL Query Federation: Methylated promotor
regions

Listing 7 shows an example federated SPARQL query
derived from the Listing 2 for a specific gene, namely
MYH7. Similarly, we have executed the federated queries
shown in the Listings [2-6] for each of the hundred (100)
genes extracted from the Illumina Body Map, mentioned
above.

?cosmic_meth a cosmic:Methylation; cosmic:sample ?
sample; cosmic:gene ?gene_c; cosmic:start ?start_c.

?tcga_meth a tcga:Methylation; tcga:hybrid_ref ?tcga_id;
tcga:gene tcga:MYH7; tcga:start ?start_t.

?gene_c owl:sameAs tcga:MYH7.
}

Listing 7 SPARQL Query Federation: Genomic loci of MYH7 gene
by chromosome start points

The query execution time for these gene-specific
queries is shown in the Table 2. The “Query” column
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Table 2 Query Execution Time (QE=Query Execution)

Query QE Time (msec) Results (No. of Triples) Datasets

Listing 2 2110 21390 (TCGA)(COSMIC)

Listing 3 5732 33264 (TCGA)(COSMIC)

Listing 4 43092 63765 (TCGA)(COSMIC)(GOA)

Listing 5 263463 232848 (TCGA)(GOA)(REACTOME)(KEGG)

Listing 6 3481 25669 (TCGA)(COSMIC)

lists individual queries (e.g., listings [2-6]), “QE Time”,
“Results (No. of Triples)” and “Datasets” columns show
the query execution time in millisecond (msec), number
of triples returned as a result and the datasets required for
executing individual queries.

Results
We analyse the genes having RPKM value > 0.3747 and
differentially expressed in all tissue types. Figure 7 shows a
list of 100 genes retrieved from the HBM datasets, which
are highly expressed in 16 different tissues. We have iden-
tified potential cancer types based on the gene patterns

for different tissues that helped further to understand the
behavior of most amplified cancer types. The overall goal
of this study is to understand the relevance and associa-
tion of mutation, genes expression, and promoter region
by:

− Analysing the normal tissues expression levels,
enriched and affected pathways along with their
associated expression levels and changes obtained
from the HBM 2.0 datasets.

− Analysing the normal tissues expression levels against
the somatic mutations linked and retrieved from the
COSMIC and TCGA datasets.
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APCS
AMBP
ALB
FGA
APOC3
APOH
GC
FGL1
APOA2
CRP
ORM1
ORM2
HP
FGB
FGG
SAA2
SERPINA1
APOA1
AGT
SAA1
RBP4
C3
SCD
TG
PRM1
PRM2
TNP1
DES
PDK4
MT−TP
KLHL41
MYBPC1
CKM
GAPDH
ACTA1
MT−RNR1
MT−RNR2
MT−ND1
MT−ND2
MT−CO2
MT−ND4
MT−CO3
MT−ND3
MT−CYB
MT−ATP6
PLN
MYL3
ACTC1
MYH7
MYL2
FABP3
MB
MT−ND5
MT−CO1
MT−ND4L
MT−ATP8
MTATP6P1
MT−ND6
MALAT1
GPX3
SPP1
HBB
SCGB1A1
HLA−E
FTL
B2M
TMSB4X
SRGN
TMSB10
HLA−DRA
CD74
LYZ
S100A9
S100A8
RPS12
ACTB
EEF1A1
FABP4
TXNIP
SEMG1
MYL9
RPS27
RPS11
IGFBP4
IGLC3
IGLC2
IGLV3−19
IGKC
IGHV3−23
IGHG2
IGKV4−1
IGHG1
IGLV3−25
IGKV3−20
IGHV1−2
IGKV1−5
IGHM
IGHA1
JCHAIN
CCL21

Fig. 7 HBM: List of genes expressed in all tissues and highly expressed
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− Classifying the mutations obtained from above two
steps in terms of biological processed and pathways
from GO, KEGG, and REACTOME

We now discuss and analyse the results obtained from
the BIOOPENER platform through linking and querying
the cancer and biomedical repositories.

Analysis: HBM, COSMIC, and TCGA
Initially, we have selected top 100 genes that are highly
expressed in all 16 tissues as shown in the Fig. 7 to
(i) retrieve their CNV, mutation, gene expression and
methylation annotations from cBioPortal12; (ii) retrieve
methylation from CNV annotator13 and UCSC Cancer
Genomics Browser14; and (iii) retrieve mutation datasets
from TCGA [24]. The results from TCGA (Fig. 8) clearly
indicate a mutation frequency elevated distribution of
these genes in UCS, CESC, UCEC and OV cancers. In

Fig. 8 TCGA query output from cBIO Portal (Blue:Deletion,
Red:Amplification, Green:Mutation, Brown:Multiple Alterations) [43]

Fig. 8 we observe average percentage case mutations in
the UCS, UCEC, CESC and OV cancers are 87.5% ,58.3%,
57.6%, 81.4% respectively. This outcome justifies the selec-
tion of UCS, UCEC, CESC and OV as good candidates for
further investigation due to its elevated amplification rate
and its multiple repetition in different experiments.
This study targets genes based on their contribution in

mutations15, the listing 8 shows the highly relevant driver
genes transforming healthy human tissues into diseased
ones for respective cancer types.

OV: TG, MRPS12, GAPDH, TXNIP, S100A9, S100A8, RPS27, ALB
, CRP, LYZ, and MYH7

CESC: ND5, TG, AGXT, MYH7, FGA, APOC3, APOA1, C3, APCS,
FBF1, SERPINA1, S100A9, and TXNIP

UCS:MRPS12, TG, SEMG1, ND5, DLC1, CKM, ND4, ND1, FGL1,
and RPS27

UCES: TG, MYH7, DLC1, C3, TXNIP, FGA, AGT, S100A8, CRP,
S100A9, APCS, and GC

Listing 8 Highly relevant driver genes for the OV, CESC, UCS, and
UCES cancer types

The overlap and frequency among these four cancer
types results into the discovery of top 20 biomarkers
shown in the listing 9). Table 3 shows the potential
chromosome locations chr14,chr5,chr6,chr19 and genes
TG,TXNIP,GC,MYH7 with high relevance in the progres-
sion of four gynecological cancer types.

TG, MRPS12, MYH7, DLC1, GAPDH, TXNIP, C3, ND5, S100A8,
RPS27, FGA, AGT, CRP, ALB, LYZ, APCS, GC, APOA2, MYBPC1,

ACTA1

Listing 9 Top 20 Biomarkers for the OV, CESC, UCS, and UCES
cancer types

Figure 9 shows the COSMIC and TCGA annotations.
The CNV datasets doesn’t use “Gene symbol” property
(or predicate) and it is important to map (or link) genome
regions with gene symbols to retrieve CNV information
from different datasets. We implemented a linking rule
based on the chr_no,chr_start and char_end properties
(or predicates) to retrieve the CNV information across
datasets to identify genes within the extracted loci. Result
of this annotation are shown in the Table 3. It is evi-
dent that the MYH7 gene has many copies reported in
the COSMIC datasets as well as in the TCGA datasets
suggesting it a potential biomarker for four gynecolog-
ical cancer types. The TG and MYH7 genes are highly
mutated as they are repetitively appearing on multiple
chromosomes. For instance, MYH7 primarily carried the
LOSS type of a mutation for chr14 which is a dominant
mutation with all its regulation of over, under and nor-
mally expressed. Translational researchers may want to
repeat and re-validate the study for Pubmed ID:1398522
with the beta value – as a measure of methylation – of
0.041999536. The scaled estimation (Tumour purity) of
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Table 3 loci information for highly expressed gene in ovarian cancer from HBM 2.0

Chr Star-End Mutation Type Genes PMID

19 90910 -715430 GAIN FGF22, RNF126, TG 2066845
120668450

9 4069657-4684967
591967-608659
11090336-11098891
8009428-8015596
8109010-8121257
1373387-1383725
11090336-11098891
10547511-10547923
3113846 -3134738
8115293 -8121487
9269903 -9294415
46587-510700
5106680-5106800

LOSS/GAIN LKB1,P16INK4A,TRAF2,XPA,
PTCH1,FANCC,DMRT3,WNK2,C9orf89,
SYK,CKS2,CTSL1,NTRK2,KIF27,PTPRD,
TLE4,CEP78,GNAQ,PRKACG

21062161
17311676
16585170
20668451
21781307

6 149661-384546 LOSS TAP1,NOL7,CD83,POUF3,MYH7,PLN,PKIB,PDSS2
OSTM1,NUS1,TG,NT5DC1,NR2E1,NKAIN2

21062161
20668451
21781307
20668451
21720365

5 15532-24132 GAIN TRIP13, TRIO,TARS,SUB1,SLC12A7,
SKP2,SDHA,RPL37,MYH7,RNASEN,RAI14,
RAD1,POLS,PDCD6,PAIP1,OSMR,NNT

18559093
21062161

14 23857092-23886486
23857082-23886607

LOSS MYH6, MYH7, TG, ACTA1 18559093
21062161

773.555 supports this gene (MYH7) from the methylation
aspect to detect promoter level changes in the four cancer
types. Further multiple genomic locations will help clin-
ical practitioners to find a potential CNV for a targeted
study ultimately helping towards a better prognosis.
Figure 10 shows the annotation of twenty (20)

discovered biomarkers (genes) where promoter level
changes are occurring on the extreme changes of -ve
or +ve beta-values in all the four cancer types stud-
ied in this article. The most affected genes due to
these promotor level changes are: MYH7, TG, DLC1,
S100A8. As reported in our initial work [10] major
changes are occurring nearby -0.773 beta-value and
their corresponding composite element reference ids
are cg01429391, cg05744229, cg26670875, cg18205205,
cg21242212, cg08240074, cg13785779, cg05744229. Most
of these changes are occurring around chromosome 1 and

14 and 5’ UTR. Next section discusses the mechanism
behind these changes and their pathway analysis.

Analysis: GO, KEGG and REACTOME
We have identified twenty (20) genes in terms of mutation
frequencies and CNV together with the promoter level
changes in methylation data. However, we are unaware
of the mechanism involved in combined effects of these
twenty (20) genes. We have queried linked pathways
and coalitions over the GO, KEGG, and REACTOME
datasets. Figure 11 – snippet generated from ClueGO
[25, 26] – shows the muscle filament sliding pathway as
a key in rare cancer types such as retinoblastoma where
effective “actin” filament formation with Myosin (MYH4)
is a prime regulator [27]. Our approach has identified
“actin (ACTA1)” and “myosin (MYH7)” combination with
“MYBPC1” as the potential pathways causing promoter

Fig. 9 Linked annotations for MYH7 - COSMIC
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Fig. 10 Promotor level methylation changes in biomaker genes

changes in gynecological cancers. It’s evident that alter-
ations in the activity and/or expression patterns of actin-
bundling proteins could be linked to the cancer initiation
or progression [28]. Haitian Lu, et al. suggests that the
acute inflammatory response is associated with cancer

development because inflammatory micro-environment
inhabits various inflammatory cells [29]. A network of
signaling molecules are indispensable for the malignant
progression transformed cells attributed to the mutagenic
predisposition of persistent infection-fighting agents at

Fig. 11 Three pathways causing promoter changes in four gynecological cancer types
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the sites of chronic inflammation causing cancer devel-
opment in various tissues [29]. In our case, the rea-
son behind significant methylation changes associates
with the pathway peptidyl-cysteine s-nitrosylation. The
dysregulation of s-nitrosylation in severe pathological
events including cancer onset, progression, and treatment
resistance leads to controlled epigenetic and treatment
response [30]. Figure 10 explains the gene associated with
each pathway and their contribution for OV, CESC, UCS,
and UCSC cancer types. In this article, we demonstrated
that well-connected datasets allow to construct complex
biomedical queries (e.g., listings 2-6) covering variety of
genetic and biological features (cnv, gene symbol, methy-
lation, cell cycle, protein, pathway, etc.) that can span
through broad range of multiple repositories.

Related work
Kandoth et al. [31] performed a cancer study with 12
cancer types to enable logical classifications for the large
amount of data generated by TCGA and ICGC. Saleem
et. al. [32] have covered TCGA database with few cancer
types and for a limited number of patient data. Simi-
larly, a reduced version of the COSMIC database has been
RDFized to explore on the mechanism of TP53 [33]. The
federation platform [34] called “TopFed” is being devel-
oped to measure the query execution time on TCGA
data set, which then has been further extended to cover
the biological outcomes identified fromMedline abstracts
[35]. A similar platform such as FIREBROWSE16, Web-
TCGA [36], and PCAWG17 have been built for TCGA
dataset covering a wide range of genomic signatures
and pan-cancer analysis. Gene and methylation annota-
tion platforms such as omics4tb18 and Genevisible [37]
help to decipher individual genes and their association
annotated from TCGA. From the computational perspec-
tive, our goal is not to create yet another repository (or
database), but to link the already existing ones for use in
various analytical methods. We demonstrated that well-
connected datasets allow to construct complex biomed-
ical queries (e.g., listings 2-6) covering variety of genetic
and biological features (cnv, gene symbol, methylation,
cell cycle, protein, pathway, etc.) that can span through
broad range of multiple repositories. The enrichmen-
t/linkage between COSMIC and TCGA datasets had been
crucial to identify novel mutations. The approaches taken
in DoCM [38], ICGC [39], and DIRECT [40] are comple-
mentary to our work in the sense that, discoveries sug-
gested by the BIOOPENER platform are the most likely
mutations/genes/pathways which can be further validated
through creating links with the “well-curated” reposito-
ries (DoCM, ICGS, and DIRECT ). Such validation is
outside the scope of this article; however, we do plan
to include “well-curated” databases in the next phase of
BIOOPENER project. Similarly, we plan to extend linking

with the ICGC [39] datasets that contains primary and
blood samples providing further insight into the metas-
tasis of primary tissues. Our current work covers copy
number variation (CNV), genes, somatic mutation, and
promotormethylation which targets highlymutated genes
(on different tissues) and associated pathways. As far as
we know, the work presented in this article is one of the
first initiatives in discovering biomarkers and pathways
for female gynecological cancer types covering five large-
scale cancer and biomedical repositories.

Discussion
As discussed above, the NGS technologies are produc-
ing a massive amount of sequencing datasets [5, 8]. A
top-up of approximately 40 petabytes of genomic infor-
mation every year is foreseen from a wide variety of
data sources published by human genome research cen-
ters worldwide [41]. Often, these datasets are published
from isolated and different sequencing facilities. In cancer
genomics, description of biological and genetic entities
are available in several overlapping and complementary
data sources containing complex genomic features, stud-
ies, and associations of such features [17, 42]. In order
to understand the tumorigenesis, it is often the case that
several genetic features, diseases, medical history, etc. are
studied together, therefore, one of the key challenge in
cancer genomics – a cornerstone of precision medicine –
is to discover gene-disease-drug data links and associ-
ations which may provide novel insight into new drug
development techniques tailored specific for an individ-
ual patient (or a group of patients) targeting prevention,
diagnosis and treatment of the diseases.
In cancer genomics field massive amount of data exist

with complex associations. To understand these complex
associations, it requires to fetch all possible gene-disease-
drug combinations, for instance:

− Multiple pathways are involved to translate a
particular gene

− A single disease can be treated by eliminating effect
of the combination of multiple drugs

− Selection of these drugs is majorally based on the
inhibitors (i.e., combination of gene-pathways)

− Effect of one pathway alteration can change the
modification of single gene and yields into multiple
genes

In this article, we aimed to understand the associations
between genetic, cellular and molecular features across
isolated cancer datasets giving insight into cancer pro-
gression from normal to diseased tissues. Correlation of
genes in OV, UCS, UCEC, & CESC clearly indicates that
gynecologically induced cancers do have common mech-
anism and overlapping pathways. Which means, a drug
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created for one cancer type has a higher probability to be
effective for other associated cancer types.

Conclusion
In this paper, we have presented a data-interlinked plat-
form called BIOOPENER which enables querying dif-
ferent types of mutations and genomic alterations to
contribute to molecular and clinical insights of cancer
by defining most relevant variants and their prioritiza-
tion. This knowledge could be highly advantageous for a
targeted therapy and precision medicine based on gene
expression data. The presented experiments are based on
COSMIC, TCGA, REACTOME, KEGG, GO and HBM
2.0 datasets and have been used to identify sets of
genes with relevance for four female gynecological cancer
types - Ovarian (OV), Uterine Corpus Endometrial Carci-
noma (UCS), Uterine Carcinosarcoma (UCEC), Cervical
Squamous Cell Carcinoma and Endocervical Adenocar-
cinoma (UCES) - covering the 16 healthy tissue-specific
genes from Illumina Human Body Map 2.0. We discov-
ered 20 biomarkers (genes) in terms of mutation frequen-
cies and CNV along with the promoter level changes in
methylation data. We discovered three potential pathways
causing promoter changes in gynecological cancers. In
future, we plan to extend by covering the breast cancer
type including additional genomic signatures, e.g., fusion
gene, structural variations.
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