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Abstract

Background: In this paper we present the approach that we employed to deal with large scale multi-label semantic
indexing of biomedical papers. This work was mainly implemented within the context of the BioASQ challenge
(2013–2017), a challenge concerned with biomedical semantic indexing and question answering.

Methods: Our main contribution is a MUlti-Label Ensemble method (MULE) that incorporates a McNemar statistical
significance test in order to validate the combination of the constituent machine learning algorithms. Some
secondary contributions include a study on the temporal aspects of the BioASQ corpus (observations apply also to the
BioASQ’s super-set, the PubMed articles collection) and the proper parametrization of the algorithms used to deal
with this challenging classification task.

Results: The ensemble method that we developed is compared to other approaches in experimental scenarios with
subsets of the BioASQ corpus giving positive results. In our participation in the BioASQ challenge we obtained the first
place in 2013 and the second place in the four following years, steadily outperforming MTI, the indexing system of the
National Library of Medicine (NLM).

Conclusions: The results of our experimental comparisons, suggest that employing a statistical significance test to
validate the ensemble method’s choices, is the optimal approach for ensembling multi-label classifiers, especially in
contexts with many rare labels.

Keywords: Semantic indexing, Multi-label ensemble, Machine learning, BioASQ, Supervised learning, Multi-label
learning

Background
Introduction
MEDLINE is the premier bibliographic database of the
National Library of Medicine (NLM) of the United States.
In June 2017 MEDLINE contained over 27 million ref-
erences to articles in life sciences with a focus on
biomedicine. Each of these articles is manually indexed
by human experts with concepts of the MeSH (Medical
Subject Headings) ontology (also curated by NLM), such
as Neoplasms, Female and Newborn. This manual index-
ing process entails significant costs in time and money.
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Human annotators need on average 90 days to complete
75% of the citation assignment for new articles [1]. For
a publication with novel and important scientific results,
the first period of its lifetime is quite important, yet it
is in this period that the publication remains semanti-
cally invisible. For instance, if a researcher is searching
for a particular MeSH term (e.g. Myopathy), he/she will
not be able to retrieve the latest non-indexed articles that
are related to this term, if they do not contain it liter-
ally. Moreover, the average indexing cost for an article
is $9.401.
MEDLINE’s demand in manual indexing is steadily

increasing as evident from Fig. 1, which plots the number
of articles being added to MEDLINE each year from 1950
to 2017. At the same time, the available indexing budget at
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Fig. 1 Number of articles being added to MEDLINE each year from
1950 to 2017

NLM is flat or declining. This highlights the importance
of tools for automatic semantic indexing of biomedical
articles. Such tools can help increase the productivity of
human indexers by recommending them a ranked list of
MeSH descriptors relevant to the article they are currently
examining. In addition, such tools could replace junior
indexers (not senior revisers) for journals where these
tools achieve a high level of accuracy. Both usages of such
tools are currently adopted by NLM.
From a machine learning perspective, constructing an

automatic semantic indexing tool for MEDLINE poses a
number of important challenges. First of all, there is a
large number of training documents and associated con-
cepts. In 2017, MeSH contained 28,489 descriptors, while
PubMed contained over 27 million annotated abstracts.
Efficient yet accurate learning and inference with such
large ontologies and training sets is non-trivial. Addition-
ally, MEDLINE is growing at a non-trivial rate of more
than one million articles per year, i.e. more than 100 arti-
cles per hour. This calls for learning algorithms that can
work in an online fashion both in the sense of handling
additional training data as well as in the sense of being effi-
cient enough during prediction in order to cope with the
fast rate that new articles arrive. Furthermore, MEDLINE
contains abstracts from about 5000 journals covering very
different topics. This increases the complexity of the tar-
get function to be learned, as concepts may be associated
with different patterns of word distributions in different
biomedical areas.
MeSH concepts are hierarchically structured as a

directed acyclic graph indicating subsumption relations
among parent and child concepts. This structure is quite
complex, as it comprises 16 main hierarchies with depths
up to 12 levels and many children nodes belong to more
than one ancestors and to more than one of the main hier-
archies. While some progress has been recently achieved

on exploiting such relationships, it is not entirely clear
when and how these relationships help accuracy. As
MeSH evolves yearly on par with the medical knowledge
it describes, automatic indexing models must deal with
such changes, both explicit (i.e. addition, deletion, merg-
ing of concepts) and implicit (i.e. altered semantics of
concepts) ones. Also, each scientific document is typi-
cally annotated with several MeSH concepts. Such data
are known as multi-label [2] and present the additional
challenge of exploiting label dependencies to improve
accuracy. Figure 2 shows the distribution of the number
of labels per document which is Gaussian with a mean of
about 13 labels per document and a heavy tail on the right.
The distribution of positive and negative examples for

most of the MeSH concepts is very imbalanced [3].
Figure 3 plots the frequencies of labels (x-axis) versus
the number of labels having such frequency (y-axis) for a
subset of 4.3 million references of MEDLINE. By employ-
ing the Kolgomorov-Smirnov test as proposed in [4] it
can be seen that the data fits to the power law distribu-
tion with a significance level of 0.02. Less than half of
the labels appearing in this subset (10,352 out of 26,509)
have more than 500 positive examples and only 811 labels
have more than 10,000 examples. This extreme imbalance
and more precisely the fact that most MeSH labels have
very few positive instances, greatly hinders learning an
effective model for their automatic prediction.
The European project BioASQ [5] has organized five

challenges on large-scale online biomedical semantic
indexing, from 2013 to 2017, focusing on MEDLINE’s
indexing problem. The official results of the five BioASQ
challenges (2013–2017) are publicly available2. The chal-
lenge runs for fifteen weeks every year. Every week the
participants are given a set of new, unannotated articles
(∼ 5000) and should provide annotation for them within
21 hours. Evaluation is performed on a variety of flat and
hierarchical performance measures. Our team achieved
the first place in 2013 and the second place in years
2014–2017, surpassing in all cases the accuracy of the
current production system of NLM, MTI.
In this paper, we present our efforts to deal with

this task, from a purely machine learning perspective.
The main contribution is a new multi-label ensemble
method that incorporates a statistical test to combine
the constituent models. As a secondary contribution, we
describe the adaptation and application of already existing
supervised learning algorithms to such a demanding task
and a short study on the concept drift within the cor-
pus. The rest of the paper is organized as follows: In
“Multi-label ensemble methods” section we present
some prior work in the field of multi-label ensemble
methods and explain the differences to our method.
“Methods” section describes our proposed multi-label
ensemble method, MULE, and “Results” section contains
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Fig. 2 Labels per document for a subset of 4.3 million references of MEDLINE

the experiments, the results and a study on the concept
drift that exists within the corpus. Finally, in “Discussion”
section we discuss the implications of our findings and in
“Conclusion” section we present the conclusions from our
work with some possible future directions.

Multi-label ensemble methods
The area of multi-label learning [2] is closely related
to that of ensemble methods [6], as the most basic
multi-label learning method called binary relevance (BR)
involves learning an ensemble of binary models, one for
each label. Pairwise techniques for multi-label learning,
such as [7], also involve learning an ensemble of binary

models. Here, however we focus on multi-label ensemble
methods, in the sense of methods that combine multi-
ple predictions for all labels, i.e. multiple rankings of
labels, multiple bipartitions of the set of labels into pos-
itive and negative ones for an instance, or even multiple
joint distributions for all labels.
Ensemble methods can offer improvements compared

to a single model in the following cases where a
single model fails to deliver a good approximation
of a true hypothesis [6]: a) insufficient training data
(statistical reason), b) non-convex search space with mul-
tiple locally optimal solutions (computational reason), c)
the searched hypothesis space does not include the true

Fig. 3MeSH concept frequencies for a subset of 4.3 million references of MEDLINE
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hypothesis (representation reason). The problem that we
are dealing with in this paper, fits in the first two of the
above cases. First, the distribution of label frequencies fol-
lows the power law, i.e., the vast majority of the labels
have very few positive instances. This means that for most
labels there are no sufficient positive training instances,
greatly impeding effective training of a learning model.
Second, we deal with a large-scale multi-label task (∼ 104
labels), which, taking into account the interactions and
dependencies among labels, leads to a complex search
space with multiple locally optimal solutions.
An ensemble is called homogeneous if all its component

models emerge from the same theory, e.g., an ensem-
ble of Support Vector Machines (SVM) classifiers. When
an ensemble consists of different types of models (e.g
an ensemble with SVM and Naive Bayes models), then
it is called heterogeneous. Multi-label ensembles can be
considered homogeneous if they combine models derived
from the same multi-label learning algorithm and the
same underlying single-learning algorithm in the case of
problem transformation methods, e.g. an ensemble of BR
models, all trained using SVMs.
There are three main approaches to combine the deci-

sions of an ensemble’s models: (i) selection, where a single
model is used, (ii) fusion, where all models are used,
and (iii) ensemble pruning, where a subset of the models
is used. In multi-label ensembles, decision combination
could further be characterized as global if the same com-
bination is used for all labels (e.g. the same subset of
multi-label models is selected for all labels), or local if
a different combination can be used for each label (e.g.
models are fused with different weighting for each label).
In existing ensemble approaches in the literature, the

authors of [8] proposed an Ensemble of Classifier Chains
(ECC) in which multiple Classifier Chains (CC) are
trained to model the label correlations and then they are
combined through a simple global voting scheme. The
Ensemble of Pruned Sets (EPS) [9] represents another
approach with similar philosophy, the PS constituent
models being combined again through a simple global vot-
ing scheme. In [10] three hierarchical ensemble methods
are introduced in order to deal with the gene function
prediction problem; Hierarchical Top-Down (HTD), Hier-
archical Bayesian (HBAYES) and Hierarchical True Path
Rule (HTPR) along with their cost-sensitive versions. Here
different predictions are due to heterogeneous data rep-
resentation and voting is again used for combining the
models.
An ensemble of Bayesian Networks is proposed in

[11], combining multiple joint distributions for all labels
by means of their geometric average. Tahir et al.
[12] present a fusion method where the probabilis-
tic outputs of heterogeneous classifiers are averaged
and the labels above a threshold are chosen. Finally,

Yepes et al. [13] propose a classifier selection scheme
based on the F-measure. For each label and for each
of the classifiers the F-measure is computed and the
best performing one is chosen to predict that partic-
ular label. Table 1 presents the aforementioned meth-
ods and classifies them. The mUlti-label ensemble
method presented in this paper, described later on in
“Statistical significance MUlti-Label Ensemble (MULE)”
section, is also included in order to makemore evident the
differences among the approaches.
The method proposed in this paper is closely related

to [12, 13] in the sense that in all three cases, based
on a validation data set, the ensemble combines directly
the various models’ prediction outputs without entailing
any training or interfering with the constituent mod-
els’ structure and background. This is particularly useful
when wishing to combine models emerging from very
different theories. Moreover, it ensures scalability of the
method particularly when dealing with such large data.
For instance, we tried to employ stacked BR [14] as well
to our problem but without any success due to scalabil-
ity issues. Regarding these three methods ([12, 13] and
ours), it should be noted that [12] proposes an ensemble
limited to combine only models with probabilistic outputs
(i.e. outputs ranging between 0 and 1) and thus it is not
appropriate for our case where models with diverse out-
puts need to be combined. Therefore, in the experiments
presented in “Experiments” section our method is com-
pared only to the one by [13] along with a more simplistic
version of MULE.

Methods
Pre-processing of the data
The BioASQ corpus is a subset of a large collection of
biomedical papers (∼ 12 million abstracts) curated by the
NLM, through the PubMed framework. For each docu-
ment, only the abstract is provided along with some other
information (title, journal, year and the MeSH terms).

Table 1 Characteristics of the aforementioned multi-label
ensemble methods and MULE

Ensemble method Composition Combination Combination
scheme level

ECC [8] Homogeneous Fusion Global

EPS [9] Homogeneous Fusion Global

HTD, HBAYES, Homogeneous Fusion Global
HTPR [10]

Bayesian Networks Homogeneous Fusion Global
Ensemble [11]

Tahir et al. [12] Heterogeneous Fusion Gobal

Yepes et al. [13] Heterogeneous Selection Local

MULE Heterogeneous Selection Local
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From the entire corpus we have considered only
abstracts belonging to the journals covered by the test
set, resulting to a subset of 4.3 million abstracts. Since
every new article will belong to a journal and since this
meta-information will always be available, it is valid to
use this information for training. Moreover, this approach
was motivated from the fact that different journals are
expected to follow different data and label distributions
and we desire the model to draw its respective training
data from a data distribution as similar as possible to the
data that is going to be predicted. Therefore, selecting
only those abstracts that belong to the test data journal
list for training, is expected to improve performance. One
alternative way to think about that relates to the process
of manual indexing: a human annotator will be assigned
papers coming from a specific scientific field and therefore
list of journals, rather than annotating papers from any
field, randomly, since he will be specialized on a specific
field.
The following steps in the pre-processing of the data

included removal of duplicate instances, concatenation
of abstract and title for every instance, removal of stop-
words and selection of word tokens and pairs of word
tokens (bi-grams) as features. Word tokens and bi-grams
with less than five occurrences were omitted as well as
those with a frequency higher than half the size of the
corpus. In order to vectorize the data sets the tf-idf repre-
sentation was used for the features. We furthermore per-
formed zoning of some features, i.e., increasing the tf-idf
value of features that are expected to have more influence
than others in the classification task. More specifically, we
multiplied the tf-idf values from n-grams that belonged to
the title with log 2 and from those being equal to some
MeSH label by log 1.25.

Statistical significance MUlti-Label Ensemble (MULE)
MULE is a multi-label ensemble approach concerned with
the problem of selecting the most appropriate model
among its members for each different label. It assumes
the existence of a heterogeneous ensemble and that differ-
ent labels can be approximated better by different types of
models. The standard way to approach this problem is the
employment of a validation set, based on which the accu-
racy of each model of the ensemble is evaluated for each
label.
One issue with this approach is how to compare the

models based on a single label, when the goal is to opti-
mize a global evaluation measure related to all labels
whose estimation cannot be decomposed per label, such
as the micro-averaged f-measure, or the example based
f-measure. Comparing the models based on a local eval-
uation measure such as the f-measure for the particular
label [13] is not guaranteed to optimize such measures.
A more appropriate solution involves cyclically examining

the labels, selecting the best model for each label accord-
ing to the global evaluation measure until the selected
models per each label do not change in two consecutive
cycles. Such an approach has been followed in the past
for tuning a different threshold per-label with the goal of
optimizing a global evaluation measure [15].
We argue that model selection approaches based on

a validation set are brittle for multi-label data streams
with a large number of rare labels, like the application
we are focusing on in this paper, which involves a stream
of scientific articles where the label frequency distribu-
tion follows the power law. For rare labels, selection of
models is untrustworthy as it is eventually made based on
very little data, despite a potentially large validation set.
Real-world streaming data are also often characterized by
concept drift, and therefore the larger the validation set,
the higher the chance that model selection will not be
valid for future incoming data.
The observations above motivated the development of

our approach, whose main idea is to start by trusting the
globally optimal model across all labels as the best model
for each label and then select a different model for a label
only if it is significantly better than the global one in this
label based on an appropriate statistical test. Trusting the
globally optimal model is justifiable, as its evaluation is
based on much more data, compared to the data for a sin-
gle label. When using a statistical test to compare each
other model against the globally optimal one, the choices
are expected to be less optimistic and more conservative,
leading to an ensemble that will be more robust to differ-
ences between the validation and test set and to the lack
of enough positive samples for rare labels in the validation
set.
Formally, suppose that the multi-label task to be dealt

with has L labels, l being a label, andD documents, d being
a document. Also, DTRAIN will be the training set, while
DVAL and DTEST the validation and test set respectively.
We denote as M the learning models that are used and,
without any loss of generality, assume that M1 is the best
performing model globally, in terms of a multi-label eval-
uation measure. The goal is to be able to tell which of the
models used is more suitable for each of those L labels, in
terms of the same measure on some validation data set.
The general scheme for MULE then is to

1. Predict labels with allMi on a validation data set
2. Determine for each label which models predict it

more accurately compared toM1, i.e., which model
brings an improvement with respect to a global
evaluation measure.

3. Compare the differences in performance of each one
of these models againstM1 using a McNemar test
with significance level α and select the one for which
the null hypothesis is rejected. If the null hypothesis is
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rejected for more than one models, choose the one for
which the null hypothesis has the lowest probability.

4. Predict accordingly on the test set for each label

In Algorithm 1 we present the pseudocode for MULE
assuming the evaluation measure is the micro F-measure.
Naturally, any other metric can be used instead. For
instance, in the experiments we also use a variant
of MULE, which optimizes the macro F-measure. In
Appendix we provide the implementation details for the
McNemar significance test with respect to the ensem-
ble method. The only parameter needed for MULE is
the significance level α of the respective McNemar’s test.
It should be noted that when performing multiple sta-
tistical comparisons (that is for more than two models)
the family-wise error rate (FWER) should be controlled
in order for the statistical comparisons to be valid. In
our case, as the tests performed were parametrical, the
Bonferroni-Holmes step method was used. A detailed
explanation of that method is given in [16].
Initially, we also tried a similar strategy comparing clas-

sifiers in terms of their precision and recall by applying a
proportion significance test (an idea based on [17]). Given
two models A and B and assuming that A is better than B
globally, we predict each label l with A unless if:

1. precisionBl > precisionAl and recallBl >= recallAl or
2. recallBl > recallAl and precisionBl >= precisionAl,

where > means significantly better and >= means not
significantly worse. If any of the above holds we predict l
with B. We experimented with various confidence inter-
vals (0.99, 0.975, 0.95, 0,90) but this approach proved to be
too conservative in all cases, by allowing very few labels to
be chosen from the second system, leading in some cases
to negative results.

Results
In this section we present the results obtained from our
experiments. We first present the evaluation metrics used
to assess performance and then we describe the data
sets used in the experiments. Next, we provide the con-
stituents models used for the ensemble methods along
with their relative performance and then we present the
results for the ensemblemethods with the relevant discus-
sion. In the last sub-section we present a small study on
the temporal aspects of the BioASQ data.

Evaluation measures
Through our experiments, we chose to use as a means
of evaluation of performance two label-based measures
that are widely used in multi-label contexts; the micro-F
and the macro-F measure [2]. Our choice over other pos-
sible options (e.g. precision, recall, accuracy) is dictated
by the fact that the F-measure, as well as its micro and

Algorithm 1MULE
1: Input: M trained models, DTRAIN , DVAL, DTEST
2: forMi ∈ M do
3: predict on DVAL withMi
4: end for
5: for each l ∈ L do
6: for eachMi do
7: calculate tpMil, fpMil and fnMil
8: end for
9: end for

10: tpM1 ←
L∑

l=1
tpM1l

11: fpM1 ←
L∑

l=1
fpM1l

12: fnM1 ←
L∑

l=1
fnM1l

13: mfM1 ← 2tpM1
2tpM1+fpM1+fnM1

14: for each l ∈ L do
15: for each modelMi, i �= 1 do
16: TP ← tpM1 − tpM1l + tpMil
17: FP ← fpM1 − fpM1l + fpMil
18: FN ← fnM1 − fnM1l + fnMil
19: mfM1temp ← 2TP

2TP+FP+FN
20: ifmfM1temp > mfM1 then
21: add l in candidateListi � candidateListi

stores temporarily labels that may eventually be pre-
dicted withMi

22: end if
23: end for
24: end for
25: for each l ∈ L do
26: if l ∈ only one candidateListi then, i �= 1
27: McNemar(M1,Mi) with significance level α
28: ifMi is significantly better thanM1 then
29: add l to LMi
30: end if
31: else if l ∈ to more than one candidateListi then
32: McNemar(M1, Mi) with significance level α,

applying a FWER correction with the Bonferoni-
Holmes step method

33: if only one Mi is significantly better than M1
then

34: add l to LMi
35: else if many Mi’s are significantly better than

M1 then
36: add l to the LMi for which Mi has the

highest score in the McNemar test withM1
37: end if
38: end if
39: end for
40: LM1 ← L − ∑

LMi , i �= 1
41: for eachMi do
42: predict withMi on DTEST for labels ∈ LMi
43: end for
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macro variants, provide a satisfying balance between pre-
cision and recall. Moreover, the macro-F measure tends
to favor rare labels whereas the micro-F tends to smooth
out their effect on total performance, hence being more
influenced by frequent labels. For simplicity, we provide
the F, micro-F andmacro-F definitions directly in terms of
the true positives, false positives and false negative errors.
First, let’s denote as tp the number of true positives of a
model (i.e. the number of times an instance has a label
and the model successfully assigned it), fp the number of
false positive errors of the model (i.e. the number of times
an instance does not have a label but the model assigned
it erroneously) and fn the number of false negative errors
(i.e. the number of times an instance has a label but the
model did not succeed in assigning it). Equation 1 pro-
vides the F1 score used for a single-label classification
problem:

F1score = 2 × tp
2 × tp + fp + fn

(1)

In a multi-label context such the one we deal with and
given that there are L labels, the micro-F measure is
defined as

Micro − Fscore = 2 × ∑L
1 tpl

2 × ∑L
1 tpl +

∑L
1 fpl +

∑L
1 fnl

(2)

and the macro-F respectively

Macro − Fscore = 1
L

L∑

1

2 × tpl
2 × tpl + fpl + fnl

(3)

Data sets
We conducted experiments on two different subsets of
the BioASQ corpus; data set A consists of a training set
of 850,000, a validation set of 100,000 and a testing set
of 50,000 documents and data set B consists of a training
set of 20,000, a validation set of 20,000 and a test set of
10,000 documents. Table 2 shows the periods covered by
the two data sets. The motivation behind using two differ-
ent data sets in size was mainly to study how the ensemble

Table 2 Chronological period covered by the training, validation
and test sets for both data sets

Period

Data set A

Training set October 2007 - January 2012

Validation set December 2012 - July 2013

Test set July 2013 - January 2014

Data set B

Training set July 2013 - October 2013

Validation set October 2013 - December 2013

Test set December 2013 - January 2014

algorithms that are tested would behave under a small
training/validation set and a large one.

Component models
In this section we present the algorithms that were used as
components for the ensemblemethod, during the BioASQ
challenge as well as in other experiments. Naturally, any
other supervised learning model could have been used
instead.

BR SVM We used the BR or one-vs-all approach, accord-
ing which a multi-label task with L labels is split in L
different binary classification problems, one for each label.
A model is then trained for each one of the labels inde-
pendently from the others. Although this strategy does
not take into account the relations that exist among labels
(e.g. hierarchies) it is particularly convenient for large-
scale setups as it allows full parallelization of the training
and prediction procedure. The Liblinear package [18] was
used with C and e parameters at default values (1, 0.01
respectively) and a bias value of 1. The selected solver
type was L2-regularized L2-loss support vector classifi-
cation (L2RL2LossSVCDual). Two variations were used,
one with default parameters (Vanilla) and a tuned version
(Tuned). For the latter, we adjusted C = 0.33 and changed
the -w1 parameter to handle class imbalance by penaliz-
ing more heavily false negative errors than false positive
ones [19]. More specifically, for all labels with less than
100 positive instances in the data set the weight for the
negative class is set as 1 (default value) and the weight for
the positive class as

wl = 1 + 30
posl

, posl = positive instances for label l

The above parameter values were chosen based on
smaller scale experiments.

Meta-Labeler The Meta-Labeler [20] is a two-level
model. It comprises a first-level multi-label learning
model capable of producing a ranking of the labels per
instance and a second-level model capable of predicting
the number of labels per instance. We here instantiate this
model as follows. We first train the Vanilla SVM models
as described in the previous subsection and then predict
on the new data by assigning a score to each instance-
label pair, based on the distance of the instance from the
hyperplane of the label’s SVM. This way, a ranking of the
labels is obtained for each instance, from the most rel-
evant one (with the highest score) to the least relevant
one (lowest score). The second-ordermodel then serves to
determine automatically the number of labels per instance
by employing linear Support Vector Regression (SVR).
Other thresholding techniques exist in the literature, but
they either require a cross-validation step which requires
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a long time for large data ([15]) or did not perform as well
in preliminary experiments ([21]). For both levels of this
algorithm the same parameters and the same feature space
as for the binary models were used.

Labeled LDA Labeled Latent Dirichlet Allocation
(LLDA) [22, 23] is a supervised learning extension of the
LDA algorithm, where each topic is equal to a label of
the corpus in a one-to-one correspondence.We have used
Prior LLDA [23] that incorporates prior knowledge on
the labels’ distributions (i.e., their frequencies) within the
training corpus. Also, we employed the CGSp improved
φ and θ estimators presented in [24]. We set β = 0.01
both at training and inference and α = 50

L during training
and α = 50 × fl∑

fl
+ 30

L during prediction, L being the
number of labels and fl the frequency of label l in the
training corpus. We used one Markov chain, a burn-in of
50 iterations, a sampling lag of 5 iterations and a total of
20 samples to compute the φ parameters during training
and the θ parameters during prediction.

Experiments
Performance of the componentmodels
In Table 3 the performance of the constituent models on
data sets A and B are shown in terms of the micro-F and
macro-F measures. The discriminative SVM-based mod-
els clearly outperform the probabilistic model (LLDA).
More precisely, the Meta-Labeler outperforms all other
models in both data sets, exhibiting a notable difference
in both metrics compared to them. The prevalence of
this method over the other SVM variants, particularly if
we take into account the challenging properties of the
BioASQ indexing task, suggests that ranking the scores of
the different labels for every instance followed by some
thresholding strategy is clearly more successful than the
traditional classification of instances for every label (i.e.
assigning 0 or 1 to an instance for every label). It should be
also noted that the Meta-Labeler does not have any par-
ticular tuning to cope with the class imbalance (the base
models are Vanilla SVMs) , opposite to the Tuned SVMs,
but still outperforms them.
The second place is steadily occupied by the Tuned

SVMs, which outperform their Vanilla counterparts in all

Table 3 Performance of component models for the test sets of
data sets A and B

Micro-F Macro-F

Model A B A B

Meta-Labeler 0.58555 0.49853 0.54884 0.43381

Vanilla SVM 0.55675 0.41254 0.47891 0.35355

Tuned SVM 0.56653 0.45631 0.51022 0.37922

LLDA 0.36983 0.38873 0.30100 0.37140

cases, a finding more or less expected given the imbal-
anced nature of the data (we remind that the only differ-
ence between the two algorithms is that the tuned SVMs
are configured to handle class imbalance, that is rare
labels, by penalizing more heavily false negative errors).
The Labeled LDA model is worse in all cases except for
themacro-Fmeasure in data set B, in which case it outper-
forms the Vanilla SVM algorithm. We should note though
that we did no particular parameter tuning which seems
crucial for this model. For instance, averaging over more
Markov Chains for the model in data set B results in a
clearly higher performance than in A which is contradic-
tory to the fact that data set A has a much bigger training
data set.

Comparison of the ensemblemethods
As it has been stated before, the goal of an ensemble
method is to achieve higher performance than its com-
ponents, w.r.t. some evaluation metric. In this context,
MULE in its original form seeks to optimize the micro-
F measure so in the first round of experiments, MULE is
compared to the method presented in [13] and to a simple
version of micro-F optimization ensemble, that does not
involve a statistical test (essentially this method is equiv-
alent to MULE but omits the McNemar test). Secondly, a
variant of MULE that optimizes the macro-F measure is
compared to the method presented in [13]. In this case,
as optimizing the F measure and the macro-F measure
is equivalent, there is no third model in the comparison.
In all cases, we used a significance level of 0.1 for the
McNemar’s test.
During the comparisons of the ensembles, different

combinations of the components were used. The motiva-
tionwas to be able to capture different relations among the
models and test how the ensembles would behave in this
case. For instance, the Meta-Labeler is significantly better
than all other models, so in this case there is an asymme-
try between the components. On the other hand, the two
SVM variants show rather equivalent performance. More-
over, including the LLDA model offers the possibility to
test if the model can contribute in improving performance
even if it is not as successful as the other components, as
it comes from a different theoretical background.
Table 4 shows the micro-F measure for the algo-

rithms on both data sets and for five different combi-
nations of the constituent models. A � symbol near a
value indicates that the highest value (in bold) is sig-
nificantly better than it at a significance level of 0.95.
MULE outperforms the two other ensemble methods
in all component combinations and for both data sets
except for one case. The difference is statistically sig-
nificant compared to the F-optimization method in all
cases, but in none concerning the micro-F optimization
approach. Compared to the component models, MULE
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Table 4 Comparison of the three ensemble methods for both data sets with respect to the micro-F measure

Micro-F measure

Data set MetaLabeler SVMTuned SVMVanilla LLDA Improve micro-F Improve F [13] MULE

A

� � 0.58546 0.58127� 0.58705

� � 0.58601 0.58260� 0.58734

� � 0.55522 0.52144� 0.55675

� � � 0.57246 0.54166� 0.57458

� � � � 0.58695 0.55836� 0.58919

B

� � 0.50136 0.49445� 0.50435

� � 0.50144 0.49329� 0.50522

� � 0.44159 0.42726� 0.44304

� � � 0.46247 0.45685� 0.45868

� � � � 0.50058 0.49227� 0.50353

“Improve micro-F” is the initial version of MULE, without the statistical test. “Improve-F” is the method proposed by [13]. A � symbol suggests that the difference with the
best performing model is statistically significant with a z-test and a significance level of 0.05

is able to improve the micro-F measure in all combi-
nations with respect to the best performing model, the
difference being statistically significant for the two last
combinations (SVMTuned + SVMVanilla + LLDA andMeta-
Labeler+SVMTuned+ SVMVanilla+ LLDA) in data set A. In
data set B, the differences are significant in all combina-
tions except for one for MULE and the improvement is
between 0.9 − 7.8%. From the two other ensemble meth-
ods, “improve-F” is better only in two cases (in data set
B) compared to the component models while “improve
micro-F” does so in three cases for data set A and in all
cases for data set B. Odd though it may seem, “improve
micro-F” and “improve F” do not seem able to benefit
from the fact that the validation set is relatively large in
A (100,000 instances) by demonstrating mostly negative
results.
Similarly, Table 5 shows the results for the macro-F

measure on the same five combinations. In this case the
MULEMacro variant is used, which optimizes the macro-
F measure in an identical approach to the classic MULE
method. Our method outperforms the other ensemble
method in all cases except for two, with the differences
being statistically significant in all cases. With respect to
the best performing constituent model in each combi-
nation, MULE is able to improve the macro-F measure
in three combinations (SVMTuned + SVMVanilla + LLDA,
SVMVanilla+ LLDA and MetaLabeler + LLDA) for data
set A and two combinations in data set B (SVMTuned
+ SVMVanilla + LLDA, SVMVanilla+ LLDA), the differ-
ences being statistically significant in none of the cases.
In the other cases, the ensemble is performing worse than
the best performing model (Meta-Labeler). This behavior
could be due to the fact that, throughout the experiments

we set the α value for the McNemar’s test to 0.1, which
is rather liberal for a statistical test. It becomes clear that
there is a trade-off between the improvement that can
be achieved by combining multiple models and the con-
fidence level that we can have on this improvement. In
other words, choosing a small α value for the statisti-
cal test is expected to lead to more reliable results but a
smaller improvement over the baseline, while in the oppo-
site case, we risk to obtain a large improvement on the
validation set, that will nevertheless not be reliable (i.e. it
will not be necessarily reproducible on a random test set).
By completely omitting the McNemar’s test, we obtain

Table 5 Comparison of the three ensemble methods for both
data sets with respect to the macro-F measure

Macro-F measure

Data set MetaLabeler SVMTuned SVMVanilla LLDA Improve F [13] MULEMacro

A

� � 0.53390� 0.54820

� � 0.53221� 0.54921

� � 0.42563� 0.47918

� � � 0.49437� 0.51099

� � � � 0.52487� 0.54847

B

� � 0.42573� 0.43342

� � 0.42429� 0.43212

� � 0.37556 0.37335

� � � 0.38149 0.38058

� � � � 0.42240� 0.43324
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the extreme case for the aforementioned trade-off (this is
equivalent to having an α value of 1.0).
The “improve-F” method performs worse by improving

over the component baseline only in two cases, none of
which is statistically significant. This is a rather interest-
ing observation as this measure is specifically designed
in order to improve the F-measure locally in every label
which, as pointed out before, is equivalent to optimize the
macro-F measure. These results give strong evidence for
the necessity of a statistical validation of the choices an
ensemble method does.
In order to study more deeply the behavior of the tested

ensemble methods, Table 6 shows the number of labels
that each ensemble assigns to every component model
in the first series of experiments and Table 7 depicts the
average frequency of labels selected by each algorithm.
It is clear that the first two ensemble methods, “improve
micro-F” and “improve-F”, assign a lot more labels than
MULE to those models that perform worse in overall.
MULE on the other hand, secures its choices on the sta-
tistical test and therefore is a lot more conservative. For
instance, in the last combination of models MULE assigns
only five labels to the LLDA algorithm, around two orders
of magnitude less than the other two models.
In the experiments above, it could be argued that the

multi-label ensemblemethodwe propose is not improving
spectacularly the component models performance. This
is generally true, especially for the MULEMacro variant.
Nevertheless, there is some evidence that this behavior
may be connected to the component models themselves
and the differences in performances they have or the the-
oretical background they come from. For instance, the
greatest improvement in terms of the micro-F metric
(∼ 8%) is obtained for data set B when combining the two
worst performing models, LLDA and Vanilla SVM, which
are rather equivalent in terms of their performance and
emerging from different theories. Either way, our goal in
this series of experiments is to show that an ensemble
method can clearly benefit from the use of a statistical test
that validates it, regardless of the size of the validation data
set or the nature of its component models. The fact that
the two other methods, that lack this statistical validation
fail largely to improve over the components, exhibiting a
rather unreliable behavior (e.g. assigning many labels to
worse performingmodels) overall, suggests strongly that a
significance test is actually needed in this case. Finally, the
results for the “improve-F” method indicate that optimiz-
ing locally the F-measure does not necessarily lead to an
improvement over the total performance of the ensemble.

Temporal aspects of the data
When performing a supervised learning task, the goal is
usually to train a model that will fit an underlying (i.e.
hidden) distribution of the data. Crucially, during this

Table 6 Comparison of the three ensemble methods regarding
the number of labels predicted by each model

# of labels predicted from each model

MetaLabeler SVMTuned SVMVanilla LLDA

Data set A

Improve micro-F 10751 15002

Improve F [13] 11256 14497

MULE 25192 561

Improve micro-F 19549 6204

Improve F [13] 15293 10460

MULE 25322 431

Improve micro-F 18862 6891

Improve F [13] 12900 12853

MULE 25702 51

Improve micro-F 8213 17037 503

Improve F [13] 8723 16351 679

MULE 25210 526 17

Improve micro-F 10066 2938 2499 250

Improve F [13] 10887 2815 11782 269

MULE 24814 174 760 5

Data set B

Improve micro-F 4252 12059

Improve F [13] 4699 11612

MULE 16053 258

Improve micro-F 9342 6969

Improve F [13] 10920 5391

MULE 15826 485

Improve micro-F 1500 14811

Improve F [13] 801 15510

MULE 15998 313

Improve micro-F 1804 12774 1733

Improve F [13] 1732 12688 1891

MULE 16121 38 152

Improve micro-F 3817 494 11331 669

Improve F [13] 4198 400 11053 660

MULE 15736 144 117 43

The numbers are given for the micro-F optimization (first series of experiments)

process if the new, unseen data to be predicted follows a
significantly different distribution than the data used for
training, the model’s performance will of course be greatly
compromised. In our case, a number of factors could lead
to an important change in the data distribution along time;
first, the data set expands over a great period (1946–2017)
and thus variations are expected in what concepts actually
“mean” or, in other words, what word tokens the concepts
are related to (e.g. a disease in 1990 and 2017 can be linked
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Table 7 Average frequency of labels for the labelsets selected by
each algorithm

Meta − Labeler 16.98

SVMVanilla 182.87

SVMTuned 208.54

LabeledLDA 129.35

The results shown are for data set A and the combination of all models

to totally different factors). This affects the label - word
distributions and consequently the model’s performance.
Another aspect are trends in science publications. Scien-
tific papers show non-negligible trends for a particular
scientific field or another. In [25] these interesting changes
in trends are studied in the biological field; e.g. in 1991,
14% of the scientific papers indexed in Web of Science
concerned Biochemistry while twenty years later (in 2010)
this percentage has dropped to only 4%. Finally, it should
be noted that NLM makes changes once every year to the
MeSH ontology (i.e. the label set), a valid choice as science
evolves, and the journals encapsulated by NLM change
as well every year. In the 2008 MEDLINE data changes
announcement for example, the NLM reports an addition
of 456 new MeSH terms in the existing vocabulary3.
Bearing in mind the aforementioned factors we per-

formed a short study on the concept drift, designing two
experiments. For all results presented below we used the
Meta-Labeler as a learning model.
First, we trained classifiers with increasing training set

sizes and keeping the same test set. Table 8 shows the
years covered by the aforementioned training sets and
Fig. 4 shows the micro and macro F-measure evolution
as training sets get larger going back in time. It is easily
noticeable that there is no significant gain in perfor-
mance for more than 1,000,000 documents and results
are even getting worse for training sets containing docu-
ments before 2004. The macro F-measure seems to have
a small gain going back in time (papers from 2001), prob-
ably because it favors rare labels more than the micro

Table 8 Performance for training sets going back in time

Size Date Micro-F Macro-F

100,000 December 2012- July 2013 0.5591 0.3616

250,000 January 2012- July 2013 0.5827 0.4567

500,000 August 2010- July 2013 0.5941 0.5130

750,000 January 2009- July 2013 0.5977 0.5358

1,000,000 August 2007- July 2013 0.5993 0.5480

1,500,000 July 2004- July 2013 0.5995 0.5637

2,000,000 August 2001- July 2013 0.5963 0.5652

4,300,000 December 1946 - July 2013 0.58646 0.56014

A fixed test set of 50k abstracts is employed for the experiment, from July 2013 to
January 2014

F-measure and with the increase of the data set size more
positive examples will be observed for them. Neverthe-
less, for papers before 2001 a decrease is apparent in this
measure as well.
The second experiment consisted of training a classi-

fier on 500,000 documents and then splitting the following
1,000,000 documents in 20 equal consecutive data sets
to study how performance is affected as time goes by.
Figure 5 shows the results. We can notice a significant
drop in performance for both measures as test sets move
away from the training set.
The above results, validate the presence of a non-

negligible concept drift within the corpus, even for rela-
tively small periods. Some direct conclusions are that a)
it could be crucial for a learning model’s performance to
choose a training data set as close (chronologically) as
possible to the unseen data and b) in contrast to what usu-
ally is the case in a machine learning scenario, opting for a
larger training data set can lead even to inferior results in
case of the BioASQ corpus (or the PubMed corpus more
generally).

Discussion
Semantic indexing of biomedical articles represents an
important and challenging task, as explained in detail in
“Background” section .We have taken a novel approach by
combining a number of multi-label learning algorithms in
an ensemble method that validates its choices through a
statistical significance test. The results that we presented,
as well as the official results from five BioASQ challenges
(2013–2017) in which we achieved the first place in 2013
and the second place in the following years, show that
our approach can leverage the virtues of the baseline algo-
rithms and improve over them, as well as over similar
methods. This work could be extended to include addi-
tional algorithms and other variants of the multi-label
ensemble, optimizing different measures or employing an
alternative statistical test. Additionally, the concept drift
within BioASQ and PubMed should be investigated in
more depth andmethods should be developed to deal with
it efficiently.

Conclusion
In this work, the different strategies that we used in order
to tackle the large-scale multi-label classification problem
of the BioASQ challenge were presented. Several already
existing supervised learning algorithms were used, both
from a discriminative and probabilistic origin. The main
contribution is a multi-label ensemble that validates its
choices through a statistical test. The ensemble method,
MULE has been compared to two other variants in two
different experimental scenarios and for different com-
ponent model combinations. The results show a strong
advantage of MULE over two other similar methods.
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Fig. 4Micro-F and macro-F measures (left and right figures respectively) against number of documents (in thousands)

Concerning the other contribution of the paper, the short
study on the temporal aspects of the data, the results show
a significant change of the concepts over time that should
be taken into account by researchers trying to perform
semantic indexing of biomedical literature. Some possi-
ble future directions of this work could include the use of
additional algorithms and other variants of the multi-label
ensemble. Finally, we would like to further study the con-
cept drift within BioASQ and PubMed and experiment on
methods to deal with it efficiently.

Endnotes
1 http://ii.nlm.nih.gov/About/index.shtml
2 http://bioasq.org/participate/winners and http://

participants-area.bioasq.org/results/5a/
3 http://www.nlm.nih.gov/pubs/techbull/nd07/nd07_

medline_data_changes2008.html

Appendix: McNemar’s statistical test
The McNemar statistical test provides a way to test dif-
ferences on paired data. It is essentially a paired version
of a Chi-square test. Considering the comparison of two
classifiers A and B, we denote:

• n00 the number of examples correclty classified by
both A and B

• n01 the number of examples correclty classified by A
but not by B

• n10 the number of examples correclty classified by B
but not by A

• n11 the number of examples misclassified by both A
and B

The McNemar’s test is then defined as

χ2
MC = |n01 − n10|2

n01 + n10

Fig. 5Micro-F and macro-F measures (left and right respectively) for 20 equal test sets ranging from 2007–2013

http://ii.nlm.nih.gov/About/index.shtml
http://bioasq.org/participate/winners
http://participants-area.bioasq.org/results/5a/
http://participants-area.bioasq.org/results/5a/
http://www.nlm.nih.gov/pubs/techbull/nd07/nd07_{m}edline_{d}ata_{c}hanges2008.html
http://www.nlm.nih.gov/pubs/techbull/nd07/nd07_{m}edline_{d}ata_{c}hanges2008.html
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If n01+n10 < 20 the statistic is not approximated well by
the chi-squared distribution. In this case the binomial dis-
tribution is used to perform an exact test. Fagerland et al.
[26] have demonstrated in a series of experiments that the
mid-P McNemar test is performing better than its exact-
P counterpart, therefore we chose mid-P for the case of
n01 + n10 < 20:
mid-P= 2

n01∑

i=0

(n01+n10
i

)
0.5i×0.5n−i−0.5

(n01+n10
n01

)
0.5n01×

0.5n10
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