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Abstract

The abundance and unstructured nature of biomedical texts, be it clinical or research content, impose significant
challenges for the effective and efficient use of information and knowledge stored in such texts. Annotation of
biomedical documents with machine intelligible semantics facilitates advanced, semantics-based text management,
curation, indexing, and search. This paper focuses on annotation of biomedical entity mentions with concepts from
relevant biomedical knowledge bases such as UMLS. As a result, the meaning of those mentions is unambiguously and
explicitly defined, and thus made readily available for automated processing. This process is widely known as semantic
annotation, and the tools that perform it are known as semantic annotators.
Over the last dozen years, the biomedical research community has invested significant efforts in the development of
biomedical semantic annotation technology. Aiming to establish grounds for further developments in this area,
we review a selected set of state of the art biomedical semantic annotators, focusing particularly on general purpose
annotators, that is, semantic annotation tools that can be customized to work with texts from any area of biomedicine.
We also examine potential directions for further improvements of today’s annotators which could make them even
more capable of meeting the needs of real-world applications. To motivate and encourage further developments in
this area, along the suggested and/or related directions, we review existing and potential practical applications and
benefits of semantic annotators.

Keywords: Natural language processing (NLP), Biomedical ontologies, Semantic technologies, Biomedical text mining,
Semantic annotation

Background
Over the last few decades, huge volume of digital un-
structured textual content have been generated in bio-
medical research and practice, including a range of
content types such as scientific papers, medical reports,
and physician notes. This has resulted in massive and
continuously growing collections of textual content that
need to be organized, curated and managed in order to
be effectively used for both clinical and research pur-
poses. Clearly, manual curation and management of
such “big” corpora are infeasible, and hence, the biome-
dical community has long been examining and making
use of various kinds of Natural Language Processing
(NLP) methods and techniques to, at least partially, fa-
cilitate their use.

In this paper, we focus on a specific NLP task, namely
the extraction and disambiguation of entities mentioned
in biomedical textual content. Early efforts in biomedical
information extraction were devoted to Named Entity
Recognition (NER), the task of recognizing specific types
of biomedical entities mentioned in text [1]. For in-
stance, in the sentence “The patient was diagnosed with
upper respiratory tract infection”, a NER tool would
recognize that the phrase “respiratory tract infection”
denotes a disease, but would not be able to determine
what particular disease it is. Semantic annotation, the
NLP task of interest to this paper, makes a significant
advance, by not only recognizing the type of an entity,
but also uniquely linking it to its appropriate cor-
responding entry in a well-established knowledge base.
In the given example, a semantic annotator would not
only recognize that the phrase “respiratory tract infec-
tion” represents a disease, but would also identify what
disease it is by connecting the phrase with the concept
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C0035243 denoting ‘Respiratory Tract Infections’ from
the UMLS Metathesaurus (see Table 1). This way, the se-
mantics of biomedical texts is made accessible to soft-
ware programs so that they can facilitate various
laborious and time consuming tasks such as search, clas-
sification, or organization of biomedical content.

While a suite of biomedical semantic annotation tools
is available for practical use, the biomedical community
is yet to heavily engage in and leverage the benefits of
such tools. The goal of this paper is to introduce (i)
some of the benefits and application use cases of bio-
medical semantic annotation technology, (ii) a selection

Table 1 An overview of ontologies, thesauri and knowledge bases used by biomedical semantic annotation tools discussed in the paper

BioPortal (http://bioportal.bioontology.org/) A major repository of biomedical ontologies, currently hosting over 500
ontologies, controlled vocabularies and terminologies. Its Resource Index
provides an ontology-based unified index of and access to multiple
heterogeneous biomedical resources (annotated with BioPortal ontologies).

DBpedia (http://wiki.dbpedia.org/) “Wikipedia for machines”, that is, a huge KB developed through a community
effort of extracting information from Wikipedia and representing it in a
structured format suitable for automated machine processing. It is the central
hub of the Linked Open Data Cloud.

LLD - Linked Life Data (https://datahub.io/dataset/linked-life-data/) LLD platform provides access to a huge KB that includes and semantically
interlinks knowledge about genes, proteins, molecular interactions, pathways,
drugs, diseases, clinical trials and other related types of biomedical entities. It
is part of the Linked Open Data Cloud (http://lod-cloud.net/)

NCBI Biosystems Database (https://www.ncbi.nlm.nih.gov/biosystems) Repository providing integrated access to structured data and knowledge
about biological systems and their components: genes, proteins, and small
molecules.
The NCBI Taxonomy contains the names and phylogenetic lineages of all the
organisms that have molecular data in the NCBI databases.

OBO - Open Biomedical Ontologies (http://www.obofoundry.org/) Community of ontology developers devoted to the development of a family
of interoperable and scientifically accurate biomedical ontologies. Well known
OBO ontologies include:
• Chemical Entities of Biological Interest (ChEBI) - focused on molecular entities,
molecular parts, atoms, subatomic particles, and biochemical roles and
applications

• Gene Ontology (GO) - aims to standardize the representation of gene and
gene product attributes; consists of 3 distinct sub-ontologies: Molecular
Function, Biological Process, and Cellular Component

• Protein Ontology (PRO) - provides a structural representation of protein-
related entities

SNOMED CT (http://www.ihtsdo.org/snomed-ct) SNOMED CT is considered the world’s most comprehensive and precise,
multilingual health terminology. It is used for the electronic exchange of
clinical health information. It consists of concepts, concept descriptions
(i.e., several terms that are used to refer to the concept), and concept
relationships.

UMLS (Unified Medical Language System) Metathesaurus (https://
www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/)

The most well-known and widely used knowledge source in the biomedical
domain. It assigns a unique identifier (CUI) to each medical concept and
connects concepts to each other thus forming a graph-like structure; each
concept (i.e. CUI) is associated with its ‘semantic type’, a broad category such
as Gene, Disease or Syndrome; each concept is also associated with several
terms used to refer to that concept in biomedical texts; these terms are pulled
from nearly 200 biomedical vocabularies. Some well-known vocabularies that
have been used by biomedical semantic annotators include:
• Human Phenotype Ontology (HPO) contains terms that describe phenotypic
abnormalities encountered in human disease, and is used for large-scale
computational analysis of the human phenome.

• Logical Observation Identifiers Names and Codes (LOINC) provides standardized
vocabulary for laboratory and other clinical observations, and is used for
exchange and/or integration of clinical results from several disparate sources.

• Medical Subject Headings (MeSH) is a controlled vocabulary thesaurus created
and maintained by U.S. National Library of Medicine (NLM), and has been
primarily used for indexing articles in PubMed

• RxNorm provides normalized names for clinical drugs and links between many
of the drug vocabularies commonly used in pharmacy management and drug
interaction software.

UniProtKb/Swiss-Prot (http://www.uniprot.org/uniprot/) Part of UniProtKB, a comprehensive protein sequence KB, which contains
manually annotated entries. The entries are curated by biologists, regularly
updated and cross-linked to numerous external databases, with the ultimate
objective of providing all known relevant information about a particular protein.
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of the publicly available general purpose semantic an-
notation tools for the biomedical domain, i.e., semantic
annotators that are not specialized for a particular bio-
medical entity type, but can detect and normalize en-
tities of multiple types in one pass, and (iii) potential
areas where the work in the biomedical semantic anno-
tation domain can be strengthened or expanded. While
the overview of application cases and state of the art
tools can be of relevance to practitioners in the biome-
dical domain, with the summary of potential areas for
further research, we are also targeting researchers who
are familiar with NLP, semantic technologies, and se-
mantic annotation in general, but have not been dealing
with the biomedical domain, as well as those who are
well aware of biomedical semantic technologies, but
have not been working on semantic annotation. By pro-
viding researchers with an insight into the current state
of the art in biomedical semantic annotation in terms of
the approaches and tools, as well as the research chal-
lenges, we aim to offer them a basis for engagement with
semantic annotation technology within the biomedical
domain and thus support even further developments in
the field.
The following section provides several examples of

practical benefits achievable through semantic anno-
tation of biomedical texts (see also Table 2). The paper
then examines the available tool support, focusing
primarily on general purpose biomedical annotators
(Tables 3 and 4). Still, considering the relevance and
large presence of entity-specific biomedical annotators,
i.e., tools developed specifically for semantic annotation
of a particular type of biomedical entities such as genes
or chemicals, we provide an overview of these tools, as
well. While examining the available tool support, we also

consider biomedical knowledge resources required for
semantic annotation (Table 1), as well as resources used
for evaluating the tools’ performance (Table 5). This is
followed by a discussion of the challenges that are pre-
venting current semantic annotators from achieving
their full potential.

Benefits and use cases
Better use of electronic medical record (EMR) in clinical
practice
Electronic medical records (EMRs) are considered valu-
able source of clinical information, ensuring effective
and reliable information exchange among physicians and
departments participating in patient care, and support-
ing clinical decision making. However, EMRs largely
consist of unstructured, free-form textual content that
require manual curation and analysis performed by do-
main experts. A recent study examining the allocation of
physician time in ambulatory practice [2] confirmed the
findings of previous similar studies (e.g. [3]), namely that
physicians spend almost twice as much time on the
management of EMRs and related desk work than on
direct clinical face time with patients. Considering the
inefficiency of manual curation of EMRs, automation of
the process is required if the potentials of EMRs are to
be exploited in clinical practice [4].
Semantic annotators provide the grounds for the re-

quired automation by extracting clinical terms from
free-form text of EMRs, and disambiguating the ex-
tracted terms with concepts of a structured vocabulary,
such as UMLS Metathesaurus. The identified concepts
can be subsequently used to search a repository of bio-
medical literature or evidence-based clinical resources,

Table 2 Example application cases of biomedical semantic annotation tools

Application Case (AC) The role of semantic annotation tool in the AC Biomedical resources relevant for the AC
(or representative examples, if multiple)

Semantic search of biomedical
tools and services [6]

Sematic search of biomedical tools and services enabled
by semantic annotation of users’ (free-form) queries with
concepts from UMLS Metathesaurus

Catalogs of and social spaces created around
biomedical tools and services, e.g.:
- myExperiment (http://www.myexperiment.org/)
- BioCatalogue (https://www.biocatalogue.org/)

Semantic search of domain
specific scientific literature [74]

Semantic annotation of PubMed entries with ontological
concepts related to genes and proteins

Ontologies used for the annotation of biomedical
references (PubMed entries):
- Gene Ontology - GO (http://geneontology.org/)
- Universal Protein Resource - UniProt
(http://www.uniprot.org/uniprot/)

Improved clinical decision
making [75]

Extraction of key clinical concepts (UMLS-based) required
for supporting clinical decision making; the concepts are
extracted from biomedical literature and clinical text sources

Sources of biomedical texts used to support decision
making:
- PubMed Central (PMC) Open Access Subset
(https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/)

- MEDLINE abstracts
(https://www.nlm.nih.gov/bsd/pmresources.html)

Unambiguous description of
abbreviations [10]

Extended (long) forms of abbreviations are matched against
both UMLS and DBpedia concepts, thus not only
disambiguating the long forms, but also connecting UMLS
and DBpedia KBs

Allie - a search service for abbreviations and their long
forms (http://allie.dbcls.jp/)
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in order to enrich EMRs with information pertinent to
the patient’s state. The extracted terms can also be used
for making summaries of clinical notes and articles [5].

Improved search and retrieval of resources for biomedical
research
Publicly available biomedical data, tools, services, models
and computational workflows continuously increase in
number, size and complexity. While this ever-growing
abundance of valuable resources opens up unprecedented
opportunities for biomedical research, it is also making it
ever more challenging for researchers to efficiently dis-
cover and use the resources required for accomplishing
their tasks [6]. Hence, automation of the search and dis-
covery processes has turned into a necessity.
Clinical information stored in EMRs is also important

in medical research, e.g., for comparative effectiveness
research, and epidemiological and clinical research stud-
ies [7]. Considering the unstructured nature of EMRs

and their abundance, automated document classification
and information extraction methods are essential for as-
suring the efficiency and effectiveness of search and re-
trieval of relevant information from large EMR
collections. Semantic annotation techniques can play a
significant role in this regard. For instance, they can be
used to extract domain-specific concepts that could
serve as discriminative features for building automated
classifiers of clinical documents [8]. Based on such clas-
sification, clinical documents can be searched more ef-
fectively [7]. Furthermore, semantic concepts extracted
from biomedical literature can also be used for semantic
indexing and retrieval of biomedical publications [9] or
biomedical tools and services [6]. In particular, biomed-
ical Information Retrieval systems use semantic annota-
tors to expand the users’ queries with concepts and
terms from vocabularies/ontologies (mapping the query
text to the appropriate ontology concepts, and then
expanding the query with the terms associated with the
mapped concepts), as well as to classify the retrieved

Table 3 General purpose biomedical semantic annotation tools (Part I)

cTAKES [4] NOBLE Coder [20] MetaMap [31, 32] NCBO annotator [14]

Modularity/configuration
options

Modular text
processing pipeline

Vocabulary (terminology);
Term matching options
and strategies

Text processing pipeline;
Vocabulary (terminology);
Term matching options and
strategies

Vocabulary (terminology);
Term matching options

Disambiguation of
terms

Enabled through
integration of the
YTEX component [8]

Instead of through WSD,
it uses heuristics to choose
one concept among
candidate concepts for the
same piece of input text

Supported; based on:
- removal of word senses
based on a manual study
of UMLS ambiguity

- a WSD algorithm that
chooses a concept with
the most likely semantic
type for a given context

Not supported

Vocabulary
(terminology)

Subset of UMLS,
namely SNOMED CT
and RxNORM

Several pre-built vocabularies,
based on subsets of UMLS
(e.g. SNOMED CT, MeSH,
RxNORM)

UMLS Metathesaurus UMLS Metathesaurus and
BioPortal ontologies
(over 330 ontologies)

Speed* Suitable for real-time
processing

Suitable for real-time
processing

Better for off-line batch
processing

Suitable for real-time
processing

Implementation form Software (Java) library;
Stand-alone application

Software (Java) library;
Stand-alone application

Software library;
originally version in Prolog;
Java implementation, known
as MMTX, is also available

RESTful Web service

Availability open source;
available under
Apache License, v.2.0

open-source;
available under GNU Lesser
General Public License v3

open source;
terms and conditions at:
https://metamap.nlm.nih.gov/
MMTnCs.shtml

closed source, but freely
available

Specific features Better performance on
clinical texts than on
biomedical scientific
literature (its NLP
components are trained
on clinical texts)

Offers user interface for
creating custom terminologies
(to be used for annotation) by
selecting and merging elements
from several different thesauri/
ontologies

Primarily developed for
annotation of biomedical
literature (MEDLINE/PubMed
citations); performs better on
this kind of text than clinical
notes

It uses MGrep term-to-
concept matching tool to
get primary set of
annotations; these are then
extended using different
forms of ontology-based
semantic matching

URL http://ctakes.apache.org/ http://noble-tools.dbmi.pitt.edu/ https://metamap.nlm.nih.gov/ https://bioportal.bioontology.
org/annotator

*Note that speed estimates are based on the experimental results reported in the literature; those experiments were done with corpora of up to 200 documents
(paper abstracts or clinical notes); the given estimates might not hold for significantly larger corpora
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documents based on their content or the occurrence of
specific topics in the documents [1].

Disambiguation of abbreviations
Polysemous abbreviations are frequently present in bio-
medical literature and clinical texts making it difficult for
researchers and clinical practitioners to understand texts
that are outside the strict area of their expertise [10]. Ac-
cording to Chang et al. [11], in biomedical journal articles,
abbreviations with six or less characters have on average
4.61 possible meanings. For instance, “ANA” has numer-
ous possible meanings among which the most frequent
ones are “antinuclear antibodies”, “American Nurses As-
sociation”, “Alko Non-Alcohol”, and “anandamide”.
Semantic annotators combined with general-purpose,

machine-readable knowledge bases, such as DBpedia
(Table 1), can be used to disambiguate polysemous ab-
breviations and unambiguously describe abbreviated
terms based on the context in which they appear [10].

This can help researchers and practitioners better under-
stand the meaning of such abbreviations.

Seamless integration of data from disparate sources
Biomedical data are stored and maintained in disparate re-
positories. For instance, according to the 2016 Molecular
Biology Database Update, there are 1685 biological data-
bases [12]. This complicates the tasks of data manage-
ment, retrieval and exploitation since one needs to, first,
locate the repositories that contain the required data; then,
to familiarize oneself with the meaning of the attributes
and data types used in each repository; and, finally, learn
how to access and query the repositories [13].
For this reason, data integration can be highly useful

for medical researchers. Jonquet et al. [14] have nicely il-
lustrated the need for seamless integration of data from
various medical sources: “a researcher studying the al-
lelic variations in a gene would want to know all the
pathways that are affected by that gene, the drugs whose

Table 4 General purpose biomedical semantic annotation tools (Part II)

BeCAS [36] Whatizit [38] ConceptMapper [21] Neji [40]

Modularity/configuration
options

Semantic types (i.e. types
of entities to annotate)

pre-built pipelines for several
biomedical types (see Specific
features)

Text processing pipeline;
Term matching options and
strategies

Modular text processing pipeline

Disambiguation of terms No information available Not supported Not supported Instead of through WSD, it uses a
set of heuristics rules to identify
and remove annotations of lower
importance

Vocabulary (terminology) Custom built vocabulary
by using concepts from
multiple sources, such as
UMLS, NCBI BioSystems,
ChEBI, and the Gene
Ontology.

The use of the vocabulary
depends on the type of entity
a pipeline is specialized for
(e.g. NCBI KB for species, or
Gene Ontology for genes)

General purpose dictionary
lookup tool, not tied to any
vocabulary

Not tied to any particular
vocabulary

Speeda Suitable for real-time
processing

Suitable for real-time
processing

Suitable for real-time
processing

Suitable for real-time processing

Implementation form Software (Python) library;
RESTful Web service;
Javascript widget

SOAP Web service Software (Java) library; part
of the UIMA NLP framework
[28]

RESTful Web service

Availability open source;
available under
Attribution-Non
Commercial 3.0 Unported
license

closed source, but
freely available

open source;
available under Apache
License, v.2.0

open source;
available under Attribution-
NonCommercial 3.0 Unported
license

Specific features Primarily aimed for
annotation of biomedical
research papers; focused
on annotation of several
(11) types of biomedical
entities, including species,
microRNAs, enzymes,
chemicals, drugs, diseases,
etc.

Offers several pre-built
pipelines for specific entity
types; e.g. whatizitGO
identifies proteins based on
the Gene Ontology (GO),
while whatizitChemical
annotates chemical entities
based on ChEBI

Not specifically developed
for the biomedical domain,
but is a general purpose
dictionary lookup tool

Includes modules for both ML and
dictionary-based annotation; can
automatically combine
annotations generated by different
modules

URL http://bioinformatics.ua.pt/
becas/

http://www.ebi.ac.uk/webser
vices/whatizit

https://uima.apache.org/sand
box.html#concept.mapper.
annotator

https://github.com/BMDSoftware/
neji

aNote that speed estimates are based on the experimental results reported in the literature; those experiments were done with corpora of up to 200
documents (paper abstracts or clinical notes); the given estimates might not hold for significantly larger corpora
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Table 5 Corpora used for evaluation of biomedical semantic annotators. The table includes corpora that were used in the reported
use cases (“Benefits and Use Cases” section, Table 2), and/or benchmarking of the discussed tools ("Summary of benchmarking
results" and "Entity-specific biomedical annotation tools" sections)
AnEM - Anatomical Entity Mention [76] The corpus consists of 500 documents selected randomly from citation abstracts and full-text

biomedical research papers (from PubMed); it is manually annotated (over 3000 annotations)
with anatomical entities. The corpus is available under the open CC-BY-SA license.
URL: http://www.nactem.ac.uk/anatomy/

BC4GO [77] The corpus, developed for the BioCreative IV shared task, consists of 200 articles (over 5000
text passages) from Model Organism Databases; these articles were manually annotated with
more than 1356 distinct GO terms. In addition to the core elements of GO annotations - a
gene or gene product, a GO term, and a GO evidence code - the corpus also includes the
GO evidence text.
URL: http://www.biocreative.org/tasks/biocreative-iv/track-4-GO/

CALBC - Collaborative Annotation of a Large Biomedical
Corpus [78]

A very large, publicly shared corpus of Medline abstracts automatically annotated with
biomedical entities; the small corpus comprises ~175 K abstracts, whereas the big one
consists of more than 714 K abstracts; since annotations were not made by humans but
several annotation systems (and then aggregated), it is referred to as “silver standard”.
URL: http://www.ebi.ac.uk/Rebholz-srv/CALBC/corpora/resources.html

Chemical Disease Relation (CDR) [79] The corpus, developed for the BioCreative V shared task, consists of 1500 PubMed articles
with 4409 annotated chemicals, 5818 diseases, and 3116 chemical-disease interactions. MeSH
is used as the controlled vocabulary.
As BC4GO, this corpus is available exclusively for scientific, educational, and/or
non-commercial purposes.
URL: http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/

CRAFT - the Colorado Richly Annotated Full Text
corpus [80]

Publicly available, human annotated (gold standard) corpus of full-text biomedical journal
articles; it consists of 67 document and 87,674 human annotations
URL: http://bionlp-corpora.sourceforge.net/CRAFT/

GENETAG [81] Publicly available corpus of 20 K Medline sentences manually annotated with gene/protein
names. Part of the corpus (15 K sentences) was used for the BioCreative I challenge (Gene
Mention Identification task), and the rest (5 K sentences) was used as test data for
BioCreative II competition (Gene Mention Tagging Task).
URL: https://github.com/openbiocorpora/genetag
An updated version of this corpus, named GENETAG-05, is part of a broader MedTag
annotated corpus that was used in the BioCreative I challenge; it is available at:
ftp://ftp.ncbi.nlm.nih.gov/pub/lsmith/MedTag/

GENIA [82] Open access manually annotated corpora consisting of 2000 Medline abstracts (400,000+
words) with almost 100,000 annotations for biological terms. Terms are annotated with
concepts from the GENIA ontology, a formal model of cell signaling reactions in humans
(the ontology is provided together with the corpus).
Available from the following repository: http://corpora.informatik.hu-berlin.de/

2010 i2b2/VA corpus [83] The corpus consists of manually annotated de-identified clinical records (discharge summaries
and progress reports) from three medical centers. It was originally created for the 2010 i2b2/VA
NLP challenge to support 3 kinds of tasks: extraction of medical concepts from patient reports;
assigning assertion types to medical problem concepts; and determining the type of relation
between medical problems, tests, and treatments. The corpus consists of 394 annotated
training reports, 477 annotated test reports, and 877 unannotated reports.
The corpus is made available to the research community from https://i2b2.org/NLP/DataSets
under data use agreements.

JNLPBA [84] A publicly available manually annotated corpus originally created for the Bio-Entity Recognition
Task at BioNLP/NLPBA 2004. The training set consists of 2000 Medline abstracts extracted from
the GENIA Version 3.02 corpus; the data set is annotated with five entity types: Protein, DNA,
RNA, Cell_line, and Cell_type. The test set consists of 404 annotated Medline abstracts, also
from the GENIA project; a half of this data set is from the same domain as that of the training
data, whereas the other half is from the super domain of blood cells and transcription factors.
URL: http://www.geniaproject.org/shared-tasks/bionlp-jnlpba-shared-task-2004

NCBI Disease corpus [85] Publicly available, manually annotated corpus of 793 PubMed abstracts; 6892 disease mentions
are annotated with concepts from Medical Subject Headings (MeSH) and Online Mendelian
Inheritance in Man (OMIM) vocabularies.
URL: https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/

Mantra Gold Standard Corpus [73] Publicly available multilingual gold-standard corpus for biomedical concept recognition. It
includes text from different types of parallel corpora (Medline abstract titles, drug labels,
biomedical patent claims) in English, French, German, Spanish, and Dutch. It contains 5530
annotations based on a subset of UMLS that covers a wide range of semantic groups.
URL: http://biosemantics.org/index.php/resources/mantra-gsc

ShARe - Shared Annotated Resources [86] Gold standard corpus of de-identified clinical free-text notes; it includes 199 documents and
4211 human annotations; originally prepared for the ShARe/CLEF eHealth Evaluation Lab
focused on NLP and information retrieval tasks for clinical care.
URL: https://sites.google.com/site/shareclefehealth/data
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effects could be modulated by the allelic variations in
the gene, and any disease that could be caused by the
gene, and the clinical trials that have studied drugs or
diseases related to that gene. The knowledge needed to
address such questions is available in public biomedical
resources; the problem is finding [and connecting] that
information.”
Ontologies that are used to semantically annotate

items in biomedical repositories allow for weaving se-
mantic links both within and across repositories thus
establishing a semantic network of biomedical items
[13]. If both ontologies and resources they connect
(through semantic annotations) are in public domain,
the resulting network takes the form of Linked Open
Data, as has already been shown in the Linked Life
Data initiative (Table 1).
Table 2 provides a more structured view of some ap-

plication cases for biomedical semantic annotation
technology.

Annotation process, tools and resources
Biomedical texts have several characteristics that make
them particularly challenging not only for semantic an-
notation, but for any NLP task [6]. Some of these char-
acteristics include:

i) Clinical text produced by practitioners often do
not fully adhere to correct grammar, syntactic or
spelling rules, as the following triage note
illustrates: “SORE THROAT pt c/o sore throat x 1
week N pt states took antibiotic x 5 days after
initiation of sore throat and sx resolved and now
back after completed antibiotics N pt tolerating po
fluids yet c/o pain on swallowing”;

ii) Biomedical terms are often polysemous and thus
prone to ambiguity; for example, an analysis of over
409 K Medline abstracts revealed that 11.7% of the
phrases were ambiguous relative to the UMLS
Metathesaurus [15].

iii)These textual corpora frequently use abbreviations
and acronyms that tend to be polysemous (see
Disambiguation of abbreviations section). In
addition, clinical texts often contain non-standard
shorthand phrases, laboratory results and notes on
patients’ vital signs, which are often filled with
periods and thus can complicate typically
straightforward text processing tasks such as
sentence splitting [16].

iv) Biomedical texts about or related to gene and
protein mentions are particularly challenging for
semantic annotation. This is because every protein
(e.g., SBP2), has an associated gene, often with the
same name [17]. Furthermore, multiple genes share

symbols and names (e.g. ‘CAT’ is the name of
different genes in several species, namely in cow,
chicken, fly, human, mouse, pig, deer and sheep [18]).

To address these and other challenges of unstruc-
tured biomedical text, state-of-the-art semantic annota-
tors often rely on a combined use of text processing,
large-scale knowledge bases, semantic similarity mea-
sures and machine learning techniques [19]. In particu-
lar, in the biomedical domain, semantic annotation is
typically based on one of the following two general ap-
proaches [20]: term-to-concept matching approach and
approach based on machine learning (ML) methods.
The term-to-concept matching approach, also re-

ferred to as dictionary lookup, is based on matching
specific segments of text to a structured vocabulary/
dictionary or knowledge base (e.g. UMLS or some of
the OBO ontologies, Table 1). The drawback of some of
the annotators that implement this approach, e.g.,
NCBO Annotator [14] and ConceptMapper [21], is the
lack of disambiguation ability, meaning that the terms
recognized in texts are connected with several possible
meanings, i.e., dictionary entries/concepts, instead of
being associated with a single meaning that is most
appropriate for the given context. For example, in the
absence of disambiguation, in the sentence “In patients
with DMD, the infiltration of skeletal muscle by im-
mune cells aggravates disease”, the term DMD would
be associated with several possible meanings, including
Duchenne muscular dystrophy, dystrophin, and DMD
gene, whereas only the first one is correct for this given
context.
The approaches based on ML methods are often

found in annotators developed for specific, well-defined
application areas such as annotating drugs in medical
discharge summaries [22] or recognizing gene mentions
in biomedical papers [23]. These annotators unambigu-
ously detect domain-specific concepts in text, and are
typically highly performant on the specific tasks they
were developed for. However, as they are often based
on supervised ML methods, their development, namely,
training of a ML model, requires large expert annotated
corpora, which are very expensive to develop. Another
drawback of such annotators is that they are only able
to recognize specific categories of entities they are
trained for, such as genes or diseases, and cannot be ap-
plied to recognize concepts from broader vocabularies
[24]. The high costs associated with these approaches
has led to a shift towards unsupervised or semi-
supervised ML methods that require few or no manu-
ally labelled data [25]. Furthermore, several recent ap-
proaches have considered the idea of distant
supervision to generate ‘noisy’ labeled data for entity
recognition [26] and entity typing [27].
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Semantic biomedical annotation tools
A large number of semantic annotation tools have been
developed for the biomedical domain [20, 24]. Many of
them have resulted from research projects. Our focus in
this paper is on a subset of these tools that have the fol-
lowing characteristics:

� Semantic annotators that have been applied in
practice or at least in research projects other than
those they originated from. In other words, we are
not considering research prototypes, but semantic
annotators that have evolved from a research
prototype and have demonstrated their robustness
for practical use.

� Semantic annotation tools that are available either
as software libraries, web services or web applications.

� General-purpose biomedical annotators, i.e., those
semantic annotators that are not tied to any
particular biomedical task or entity type, but can
be configured to work with texts from different
biomedical subdomains. This capacity originates
from the fact that they are either fully or at least
partially grounded in the term-to-concept
annotation approach, which is flexible with
respect to the annotation terminology.

Tables 3 and 4 gives an overview of the semantic an-
notation tools that fulfilled the above given criteria and
thus were selected for inclusion in our study.1 The table
compares the selected tools with respect to several
characteristic, including those related to the underlying
annotation method (configurability and disambigu-
ation), the vocabulary (terminology) the tool relies on,
the tool’s speed,2 its implementation aspects, and avail-
ability. The table also points to some of the tools’ spe-
cific features, which are further examined in the tool
descriptions given below.
As shown in Tables 3 and 4 and further discussed

below, all the tools are configurable in several and often
different ways, making it very difficult, if possible at all,
to give a fair general comparison of the tools. In other
words, we believe that the only way to properly com-
pare these (and similar) annotation tools is in the con-
text of a specific application case, where each tool
would be configured based on the application require-
ments. We expand on this in “Application-specific tool
benchmarking” section where we discuss the need for a
benchmarking toolkit that would facilitate this kind of
application-specific tool benchmarking. Still, to offer
some general insight into the annotation capabilities of
the selected tools, in “Summary of benchmarking re-
sults” section we briefly report on the benchmarking
studies that included several of the examined semantic
annotators. In the following, we introduce the selected

semantic annotation tools and discuss their significant
features. The tools are presented in the order that cor-
responds to their order in Tables 3 and 4.
Clinical Text Analysis and Knowledge Extraction

System (cTAKES) [4] is a well-known toolkit for seman-
tic annotation of biomedical documents in general, and
clinical research texts in particular. It is built on top of
two well-established and widely used open-source NLP
frameworks: Unstructured Information Management
Architecture - UIMA [28] and OpenNLP [29]. cTAKES
is developed in a modular manner, as a pipeline consist-
ing of several text processing components that rely on
either rule-based or ML techniques. Recognition of con-
cept mentions and annotation with the corresponding
concept identifiers is done by a component that imple-
ments a dictionary look-up algorithm. For building the
dictionary, cTAKES relies on UMLS. The concept recog-
nition component does not resolve ambiguities that re-
sult from identifying multiple concepts for the same text
span. Disambiguation is enabled through the integration
of YTEX [7] in the cTAKES framework and its pipelines.
YTEX is a knowledge-based word sense disambiguation
component that relies on the knowledge encoded in
UMLS. In particular, YTEX implements an adaptation of
the Lesk method [30], which scores candidate concepts
for an ambiguous term by summing the semantic re-
latedness between each candidate concept and the con-
cepts in its context window.
NOBLE Coder [20] is another open-source, general-

purpose biomedical annotator. It can be configured to
work with arbitrary vocabularies. Besides enabling users to
annotate documents with existing vocabularies (termi-
nologies), NOBLE Coder also provides them with a
Graphical User Interface where they can create custom
terminologies by selecting one or more branches from a
set of existing vocabularies, and/or filtering vocabularies
by semantic types. It also allows for the dynamic change
of the terminology (adding new concepts, removing exist-
ing ones) while processing. The flexibility of this annotator
also lies in the variety of supported concept matching
strategies, aimed at meeting the needs of different kinds of
NLP tasks. For example, the ‘best match’ strategy aims at
high precision, and thus returns few candidates (at most);
as such, it is suitable for concept coding and information
extraction NLP tasks. The supported matching strategies
allow for annotation of terms consisting of single words,
multiple words, and abbreviations. Thanks to its greedy
algorithm, NOBLE Coder can efficiently process large
textual corpora. To disambiguate terms with more than
one associated concept, this tool relies on a set of simple
heuristic rules such as giving preference to candidates that
map to a larger number of source vocabularies, or can-
didates where the term is matched in its ‘original’ form,
i.e., without being stemmed or lemmatized.
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MetaMap [31] is probably the most well-known and
most widely used biomedical annotator. It was devel-
oped by the U.S. National Library of Medicine. It maps
biomedical entity mentions of the input text to the cor-
responding concepts in the UMLS Metathesaurus. Each
annotation includes a score that reflects how well the
concept matches the biomedical term/phrase from the
input text. The annotation process can be adapted in
several ways by configuring various elements of the an-
notation process such as the vocabulary used, the syn-
tactic filters applied to the input text, and the matching
between text and concepts, to name a few. Besides the
flexibility enabled by these configuration options, an-
other strong aspect of MetaMap is its thorough and lin-
guistically principled approach to the lexical and
syntactic analyses of input text. However, this thorough-
ness is also the cause of one of MetaMap’s main weak-
nesses, namely its long processing time, and thus its
inadequacy for annotating large corpora. Another weak-
ness lies in its disambiguation approach which is not
able to effectively deal with ambiguous terms [32]. In
particular, for disambiguation of terms, MetaMap com-
bines two approaches: i) removal of word senses deemed
problematic for (literature-centric) NLP usage, based on
a manual study of UMLS ambiguity, and ii) a word sense
disambiguation algorithm that chooses a concept with
the most likely semantic type for a given context [33].
NCBO annotator [14] is provided by the U.S. Na-

tional Center for Biomedical Ontology (NCBO) as a
freely available Web service. It is based on a two-stage
annotation process. The first stage relies on a concept
recognition tool that uses a dictionary to identify men-
tions of biomedical concepts in the input text. In par-
ticular, NCBO annotator makes use of the MGrep tool
[34], which was chosen over MetaMap due to its better
performance along several examined dimensions [35].
The dictionary for this annotation stage is built by pull-
ing concept names and descriptions from biomedical on-
tologies and/or thesauri relevant for the domain of the
corpus to be annotated (typically UMLS Metathesaurus
and BioPortal ontologies, Table 1). In the second stage,
the initial set of concepts, referred to as direct annota-
tions, is extended using the structure and semantics of
relevant biomedical ontologies. For instance, semantic
distance measures are used to extend the direct annota-
tions with semantically related concepts; the computa-
tion of semantic distance is configurable, and can be
based, for instance, on the distance between the con-
cepts in the ontology graph. Semantic relations between
concepts from different ontologies, established through
ontology mappings, serve as another source for finding
semantically related concepts that can be used to extend
the scope of direct annotations. The NCBO annotator is
unique in its approach to associate concept mentions

with multiple concepts, instead of finding one concept
that would be the best match for the given context.
BioMedical Concept Annotation System (BeCAS) [36]

is a Web-based tool for semantic annotation of biomedical
texts, primarily biomedical research papers. Besides being
available through a Web-based user interface, it can be
programmatically accessed through a Web-based (REST-
ful) Application Programing Interface (API), and a widget,
easily embeddable in Web pages. Like majority of the
aforementioned annotation tools, BeCAS is an open-
source modular system, comprising of several modules for
text preprocessing including, e.g., sentence splitting, toke-
nization, lemmatization, among others, as well as modules
for concept detection and abbreviation resolution. Most of
the concept detection modules in BeCAS apply a term-to-
concept matching approach to identify and annotate men-
tions of several types of biomedical entities, including
species, enzymes, chemicals, drugs, diseases, etc. This
approach relies on a custom dictionary, i.e., a database of
concepts and associated terms, compiled by pulling
concepts from various meta-thesauri and ontologies such
as UMLS Metathesaurus, NCBI BioSystems database,
ChEBI, and the Gene Ontology (Table 1). For the identifi-
cation of gene and protein mentions and their disambigu-
ation with appropriate concepts, BeCAS makes use of
Gimli, an open source tool that implements Conditional
Random Fields (CRF) for named entity recognition in bio-
medical texts [37] (see Entity-specific biomedical annota-
tion tools section).
Whatizit is a freely available Web service for annota-

tion of biomedical texts with concepts from several on-
tologies and structured vocabularies [38]. Like previously
described tools, it is also developed in a modular way so
that different components can be combined into custom
annotation pipelines, depending on the main theme of
the text being processed. For example, whatizitGO is a
pipeline for identifying Gene Ontology (GO) concepts in
the input text, while whatizitOrganism identifies species
defined in the NCBI taxonomy. In Whatizit, concept
names are transformed into regular expressions to ac-
count for morphological variability in the input texts
[39]. Such regular expressions are then compiled into
Finite State Automata, which assure quick processing re-
gardless of the length of the text and the size of the used
vocabulary; therefore, processing time is linear with
respect to the length of the text. Whatizit also offers
pipelines that allow for the recognition of biomedical en-
tities of a specific type based on two or more knowledge
sources. For instance, whatizitSwissprotGo is the pipeline
for the annotation of protein mentions based on the
UniProtKb/Swiss-Prot knowledge base (Table 1) and the
Gene Ontology. Finally, there are more complex pipe-
lines that combine simpler pipelines to enable detection
and annotation of two or more types of biomedical
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entities. For instance, whatizitEbiMed incorporates wha-
tizitSwissprotGo, whatizitDrug and whatizitOrganism to
allow for the detection and annotation of proteins, drugs
and species.
ConceptMapper [21] is a general purpose dictionary

lookup tool, developed as a component of the open-
source UIMA NLP framework. Unlike the other anno-
tators that have been examined so far, ConceptMapper
is the only one that was not specifically developed for
the biomedical domain, but is rather generic and
configurable-enough to be applicable to any domain. Its
flexibility primarily stems from the variety of options
for configuring its algorithm for mapping dictionary en-
tries onto input text. For instance, it can be configured
to detect entity mentions even when they appear in the
text as disjoint multi-word phrases, e.g., in the text
“intraductal and invasive mammary carcinoma”, it
would recognize “intraductal carcinoma” and “invasive
carcinoma” as diagnosis. It can also deal with a variety
of ways a concept can be mentioned in the input text,
e.g., synonyms and different word forms. This is en-
abled by a dictionary that for each entry stores several
possible variants, and connects them to the same con-
cept. For instance, the entry with the main (canonical)
form “spine” would also include variants such as “spinal”,
“spinal column”, “vertebral column”, “backbone”, and
others, and associates them all with the semantic type
AnatomicalSite. Even though ConceptMapper is not ori-
ginally targeted at the biomedical domain, if properly con-
figured, it can even outperform state-of-the-art biomedical
annotators [24]. However, the task of determining the
optimal configuration and developing a custom dictionary
might be overwhelming for regular users; we return to this
topic in “Adaptation to new document type(s) and/or ter-
minologies specific to particular biomedical subdomain”
section.
Neji [40] is yet another open source and freely avail-

able software framework for annotation of biomedical
texts. Its high modularity is achieved by having each text
processing task wrapped in an independent module.
These modules can be combined in different ways to
form different kinds of text processing and annotation
pipelines, depending on the requirements of specific an-
notation tasks. The distinct feature of Neji is its capacity
for multi-threaded data processing, which assures high
speed of the annotation process. Neji makes use of exist-
ing software tools and libraries for text processing, e.g.,
tokenization, sentence splitting, lemmatization, with
some adjustments to meet the lexical specificities of bio-
medical texts. For concept recognition, Neji supports
both dictionary-lookup matching and ML-based ap-
proaches by customizing existing libraries that imple-
ment these approaches. For instance, like BeCAS, it uses
the CRF tagger implemented in Gimli. Hence, various

CRF models trained for Gimli can be used in Neji, each
model targeting a specific type of biomedical entities
such as genes or proteins. Since Gimli does not perform
disambiguation, Neji has introduced a simple algorithm
to associate each recognized entity mention with a
unique biomedical concept.

Summary of benchmarking results
Tseytlin et al. [20] have conducted a comprehensive em-
pirical study that includes five state-of-the-art semantic
annotators that were compared based on the execution
time and standard annotation performance metrics (pre-
cision, recall, F1-measure). Four of the benchmarked
tools, namely cTAKES, MetaMap,3 ConceptMapper, and
NOBLE Coder have been directly covered in the previ-
ous section, whereas the fifth tool - MGrep - was con-
sidered as a service used by NCBO Annotator in the
first stage of its annotation process. The benchmarking
was done on two publicly available, human-annotated
corpora (see Table 5): one (ShARe) consisting of anno-
tated clinical notes, the other (CRAFT) of annotated
biomedical literature. Documents from the former cor-
pus (ShARe) were annotated using the SNOMED-CT
vocabulary (Table 1), while for the annotation of the lat-
ter corpus (CRAFT), a subset of OBO ontologies were
used as recommended by the corpus developers.
The study showed that all the tools performed better

on the clinical notes corpus (ShARe) than on the corpus
of biomedical literature (CRAFT). The results demon-
strated that on the ShARe corpus, NOBLE Coder,
cTAKES, MGrep, and MetaMap were of comparable
performance, while only ConceptMapper somewhat
lagged behind. On the CRAFT corpus, NOBLE Coder,
cTAKES, MetaMap, and ConceptMapper were quite
aligned, whereas MGrep performed significantly worse,
due to very low recall. In terms of speed, on both cor-
pora, ConceptMapper proved to be the fastest one. It
was followed by cTAKES, NOBLE Coder, and MGrep,
respectively, whose speed was more-or-less comparable.
However, MetaMap was by far the slowest (about 30
times slower than the best performing tool).
Another comprehensive empirical study that compared

several semantic annotators with respect to their speed
and the quality of the produced annotations is reported in
[40]. The study included five contemporary annotators -
Whatizit, MetaMap, Neji, Cocoa, and BANNER, which
were compared on three manually annotated corpora of
biomedical publications, namely NCBI Disease corpus,
CRAFT, and AnEM (see Table 5). Evaluation on the
CRAFT corpus considered 6 different biomedical entity
types (e.g. species, cell, cellular component, gene and pro-
teins), while on the other two corpora only the most gen-
eric type was considered, i.e., anatomical entity for AnEM,
and disorder for NCBI. Two of the benchmarked
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annotators are either no longer available (Cocoa) or no
longer maintained (BANNER4), whereas the other three
were covered in the previous section. Benchmarking was
done for each considered type of biomedical concept sep-
arately, and also using different configurations of the ex-
amined tools (e.g., five different term-to-concept matching
techniques were examined).
The study showed that the tools’ performance varied

considerably between various configuration options, in
particular, various strategies for recognizing entity men-
tions in the input text. This variability in the perform-
ance associated with different configurations was also
confirmed by Funk et al. [24]; we return to this topic in
“Application-specific tool benchmarking” section.
Overall, Neji had the best results, especially on the

CRAFT corpus, with significant improvements over the
other tools on most of the examined concept types.
Whatizit proved to have the most consistent perform-
ance across different configuration options, with an aver-
age variation of 4% in F1-measure. In terms of speed,
Neji significantly outpaced the other tools.

Entity-specific biomedical annotation tools
While the primary focus of this paper is on biomedical
semantic annotation, and in particular general purpose
biomedical semantic annotators, the work in the closely
related area of biomedical Named Entity Recognition
(NER) also deserves to be mentioned given that it has
been a precursor to the biomedical semantic annotation
technology. Early work in biomedical NER were mainly
focused on developing dictionary-based, rule-based, or
heuristics-based techniques for identifying entity men-
tions within chemical, biological, and medical corpora.
Some of the earlier works include the work by Fukuda et
al. [41] that used rules for extracting protein names,
MedLEE [42] that employed contextual rules to perform
mapping to an encoding table extracted from UMLS,
and EDGAR [43] that extracted drugs and genes related
to cancer. However, more advanced techniques based on
machine learning (ML) models, more specifically Hidden
Markov Models (HMM), Conditional Random Fields
(CRF), and Support Vector Machines (SVM), have be-
come more prominent in the recent years.
ABNER [44] was one of the earlier works that bene-

fited from CRF models and was trained for five specific
entity types, namely Protein, DNA, RNA, Cell Line, and
Cell Type. ABNER extracted features based on regular
expressions and n-grams to train a CRF model, and did
not introduce any syntactic or semantic features in this
process. Gimli [37] is a more recent NER toolkit that is
also based on CRF models. The main advantage of Gimli
is its introduction of a wide range of features, namely:
orthographic, linguistic, morphological, external, and
local context features. The orthographic features include

capitalized mentions, counting, and symbol type fea-
tures, while the linguistic features consist of word lem-
mas, POS tags, and products of dependency parsing.
The morphological features cover n-grams and word
shapes. The local and external features constitute gene
and protein names as well as trigger words. The wide
spectrum of features enables the CRF model to be highly
accurate on different benchmark datasets including
GENETAG and JNLPBA (see Table 5).
The work by Leaman et al. [45], known as DNorm, is

a method specifically built for disease mention detection
in biomedical text. DNorm is based on BANNER [46]
for disease mention detection and subsequently uses a
pairwise learning to rank framework to perform
normalization. Similar in objective to DNorm but with
focus on genes, SR4GN [47] is a rule-based system spe-
cifically built to link species with corresponding gene
mentions. This tool has shown better performance com-
pared to LINNAEUS [48], which is a tool for the same
purpose built using a dictionary-based approach for
mention detection and a set of heuristics for ambiguity
resolution. The authors of SR4GN subsequently pro-
posed GNormPlus that focuses on the identification of
gene names and their identifiers. The distinguishing as-
pect of this tool is that it is able to distinguish gene, gene
family, and protein domains by training a supervised
CRF model on annotated gene corpora.
There have also been attempts at combining the bene-

fits of rule-based methods and ML techniques. For in-
stance, OrganismTagger [49] uses a set of grammar rules
written in the JAPE language, a set of heuristics, as well
as an SVM classifier to identify and normalize organism
mentions in text including genus, species, and strains.
In a later publication [50], the developers of DNorm

discussed the benefits of developing an entity type ag-
nostic NER framework that could be retrained easily
given sufficiently annotated training data and a related
lexicon. Based on this objective, the TaggerOne tool was
developed as an entity type independent tool that em-
ploys a semi-Markov structured linear classifier and has
shown favorable performance on both NCBI Disease
corpus as well as the chemical BioCreative 5 CDR cor-
pus (see Table 5). In contrast to tools such as TaggerOne
that rely only on a single ML model, there has also been
work in the literature that rely on ensembles of models.
For instance, tmChem, an ensemble built on BANNER
and tmVar [51], focuses on the recognition of seven dif-
ferent types of chemical mentions in biomedical litera-
ture, namely Abbreviation, Family, Formula, Identifier,
Multiple, Systematic and Trivial.
While the above approaches benefit from annotated

corpora and some form of (semi) supervised training,
such methods are task and entity dependent, and train-
ing them on new entity types is time consuming and
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resource intensive [52]. For this reason, unsupervised NER
methods have started to emerge. For instance, the method
proposed by Zhang and Elhadad [52] uses a noun chunker
to detect possible entity candidates and subsequently ca-
tegorizes the entity candidates based on distributional se-
mantics. This method showed reasonable performance on
the i2b2 and GENIA corpora (see Table 5).
It is worth mentioning that given the large amount of

biomedical documents and texts that need to be proc-
essed by NER tools, several researchers have looked at
optimizing the parallel capabilities of these tools. The
work by Tang et al. [53] and Li et al. [54] are two notable
recent work in this respect. These two works contend
that given the sequential nature of CRF models, their
parallelization is not trivial. On this basis, they show
how the MapReduce framework can be used to effi-
ciently train CRFs for biomedical NER.
It is also important to note that research and develop-

ment of biomedical named entity recognition and
normalization tools have been fostered through different
initiatives of the biomedical research community. A not-
able one is the BioCreative initiative (http://www.bio
creative.org/tasks/), a series of yearly challenges focused
on text mining and information retrieval tasks relevant
to the life science domain, including recognition of che-
micals, genes, drugs, and diseases in biomedical texts.
For instance, one of the tasks at the BioCreative IV chal-
lenge [55] was to automatically identify terms in a given
article that refer to the concepts from the Gene Ontol-
ogy (GO; see Table 1), that is, to semantically annotate
articles with GO concepts. Benchmarking of the pro-
posed solutions was done on the BC4GO corpus (see
Table 5). The best performing team on this task applied
a supervised classification method that relies on a know-
ledge base built by leveraging a large database of (over
100 K) MEDLINE abstracts annotated with GO terms
[56]. In particular, the tool developed by this team,
known as the GOCat tool, relies on similarities between
an input text and already curated instances in the tool’s
knowledge base, to annotate the input with the most
prevalent GO terms among the instances from the
knowledge base. The BioCreative V challenge hosted a
Disease Named Entity Recognition (DNER) task [57],
where the participating systems were given PubMed ti-
tles and abstracts and asked to return normalized dis-
ease concept identifiers. The benchmarking of the
submitted solutions was done on the Chemical-Disease
Relation (CRD) corpus (see Table 5). The best system
(based on a CRF model with post-processing) achieved
an F-score of 86.46%, a result that approaches the hu-
man inter-annotator agreement (0.8875). A large major-
ity of the proposed solutions relied on ML (only 3 out of
16 were based exclusively on a dictionary-lookup
method); one third of these solutions (4) used ML only,

while others (8) exploited a combination of ML with dic-
tionaries and/or pattern matching.
For a more comprehensive list of biomedical NER

tools, in-depth discussion on the techniques, features
and corpora used, the entity types that are covered and a
comparative performance analysis, we refer the inter-
ested reader to the work by Campos et al. [58].

Challenges
Even though significant efforts have been devoted to the
development of sophisticated semantic annotation tools,
there are still challenges that need to be resolved if these
tools are to reach their full potential. This section points
to some of those challenges, as well as to some of the
existing research work that offers potential solutions.

The lack of sufficient context for understanding entity
mentions
An often cited source of difficulty associated with the
recognition of entities in biomedical texts is the lack of
sufficient context for interpreting the entity mentions
[59]. For instance, Tseytlin et al. [20] reported that the
largest proportion of annotation errors made by their
NOBLE Coder annotator was due to the missing or in-
complete context or background knowledge.
The collective annotation approach was proposed as a

way of dealing with this challenge [59]. It relies on the
global topical coherence of entities mentioned in a piece
of text and is done by disambiguating a set of related
mentions simultaneously. The basic idea is that if mul-
tiple entity mentions co-occur in the same sentence or
paragraph, they can be considered semantically related.
In particular, the approach proposed by Zheng et al. [59]
consists of creating a document graph (Gd) with entity
mentions recognized in a document as nodes, while
edges are established between those pairs of nodes (en-
tity mentions) that co-occur in the same sentence or
paragraph of the document. Each entity mention is then
connected with one or more entity candidates from the
knowledge base (KB) based on the name variants associ-
ated with entities in the KB. Finally, for each entity men-
tion (m) - entity candidate (c) pair (m,c), a score is
computed based on i) the general popularity of the can-
didate entity c in the KB, that is, its level of connected-
ness to other entities in the KB (non-collective score),
and ii) level of connectedness of candidate c only with
candidate concepts of entity mentions that are con-
nected to mention m in the Gd graph. The candidate en-
tity c from the (m,c) pair with the highest score is
selected as the appropriate entity for the given entity
mention m. A similar approach was proposed and
proved effective for general purpose semantic annotators
in work such as [60].
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Scaling to very large document sets
One of the weaknesses of today’s biomedical semantic
annotators lies in their speed, that is, the time required
for completing the annotation task on very large corpora
(with tens and hundreds of millions of documents) [20].
Note that speed estimates given in Tables 3 and 4 (quali-
fying almost all examined tools as suitable for real-time
processing) are based on the experimental results re-
ported in the literature, where experiments were done
with small corpora (up to 200 documents).
Divita et al. [61] aimed at using semantic annotation

to improve information extraction and retrieval of clin-
ical notes from the Veterans Informatics and Computing
Infrastructure (VINCI) hosting huge and continuously
growing amounts of medical notes. However, they found
today’s annotators unapt for that task, as, based on the
Divita et al., even when running on several multi-core
machines, today’s annotators would need multiple years
to index VINCI notes with semantic concepts. As a solu-
tion to this challenge, they proposed Sophia, an UMLS-
based annotation tool, that deals with high throughput
by replicating either certain components of the annota-
tion pipeline or the entire pipeline [61]. Sophia is built
from the components of the v3NLP framework [62], a
suite of middleware text-processing components aimed
for building various kinds of NLP applications. In par-
ticular, Sophia makes use of the v3NLP components for
dealing with the idiosyncrasies of clinical texts, as well
as the framework’s scaling-up and scaling-out function-
alities for efficiently handling huge quantities of texts.

Adaptation to new document type(s) and/or
terminologies specific to particular biomedical subdomain
Another challenge originates in the variety of biomedical
texts and differences among different kinds of text, par-
ticularly differences between biomedical literature and
clinical text [20, 25]. According to Garla and Brandt [7],
“clinical text is often composed of semi-grammatical
‘telegraphic’ phrases, uses a narrower vocabulary than
biomedical literature, and is rife with domain-specific ac-
ronyms.” In addition, common to both clinical texts and
scientific papers is the presence of local dialects, such as
specific jargon developed within a medical center, or
particular, idiosyncratic protein nomenclatures created
within research laboratories [63]. Due to these issues, an
annotation tool developed and/or configured for a par-
ticular type of medical texts or even one application case,
tied to a particular medical institution/center, cannot be
directly ported to some other text type and/or application
case without, often significant, drop in performance.
A potential solution to this diversity in text types and

terminologies is the use of flexible general-purpose an-
notation tools that can be configured to work with dif-
ferent text types and vocabularies [19]. In fact, Funk

et al. [24] have demonstrated that if properly tuned, a
generic annotation tool can offer better performance
than tools designed specifically for particular biomedical
task or domain. The key is in the modularity and flexi-
bility of a tool so that one can precisely control how
terms in the text are to be matched against the available
terminologies.
While the majority of the annotators listed in Tables 3

and 4 were developed to be modular and flexible, their
configuration is a complex task for users lacking expert-
ise in NLP and not knowing the intricacies of the tool’s
internal functioning. The latter is especially relevant as
not all parameters equally affect the performance; also,
the interaction of the parameters need to be considered.
Besides configuring the tool’s annotation method, e.g.,

kinds of text processing and term matching options,
adaptation to a different biomedical (sub)domain also re-
quires either development or, at least, customization of
the dictionary that the tool uses to recognize concept
mentions in the input text. While there are numerous
ontologies, knowledge bases, thesauri, and similar kinds
of biomedical resources that can be used for dictionary
development, that task is often overly complex for regular
users. This is because each tool has its own idiosyncratic
structure and format for vocabulary representation and
storage, designed to optimally match the tool’s annotation
algorithm. To alleviate the task of dictionary develop-
ment/customization, Tseytlin et al. [20] have developed an
interactive terminology building tool, as a component of
the NOBLE Coder annotator. The tool allows users to im-
port existing terminologies (of various kinds), and then
customize them by selecting only certain segments
(branches) of the imported terminologies, and/or to filter
them by semantic types. A tool of this type would be a
useful complement to any semantic annotator that relies
on a dictionary-lookup approach.

Application-specific tool benchmarking
As argued in “Semantic Biomedical Annotation Tools”
section, benchmarking of semantic annotators requires
that each annotator is configured based on the specific-
ities of the benchmarking task, so that it demonstrates
its optimal performance on the task. The effect of con-
figuration on the annotators’ performance was well dem-
onstrated by Funk et al. [24] in their comprehensive
empirical study that included MetaMap, ConceptMap-
per, and NCBO Annotator (see Semantic Biomedical
Annotation Tools section). The researchers examined
over 1000 parameter combinations in the context of the
CRAFT evaluation corpus (Table 5) and 8 different ter-
minologies (ontologies). They found that default param-
eter values often do not lead to the best performance,
and that by appropriately setting parameters, F-measure
can be significantly increased (even by 0.4 points). This
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suggests that if it is to be used for making a decision on
the annotator to adopt in a particular application case, the
benchmarking studies should not be based on the tools’
default configuration, but should include tools customized
to the specific features of the application case.
Another requirement for application-specific bench-

mark study is the selection of appropriate evaluation
corpora and terminology source for building or custom-
izing the tools’ dictionaries. While numerous annotated
corpora have been developed (Table 5), including both
manually annotated gold standard corpora and corpora
annotated in an automated or semi-automated way
known as silver standards, the information about these
resources are dispersed on the web and it takes time and
effort to collect information about the available evalu-
ation corpora and their features.
Considering the above stated difficulties associated

with the setup of application-specific benchmarking
studies, we point to the need for a benchmarking ‘tool-
kit’ that would facilitate the task of tool benchmarking
in the context of a specific application case. An import-
ant component of such a toolkit would be a searchable
registry of existing annotated corpora. For each corpus,
the registry should include basic qualitative and quantita-
tive information, e.g., the sources and types of documents
that it includes, and the vocabularies or ontologies that
were used for annotating the corpus, among others. In
addition, the registry of annotated corpora would need to
contain guidelines for how each corpus should be used,
references to the studies where the corpus was previously
used, and any additional information that might be of rele-
vance for effective use of the given corpus.
Another important component of the benchmarking

toolkit would be guidelines and/or tools for optimal con-
figuration of annotation tools. The starting point for
such guidelines could be the set of suggestions that Funk
et al. [24] derived from their study, related to the selection
of optimal parameter values based on the terminology
(ontology) to be used for annotation. Tools enabling semi-
automated or automated parameter tuning would greatly
facilitate this task. Algorithmic procedures and tools de-
veloped for general purpose semantic annotators, like the
one proposed in [64], could be adapted to tune parameters
of biomedical annotators.
With such a benchmarking toolkit, it would be also

possible to evaluate the performance of general purpose
biomedical annotators on the tasks of recognizing and
normalizing specific types of biomedical entities, e.g.,
chemicals, genes, drugs, or diseases. This would allow
for evidence-based recommendation of appropriate se-
mantic annotators for entity-specific tasks. While some
initial work in this direction has been done by Campos
et al. [40] (see Summary of benchmarking results sec-
tion), only a small number of the current tools have been

examined (some of the tools evaluated in their study are
no longer available), and they were not tuned to the entity
specific annotation tasks. Henceforth, new studies with
current general purpose annotators, customized for the
entity-specific task at hand, are needed in order to obtain
conclusive evidence on the performance of the current
tools for specific biomedical entity types.

Semantic annotation in languages other than English
Large majority of tools, ontologies, and corpora developed
for biomedical semantic annotation, and biomedical NLP
in general, are for the English language. Semantic annota-
tors discussed in the previous sections fall in this category
of “English-only” tools. However, the development of NLP
resources and tools for semantic annotation in languages
other than English has started receiving increasing atten-
tion both in research and practice.
The CLEF (Conference and Labs of the Evaluation

Forum) conference series have been hosting eHealth
Labs where one of the tasks has been entity recognition
and normalization, i.e., semantic annotation, in lan-
guages other than English, primarily French. Systems de-
veloped to face this challenge varied greatly [65, 66]. The
team with the best performance at the latest eHealth
Lab, held in conjunction with CLEF 2016, proposed a
system that could be qualified as a general purpose se-
mantic annotator [67]. In particular, to perform the en-
tity recognition task, this system used Peregrine [68], a
dictionary-based concept recognition tool, in conjunc-
tion with a dictionary consisting of French vocabularies
from UMLS supplemented with automatically translated
English UMLS terms. Several post-processing steps were
implemented to reduce the number of false positives,
such as filtering based on precision scores derived from
the training data. Entity normalization relied on the
<entity_mention, semantic_group, CUI5> combinations
extracted from the training set.
Another important initiative was the CLEF-ER chal-

lenge that took place in 2013 as part of the Mantra pro-
ject aimed at providing multilingual documents and
terminologies for the biomedical domain [69]. For this
challenge, Medline and biomedical patent documents
were released in five languages: English, German, French,
Spanish, and Dutch. Mappings to English documents were
provided for all documents that were in a language other
than English, though the mappings were not available be-
tween all pairs of languages, e.g., between Spanish and
German. The organizers also released the CLEF-ER ter-
minology, a multilingual vocabulary with term synonyms
in the above mentioned five languages.6 The challenge
received several submissions dealing with various chal-
lenges of multilingual biomedical NLP, including semantic
annotation, e.g. [70, 71], and the creation of multilingual
corpora, e.g., [72, 73]. An interesting approach to
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multilingual semantic annotation was proposed by Attardi
et al. [71]. The method starts from the English language
Silver Standard Corpus (SSC) provided by the CLEF-ER
organizers [72], which is first translated into a target lan-
guage corpus, and then entity annotations are ‘transferred’
to it. The translation is done using an open-source toolkit
for statistical phrase-based machine translation. The word
alignment information produced by the translation tool is
used to determine the correspondence between entities in
the source and the target language sentences. The result-
ing annotated corpus is referred to as the Bronze Standard
Corpus (BSC). In addition, a dictionary of entities is also
created, which associate each <entity_mention, seman-
tic_group > pair with all the corresponding CUIs that ap-
peared in the SSC. The BSC is used to train a Named
Entity detection model, which is aimed at associating en-
tity mentions with their semantic groups. This model is
then used for tagging entity mentions in the target lan-
guage sentences with the proper semantic group. Finally,
after entity mentions have been assigned to their semantic
group, each mention is linked to corresponding CUIs by
looking up CUIs associated with the <entity_mention,
semantic_group > pairs in the previously built dictionary.

Conclusions
In this paper we have analyzed the current state of the art
in the domain of general purpose biomedical semantic an-
notators, and pointed to some of the areas where further
research and development is needed to improve the per-
formance of the current solutions and make them robust
to the requirements of real-world biomedical applications.
In conclusion, we can say that the majority of the analyzed
tools proved to be highly modular and configurable, thus
fulfilling the promise of general purpose biomedical anno-
tators as annotators adaptable to different areas of bio-
medicine. In addition, the majority of the examined tools
are made publicly available as open-source software libra-
ries, thus bootstrapping further developments in biomed-
ical semantic annotation. As areas that require further
research and development, we have identified: i) finding
new, more effective ways of dealing with the often terse
context of biomedical entity mentions, especially in clin-
ical texts; ii) improving the scalability of annotators so that
they can efficiently process biomedical corpora with tens
and hundreds of millions of documents; iii) development
of auxiliary tools that would facilitate the task of customiz-
ing an annotator to the requirements of a particular anno-
tation task, iv) development of a toolkit for benchmarking
semantic annotators in the context of a specific applica-
tion case, and thus enabling users to make well-informed
decisions regarding the annotator to use in their particular
application setting, and vi) continuing and intensifying re-
search efforts aimed at multilingual biomedical semantic
annotation.

We have also pointed to some of the potential benefits
and application cases of biomedical semantic annotation
technology in order to demonstrate and exemplify the
opportunities that this technology can bring about, and
thus encourage the research community to put efforts in
overcoming the identified challenges and bring the tools
to their full potential. We believe that there is a tremen-
dous potential in using biomedical semantic annotation
technology for processing, analyzing and structuring un-
structured textual biomedical content both in the form
of clinical and research material, and hope that this re-
view paper provides the means to encourage the com-
munity to further investigate and adopt this technology.

Endnotes
1At the time of writing this manuscript, the given list

of tools could be considered exhaustive with respect to
the given selection criteria, i.e., we included all the tools
that met the given set of criteria and were reported in
the literature. However, considering the pace of new de-
velopments, it is reasonable to expect new tools with the
given characteristics soon to emerge.

2Speed is characterized only from the perspective of the
tool’s usability for real-time text annotation; we do not re-
port exact operation time since it can vary considerably
depending on the tool’s configuration, the characteristics
of the corpora, the machine the tool is running on.

3The study used MMTX (https://mmtx.nlm.nih.gov/),
Java implementation of MetaMap, which produces only
slightly different results than MetaMap [20] due to
differences in tokenization and lexicalization procedures.

4Source code is available from http://banner.sourcefor-
ge.net/ but the last update was in year 2011.

5CUI stands for Concept Unique Identifier, that is, a
unique identifier of a concept in a knowledge base, such
as UMLS Metathesaurus.

6This terminology can be accessed from the project
output page of the Mantra project website: https://sites.
google.com/site/mantraeu/project-output
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