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Abstract

Background: Regional and epidemiological cancer registries are important for cancer research and the quality
management of cancer treatment. Many technological solutions are available to collect and analyse data for cancer
registries nowadays. However, the lack of a well-defined common semantic model is a problem when user-defined
analyses and data linking to external resources are required. The objectives of this study are: (1) design of a semantic
model for local cancer registries; (2) development of a semantically-enabled cancer registry based on this model; and
(3) semantic exploitation of the cancer registry for analysing and visualising disease courses.

Results: Our proposal is based on our previous results and experience working with semantic technologies. Data
stored in a cancer registry database were transformed into RDF employing a process driven by OWL ontologies. The
semantic representation of the data was then processed to extract semantic patient profiles, which were exploited by
means of SPARQL queries to identify groups of similar patients and to analyse the disease timelines of patients.
Based on the requirements analysis, we have produced a draft of an ontology that models the semantics of a local
cancer registry in a pragmatic extensible way. We have implemented a Semantic Web platform that allows
transforming and storing data from cancer registries in RDF. This platform also permits users to formulate incremental
user-defined queries through a graphical user interface. The query results can be displayed in several customisable
ways. The complex disease timelines of individual patients can be clearly represented. Different events, e.g. different
therapies and disease courses, are presented according to their temporal and causal relations.

Conclusion: The presented platform is an example of the parallel development of ontologies and applications that
take advantage of semantic web technologies in the medical field. The semantic structure of the representation
renders it easy to analyse key figures of the patients and their evolution at different granularity levels.
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Introduction
Cancer registries are an important part of the health
information systems in local and regional health orga-
nizations. Regional and epidemiological cancer registries
are the foundation for cancer research and the qual-
ity management of cancer treatment. In most devel-
oped countries, the operation and the sampling of data
in cancer registries are statutory. Cancer registries are
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complex structures for the documentation and analysis
of data from patients diagnosed with cancer [1, 2]. Dif-
ferent types of cancer registries collect patient data from
institutions (institutional), regions (regional) or complete
larger areas (epidemiological). Whereas epidemiological
registries provide mainly population-based information
onmorbidity and mortality, institutional and regional reg-
istries can provide fine-grained information on treatment
and conditional survival.
The information of regional cancer registries serves dif-

ferent requirements such as the quality control of patient
care, the comparison of patient-related outcome param-
eters and research support. Institutional and regional
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registries are also the main data source for epidemiolog-
ical cancer registries. Regional cancer registries collect
information about diagnosis, therapies and course of the
disease [3], the most important being the histopathology
of the primary tumor, including tumor staging and grad-
ing. The long-term follow-up of the patients’ vital status
is one of the resource-intensive tasks of tumor registries
providing the basis for survival analysis.
Different software cancer registries solutions are cur-

rently available, such as METRIQ1, OncoLog Registry2 or
CNEXT3. The standardisation of the cancer registry soft-
ware is difficult because of a large set of rapidly changing
legal and scientific requirements. Most of these software
solutions suffer from two main limitations. The interop-
erability with other health applications such as Electronic
Medical Records (EMRs) is limited, which is a typical
problem of clinical information systems [4]. The hetero-
geneity of the underlying data models is a consequence of
the difference between data models in current cancer reg-
istry software [5, 6]. This imposes severe limitations on
research and on the progress of cancer studies when clini-
cal research activities need to integrate data from different
cancer registries of several regions.
There have been proposals to overcome the afore men-

tioned problems. In [7] the authors use the Unified Mod-
elling Language for modeling cancer registry processes
in a hospital. In [8] the authors propose a set of indica-
tors to evaluate specific quality measures in cancer care,
and [9] attempts to optimise cancer registries by means of
knowledge-based systems for monitoring patient records.
Unfortunately, these approaches do not guarantee the
generation of standard models and do not provide sat-
isfactory solutions to scenarios which require customis-
able, comparative analyses and data linking to external
resources [5].
On the technical side, the Semantic Web stack can

be employed to provide information with given well-
defined meaning, better enabling computers and people
to work in cooperation [10]. Ontologies [11] constitute the
standard knowledge representation mechanism for the
SemanticWeb, in which languages such as theWebOntol-
ogy Language (OWL) enable a formal representation of
the domain of interest. Important international initiatives
[12, 13] strive to ensure that the Semantic Web becomes
a fundamental system to achieve consistent and mean-
ingful representation, access, interpretation and exchange
of clinical data. These semantic web technologies have
already been used to represent cancer diseases, e.g. in [14],
an ontology models clinic-genomic cancer trials. Ontolo-
gies were also proposed to represent certain types of
cancer disease [15, 16].
The main objective of this study is the development of

a Semantic Web platform that facilitates the analysis and
visualisation of data from cancer registries including (1)

the representation of the disease course of a patient, (2)
the representation of the aggregated disease courses of a
group of patients, and (3) the definition of customisable
dashboards for patient selection and visualisation of the
data. The use of simulated data demonstrates the viability
of incorporating a local cancer registry into this model. A
comparative performance analysis of relational databases
and semantic repositories demonstrates excellent perfor-
mance measures for the semantic repository.

Background
Standards and classification systems in cancer registries
Most information contained in cancer registries is derived
from primary care interactions. For the purpose of struc-
tured secondary documentation, tumor documentaries
carefully reprocess primary documentation. In many
countries, a standardised common dataset has been devel-
oped to better support exhaustive data exchange with
the epidemiological cancer registries, proposing the clas-
sification of diagnostic and treatment information with
clinical coding systems.
The most important clinical classification system

applied in cancer registries is the International Classifica-
tion of Diseases version 10 (ICD-10) [17]. This classifica-
tion system is divided in chapters, with blocks of diseases.
For example, chapter II includes the classification for neo-
plasms between the blocks C00 and D48. These blocks are
subdivided in hierarchies that further specify the diagno-
sis. The ICD-O is a domain-specific extension of ICD for
cancer diseases. ICD-O is a dual classification allowing the
coding of topography (tumor site) and tumor morphol-
ogy. SNOMED CT [18] has adopted ICD-O codes for the
classification of tumor morphology.
Several staging systems for cancer have evolved over

time and continue to evolve with scientific progress. The
most important classification system is the Classification
of Malignant Tumours (TNM) [19], which is related to
the description of the anatomical extent of the disease.
This system is under constant development by the Union
for International Cancer Control and the American Joint
Committee on Cancer. The TNM staging is based on the
size or the extent of the primary tumor, the metastases in
regional lymph nodes, and the presence of metastasis or
secondary tumors formed by the spread of cancer cells to
other parts of the body.
Clinical procedures are also encoded with coding sys-

tems such as the ICD10-PCS (Procedure Coding System)
[20] denoting aspects such as the clinical classification of
the procedure, the surgical section or the body system.

Visualisation of clinical records
From the emergence of the electronic medical record
(EMR), the amount of data has increased exponentially
[21, 22]. The main objective of the EMR is representing
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the clinical characteristics of a patient from several per-
spectives. For a variety of reasons [23] this objective has
not yet been achieved.
Visualisation methods are one way of facilitating the

representation and flexible exploitation of EMR data.
According to [24] there are two types of visualisation of
EMR data:

• Multimedia visualisation includes video, audio,
graphical plots, rich text, hyperlinks and other
multimedia contents [25, 26].

• Temporal visualisation depicts clinical timelines of
the health state of the patient [27, 28]. Some of these
representations are able to generate a prospective of
the future clinical characteristics of the patient using
data mining techniques over all the EMR [29, 30].

TheTimeLine project [24] combines the two approaches
with four key aspects of the user interface: demographics
and encounter information, medical problem list, graph-
ical timelines and the data viewer that allows the naviga-
tion over all data of the patient as bone scan, laboratory
data, etc. The main advantage of this project is that the
clinician can visualise all patient data without switching
between various information systems.

Semantic exploitation of data
Semantic representation
The methods for the transformation and semantic repre-
sentation of information follow similar approaches. They
can be classified in (1) those which generate a represen-
tation of the datasets in semantic formats being the result
of the application of mappings between the entry data
source and the ontology that provides the meaning for
the content; and (2) those which permit ontology-based
data access using data in traditional formats but querying
with semantic web query languages. Next, we describe the
most popular approaches and tools from both categories:

• D2RQ (Accessing Relational Databases as Virtual
RDF Graphs) allows to query data stored in
relational databases using SPARQL on virtual RDF
graphs [31]. This tool is totally automatic.

• Triplify allows to publish [32] the content of
relational databases as Linked Data [33] based on a
partially automatic transformation process.

• Linked Data Views (Virtuoso). OpenLink Virtuoso
[34] is a database management system that handles
several persistence models (relational, XML,
object-relational, virtual and RDF). Persistence
models stored in Virtuoso can be queried with
SPARQL based on the automatic representation as
Linked Data Views [35].

• XS2OWL (Representation of XML Schemas in
OWL syntax). XML schemas can be transformed

into OWL [36]. XML databases can be automatically
transformed and queried with SPARQL.

• RDB2OWL (A Database-to-Ontology Mapping
Language and Tool). Approach to transform the
data stored in relational databases into RDF or OWL
[37]. The user manually defines mappings between
the entries and the outputs. The transforming of
large ontologies can be tedious.

• Karma. It links a source model to ontologies to
generate a semantic representation of the data source
[38]. This process is partially automatic.

• Populous. Assistant for building ontologies [39], the
process being guided by patterns. Populous is able to
import CSV data.

• SWIT (Semantic Web Integration Tool). Semantic
transformation engine capable of generating RDF and
OWL repositories from both relational and XML
databases [40]. Besides transforming the data, SWIT
prevents the generation of logically inconsistent data
with the support of DL reasoners. The transformation
method has three main steps: (1) definition of the
mapping rules between the fields of the database and
the ontology; (2) generation of the OWL data; and (3)
importing the OWL data into the semantic data store.

Most approaches are based on the mappings between
the relational and semantic primitives of the correspond-
ingmodels languages. Performing only a syntactical trans-
formation, the meaning of the content is not really
exploited. In this work we use the SWIT transformation
approach, which preserves the meaning of the content
based on the specification of mappings between the enti-
ties of the source relational schema and the entities of the
target domain ontology.

Semantic querying
The amount of RDF data, and the development of applica-
tions that use semantic web technologies for storing, pub-
lishing and querying data has increased constantly in the
last decade [41]. Semantic endpoints in which the users
can exploit the data without any knowledge of SPARQL
have been developed. For example, Natural Language Pro-
cessing has been used to develop a question answering
system [42]. In other works, the authors use parametrised
queries to answer questions based on a template [43]. In
faceted search over RDF repositories, the user can refine
the filters over the results of each SPARQL query [41].
In the biomedical field, the use of semantic querying is

limited to the generation of semantic searchers or dash-
boards. BioDash is an example of semantic dashboard that
exploits heterogeneous data sources for drug discovery
[44]. Chem2Bio2RDF provides dashboards automatically
collecting associations within the systems’ chemical biol-
ogy space [45]. In this work, our goal is to go beyond the
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state of the art by allowing users to dynamically define
their semantic dashboards.

Methods
Ontology construction
Best practices in ontology engineering recommend to
reuse existing content and to create modular ontologies
[46]. These recommendations are implemented reusing
concepts from different ontologies so that the resulting
ontology infrastructure is likely to be a networked ontol-
ogy. TheOBOFoundry has also developed a series of prin-
ciples for ontology construction which propose principles
for modularity, orthogonality and reusability [47].
The method for constructing the domain ontology used

in this work consisted in identifying the main entities that
should be represented, searching BioPortal for existing
ontologies containing classes representing these entities,
selecting the most appropriate ones (by our subjective
criteria), and extending them when necessary. The final
ontology has been implemented using Protégé4 in OWL-
DL, which is the OWL subset based on Description
Logics.

Data generation and representation
In this work, we have generated a simulated cancer reg-
istry dataset using the statistical distribution of a real
registry dataset, following the method proposed in [48].
Data provided by the National Cancer Registry of Ireland5
were used to obtain a patient distribution by age. The can-
cer registry was accessed on 10-05-2016 and we included
533409 cases diagnosed from 1994 to 2013. The patients
were generated in groups classified by gender and 5-years
age ranges (0-4, 5-9, 10-14, etc.). The last group of patients
contains people older than 85 years old.
For each group of patients we have calculated the proba-

bility distribution of diagnosing a concrete type of cancer,
and the probability distribution of receiving a particular
therapy (surgery, chemotherapy, radiotherapy, hormonal
therapy, ...) for a concrete diagnosis. These probabilities
were used to assign weights to every type of cancer with
its therapies for each group of patients. For example, for
patients between 60 and 64 years old, the probabilities for
different types of cancer are breast cancer (0.23), lung can-
cer (0.17), prostate cancer (0.17), and colorectal cancer
(0.08). For patients within this age range and diagnosed
with colorectal cancer the probabilities of the therapies
would then be: teletherapy (0.44), chemotherapy (0.44)
and surgical treatment (0.12). Figure 1 shows the stack of
distributions. When the random number is between 0.57
and 0.64 we assign colorectal cancer as the patient’s diag-
nosis. Then, we generate a new random number to assign
the first therapy and so on.
Furthermore, survival and mortality data were used for

extracting the evolution of the disease. Finally, we ensured

Fig. 1 Schema of probability distribution of diagnoses and therapies

that the amount of patients with more than one cancer
diagnosis meets the distribution of the real dataset.
Our simulated dataset consists in randomised cases. For

each case, we establish the gender and age of the patient.
Then, we apply a partially random distribution algorithm
for getting the patient characteristics. This algorithm uses
the weights assigned to each type of cancer, therapy
or course to generate distributions similar to the origi-
nal database. This algorithm is able to generate patients
with one or more diagnoses with various therapies and
courses following the probability distribution previously
calculated.
Such data have been represented in RDF by apply-

ing SWIT, whose transformation method has three main
steps: (1) definition of the mapping rules between the
database schema and the ontology; (2) generation of the
RDF data; and (3) importing the RDF data into the seman-
tic data store. We use a semantic repository to store the
data, which integrates two types of data sources: (1) an
OWL files server with the formal representation of the
domain, and (2) an RDF repository which stores the data.
Virtuoso6 is used as data store [49].

Exploitation model
Our approach includes a set of methods for exploiting the
information model in the semantic repository.

Ontology-driven search (ODS)
SPARQL is the language used for querying the data store.
We use our ontology-guided input text subsystem [50]
to make it easier for clinicians to exploit the data ware-
house. The main objective is to allow users to design and
execute SPARQL queries without knowing SPARQL. This
tool is an editor for SPARQL queries supported by an
OWL ontology. The OWL ontology provides the classes
and properties that can be used for creating the SPARQL
query that will be executed on the RDF repository. The
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construction of the queries begins with the selection of
a main class of the ontology. For example, if we wish to
find patients, then the ODS begins with the selection of
the ontology class Patient. The user can define filters over
this class by using the data properties or object proper-
ties of the ontology. The use of owl:ObjectProperty permits
to include other concepts in the query. For example, if
we wish to find patients whose diagnosis is lung cancer,
the user can select the owl:ObjectProperty hasDiagnosis,
which is associated with the class Patient, which permits
to use the owl:ObjectProperty Pathological structure of
the class Diagnosis to select the class representing lung
cancer. The ODS is able to generate SPARQL queries in
which the subject is an ontology class, the predicate is a
property and the object can be either a value or other con-
cept. By selecting an owl:ObjectProperty, the user can add
other properties of this concept to the query. This service
follows the approach of template-based searches [43].
With this tool, the data store can be searched using the

properties defined in the ontology. Moreover, it allows
the generation of aggregated queries for the elaboration
of representative charts of the data store. The generated
queries can be stored for parameterisation and reuse.
Aggregate functions such as count, average, min or max
can be used.
The results of these queries can be linked with other

resources. The filters used can also be stored for later
reuse. The semantic search engine not only allows for data
retrieval but also for creating new classes in the semantic
model, which can be assimilated to OWL defined classes.
For example, the query for patients with colon cancer
could be defining the class “Patient with colon cancer”.
The members of this class are obtained by executing the
corresponding query.

Semantic profiles
Conceptually speaking, the semantic profile is defined as
the set of relations and properties of an individual. Seman-
tic profiles permit to identify groups of patients that share
the same properties and are therefore useful for compar-
ing and studying such groups. Ontologies are of special
interest for creating profiles because they allow to select
and aggregate individuals from a conceptual perspective.
Our approach can also generate the semantic profile of a
group of patients by applying one or more criteria.
Hence, we define a semantic profile as the subset of

semantic information of an individual that is interesting
for a particular analysis. The profile of the individual i is
calculated as shown in Eq. 1.

SP(i) = S(d) ∪ S(SP(o)) (1)

where S(d) represents a subset of the selected
owl:datatypeProperty and S(SP(o)) represents a function

that retrieves the individuals linked through owl:object-
Property axioms to i. The semantic profile is built by the
application of the ODS by using the entities defined in a
domain ontology. The ODS permits to select the proper-
ties of interest and to define the filtering and aggregation
conditions. The user can define the SPARQL queries
that will return the subset of properties and relationships
that provides the best description of the individual for
the specific case. This information is obtained for each
individual, and the results can be viewed as a cache of
the most important semantic information describing the
individuals.
Semantic profiles can be seen as a purpose-specific

application of the semantic search engine. Two types of
semantic profiles are of special relevance in the context of
this work, namely, the timeline representation of a patient
and the aggregated disease timeline representation of a
patient group with some common properties. Both are
described in the next sections.

Disease timeline of a cancer patient
The disease timeline of a patient contains information
about various health-related events (e.g. diagnosis, patient
conditions, therapies and the disease courses). Retrieving
these events for a patient requires data normalisation for
the representation of therapies by month. Figure 2 shows
that every diagnosis has an associated timeline which
includes therapies and the disease course, both ordered
by month. For example, we can show the timeline for a
breast cancer patient that includes the applied therapies
(surgical treatment, chemotherapy, etc.) for every period.
Furthermore, we can show the course of the disease and
its relation with changes in therapies. It also includes the
date of the diagnosis and the date of the last encounter.
Finally, the profile contains all the patient’s diagnoses and
a list of her conditions.

Aggregated disease timeline of a group of patients
The aggregated timeline of a patient group (see Fig. 3)
includes all the events of the selected patients who have
the same selection criteria for a given period and for a con-
crete diagnosis. The groups of patients are defined using
the ODS, which permits to define groups of patients with
the same diagnosis, staging, grading and age range. This
permits to obtain the semantic profile of each member of
the group. Then, the semantic profiles of the members of
the group are globally analysed, so obtaining a matrix that
contains the disease courses of the included patients for
every month of the disease. Using this method, the user is
able to generate, for example, a group of patients with lung
cancer with ages between 60 and 70 years old. In this case,
our service could represent which therapies are applied in
chronological order and which are the most likely courses.
At the same time, these graphical representations can be
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Fig. 2 Schema of semantic profile of a cancer patient

used as new filters to recalculate the corresponding vari-
ables. For example, if the user selects to apply chemother-
apy as first therapy, the representation changes to reflect
the new scenario.

Enrichment analysis
Enrichment analysis is a type of statistical analysis that is
frequently used in biomedical domains [51]. Our enrich-
ment analysis method is based on the hypergeometric dis-
tribution method established for the GO:TermFinder to
determine the significance of a Gene Ontology annotation
to a list of genes [52], and the hypergeometric distribution
was developed using Apache Commons Math7.
This type of analysis is useful to compare several sub-

sets of patients with the same diagnosis. We perform a
statistical analysis of the ICD-10 codes to support the

users in the definition of diagnosis-based groups. We cal-
culate the P-value for each group as shown in Eq. 2.

P = 1 −
k−1∑

i=0

(M
i
)(N−M

n−i
)

(N
i
) (2)

where N is the total number of ICD10 codes used in the
cancer registry, M is the number of diagnoses annotated
with each ICD10 code, n is the number of ICD10 codes of
interest for a concrete patient group and k is the number
of ICD10 codes used for annotating each diagnosis.

Semantic dashboard
A semantic dashboard is a graphical representation of the
results of one or more queries. Semantic dashboards are
represented as 〈〈L, V 〉, isDashboard, U〉 where 〈L, V 〉 are

Fig. 3 Overview of the generation of aggregated disease timeline of a patient group
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the results of the SPARQL as key-value pairs 〈L, V 〉, and
U is who defined the dashboard. Each user can define and
customise her dashboards.
The semantic dashboard is implemented using the ODS

and permits to create aggregated data. The results can
be represented graphically and in tabular format. Based
on the persistence model of SPARQL queries, the repre-
sentations can be used for accessing the data instances
contained in each representation. Consequently, aggrega-
tion control boxes can be regarded as search filters of the
semantic search engine.
Figure 4 shows the query generated with the ODS for

searching patients over 70 years old and classified by
cancer type. In the left side we show the graphical repre-
sentation and in the right side the data in tabular format.
The semantic dashboards can also include multiple

aggregated queries and display comparative graphics.
Finally, dashboards can also be persisted, parameterised
by users and reused.

Recommendation
We have developed an algorithm based on Bayesian net-
works to suggest the most appropriate treatment for
a patient. This algorithm is based on the generation
of probabilistic models using semantic nodes profiles.

Bayes networks cannot have cycles [53], but our seman-
tic dataset might contain cycles. The semantic profiles
might have cycles due to, e.g., the repetitive application of
a given treatment to the patient. To solve this problem a
tree network is generated for each profile.
In case of being interested in knowing which treatment

is likely to be the most appropriate for a patient given a
number of features, the model would first retrieve all the
patients with such features, and then use their semantic
profile to generate the map of Bayesian networks with the
possible treatments by period (month, term, etc.). Once
a treatment is selected, the network is re-calculated to
improve the next recommendation. Given this dynamic
aspect of the network, the method requires that the user
indicates which characteristics might generate a cycle in
the network to prevent the algorithm from falling in an
infinite loop.

Results
The approach described in the previous section has been
applied in a scenario that simulates an institutional cancer
registry. An ontology modeling the semantics of an insti-
tutional cancer registry has been developed. This ontology
has driven the transformation of the simulated dataset
into RDF and its storage in the semantic data store. We

Fig. 4 Example of semantic dashboard
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have implemented a Semantic Web platform that permits
users to exploit the cancer registry dataset by formulat-
ing incremental, customisable queries using a graphical
user interface based on the ODS and by generating dash-
boards on demand. The complex timelines of the disease
of individual and aggregated patients can also be explored
and analysed. Next, more details about these results are
provided.

The ontology
We have built a preliminary cancer registry ontology8
based on the existing ontologies and fulfilling the require-
ments of a local cancer registry. This first draft ontology
represents some aspects of cancer diseases and their treat-
ment pragmatically. The ontology reuses the Semantic-
science Integrated Ontology (SIO) [54] and the Ontology
for Biomedical Investigations (OBI) [55]. The ontology
incorporates concepts from clinical standards used in can-
cer such as ICD10, ICD-O-3, TNM staging, Karnofsky
index [56] and ASA index [57]. The ontology has been
defined in OWL-DL. The metrics of the ontology are as
follows (numbers in brackets represent the number of
entities added by our work). The ontology contains a total
of 20,551 classes (335), 28 properties (18) and 342 object
properties (29), with 152,529 logical axioms (2581). The
ontology defines the following classes:

• Patient represents a person with any type of cancer
disease. Properties: gender, birth date, diagnosis,
therapies and disease courses. This class is equivalent
to the class Patient in SIO.

• Patient condition represents the health condition of a
patient at a given time. Properties: reference date,
age, weight, height, Karnofsky index, ASA index and
the menopause status.

• Diagnosis represents the patient diagnosis at a given
time. Properties: ICD10 code, grading, staging,
therapies, date, pathological structure, anatomical
structure and tumor type. This class is equivalent to
the class Diagnosis in SIO.

• Therapy represents the patient therapies of a
diagnosis at a given time. Different kinds of therapy
such as Chemotherapy, Surgical Treatment, Nuclear
Medicine and others have been modeled in the
ontology as subclasses of Therapy. Properties:
medication, start date and end date.

• Disease course represents the development in time
(process) of a tumor disease of a certain type
(diagnosis) over a time interval at a given time point.
Different kinds of course such as Complete remission
(tumor is not detectable any longer), Progression
(tumor mass increases to a certain amount),
Recurrence (after complete or partial remission,
tumor mass increases again), and others have been

modeled in the ontology as subclasses of Disease
course. Properties of disease course are diagnosis,
patient conditions, stage, order and date. The
properties date and order are the key to sort the
courses of the patient for a concrete diagnosis. This
class is equivalent to the class Disease course in OBI.

• The ontology also includes some classes to represent
the TNM classification system of malignant tumors.
They include anatomical entities for cancer grading
and staging, e.g. Primary tumor, Regional Lymph
Nodes and Distant Metastasis hierarchies.

• Health Classification System is the superclass of all
classes representing coding artifacts of health related
classification systems. To build the taxonomies of
classifications for a cancer registry, we tried to reuse
other ontologies. For the ICD10 code we use the
ontology built in [58].

We have evaluated the quality of our ontology using
the Ontology Quality Evaluation Framework (OQuaRE)
[59]. OQuaRE is a framework for evaluating the qual-
ity of ontologies based on standards of software quality.
OQuaRE automatically calculates quality scores in the
range [1,5] for a series of characteristics and subchar-
acteristics. A score 1 indicates that it does not fulfill
the minimal requirements, 3 indicates that the ontology
meets the requirements, and 5 indicates that the ontology
exceeds the requirements. Table 1 shows the results for
our ontology. The scores for Functional Adequacy, Main-
tainability, Operability, Structural and Transferability are
over 4. The lowest results are achieved for Compatibility
and Reliability, although they are over 3. The results show
that our ontology has a high level of cohesion, consistency,
formalisation, modularity and reusability, which are the
most relevant aspects for the present work.

The semantic cancer registry system
We have implemented a prototype system9 based on the
methods described in previous sections. Figure 5 shows
the three main parts of this system. All the components
of our system have been developed from scratch except
SWIT, which is a previous result of our research group.
The upper part of the figure shows the data transforma-
tion module, which uses SWIT for transforming the orig-
inal data in semantic information stored into the semantic
data store.
The cancer registry ontology is the core of the system,

allowing for the computational management of the infor-
mation related to the cancer patients. All the services
offered by the prototype are implemented on top of this
core. The data transformation requires to map the source
data schema to the cancer registry ontology.
The lower part of the figure shows the other two mod-

ules of the system. The right one shows the module for
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Table 1 OQuaRE Metrics for the Cancer Registry ontology

Subcharacteristic Value

Compatibility (3.25)

Replaceability 3.5

Functional Adequacy (4.69)

Clustering and Similarity 4.5

Consistent Search and query 4.8

Controlled Vocabulary 5.0

Guidance and Decision Trees 5.0

Indexing and Linking 4.67

Infering 5.0

Knowledge Acquisition 4.67

Knowledge Reuse 4.875

Reference Ontology 4.5

Results Representation 3.5

Schema and Value Reconciliation 4.75

Text Analysis 5.0

Maintainability (4.34)

Analysability 4.33

Changeability 3.86

Modification Stability 4.0

Modularity 5.0

Reusability 4.5

Testeability 4.33

Operability (4.83)

Learneability 4.83

Reliability (3.0)

Availability 4.0

Recoverability 2.0

Structural (4.67)

Cohesion 4.0

Consistency 5.0

Formal Relation Support 4.0

Formalisation 5.0

Redundancy 5.0

Tagledness 5.0

Transferability (4.25)

Adaptability 4.25

the analysis of individual patients, that is, extraction of
semantic profile and timeline analysis. The left one shows
the module for the analysis of groups of patients, which
also includes the graphical access to the disease courses
of those groups. The ODS permits to create groups of

patients that share some semantic properties. This per-
mits to generate charts and tables with accumulated data
of the semantic repository. In this case, the system pro-
vides an option for adding the grouping class or property,
so that it can be considered as a customisable dash-
board designer. The dashboard permits users to select and
aggregate the information on every class of the seman-
tic model. This module is the base for the construction
of other services such as the graphical representation of
the aggregated timelines of a group of patients or the
customisable dashboards.
The dashboard visualises the concepts of the model in

charted and grouped forms, and multiple, on-demand,
incremental dashboards can be built. For instance, a user
can generate a pie chart selecting patients by their first
therapy. The user can save any dashboard for querying the
results without needing to generate it again.

Application to the simulated dataset
We have performed an initial evaluation of the system.
We have generated a simulated database with 207.190
patients10. By the application of SWIT, the generated
dataset meets the constraints defined in our ontology,
whose entities are used for creating the RDF dataset.
The time for the transformation of the dataset from the
relational database to the semantic datastore has been
thirty-two minutes (Main features of the server: Intel�
CoreTM i7-3770T Processor (8M Cache, up to 3.70 GHz),
8GB RAM, SATA2).We have carried out some tests based
on the execution of different types of queries to compare
the performance of the relational and semantic stores.
Table 211 shows that the time performance of the

semantic datastore is slower than the relational one for
basic queries that do not require joins. However, the
semantic datastore performs better than the relational
model, even with indexes, on this dataset for more com-
plex queries. The semantic datastore is also faster when
filtering by a single property of the class or the table
column.

Semantic dashboard
This tool permits users to formulate incremental, user-
defined queries with a graphical user interface based on
the ODS. Figure 6 shows a comparative graphic over the
therapies applied to patients diagnosed with colorectal
cancer in different age ranges. Table 3 shows the generated
query for this case. The query results can be displayed in
several customisable ways, allowing for the generation of
on-demand dashboards.

Graphical representation of the disease timeline of a patient
This service permits users to observe the main properties
of the timeline of a patient with a cancer disease. Figure 7
shows an excerpt of the therapy and course timeline of a
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Fig. 5 Overview of the system

patient with pharynx cancer. In this view, users can see
the details of the diagnosis and of every therapy applied in
each period. Besides, users are provided with two evolu-
tion charts, which are based on the patient course and on
the Karnofsky index.

Graphical representation of the aggregated disease timeline
of a patient group
Figure 8 shows the selection and the aggregation of
patients using the following criteria: male patients aged
between 50 and 70, diagnosed with colorectal cancer,

Table 2 Results of the migration of the relational database to the
semantic data store

Query SQL SQL SPARQL SPARQL
count time count time
result result

Recovery all Patients 207.190 0,060s 207.190 0,189s

Recovery all Therapies 400.290 0,132s 400.290 0,317s

Recovery all Diagnosis 240.088 0,070s 240.088 0,220s

Recovery all Courses 108.297 0,030s 108.297 0,155s

Recovery patients
with diagnosis,
therapies and courses

207.190 1,048s 207.190 0,204s

Recovery all female
Patients

105.714 0,231s 105.714 0,189s

Recovery all female
Patients with more of
60 years old

62.603 0,245s 62.603 0,192s

and who have received Chemotherapy. Table 4 shows the
query generated for this case.
After the selection and the aggregation of patients, the

system generates charts that contain the therapies and
the disease courses of the patients. This service can be
employed as an exploratory therapy simulator. Optionally,
the entire time matrix can be recalculated by selecting a
certain therapy. This can help the user to estimate which
therapy is likely to be themost appropriate. Figure 9 shows
an excerpt of the panel for analysing the first two months
of the therapies of a group of 60 patients.

The enrichment analysis
Term enrichment was performed on several patient
groups using the hypergeometric distribution method for
the ICD10 code annotations on each diagnosis. First,
we used a sample of cancer cases related to over 300
patients. Our design requirement for this sample was to
include patients of both genders, so we discarded breast
and prostate cancer for this analysis. The sample con-
tained three main cohorts: diagnosis of lung cancer (469),
diagnosis of melanoma (338) and diagnosis of colorectal
cancer (311).
Table 5 shows the results associated with lung cancer for

males and females. The results show that the difference
between both groups is not significant for lung cancer but,
as shown in Table 6, it is significant for colorectal can-
cer. For example, Malignant neoplasm of rectum is clearly
over-represented in the gender male, which permits to
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Fig. 6 Dashboard view

conclude that this diagnosis is much more common
in men.

Target users
The target users of our platform are described next:

• Physicians can use our platform to extract knowledge
from the cancer registry in aggregated form filtering
on the risk of patients by applying clinical criteria.
Furthermore, they can obtain a graphical
representation of the disease course of a concrete
patient or a group of patients.

• Health managers can use our platform to generate
customisable dashboards to prepare a follow-up of
the clinical services involved in the diagnosis or
therapies for cancer.

• Tumor documentaries can use the platform to detect
cases with incomplete or inconsistent documentation
for data curation.

Discussion
Cancer registries have become a basic tool for dis-
ease research and treatment. Nowadays, there are sev-
eral technological solutions able to manage and analyse
the information of patients with a determined diagnosis.
However, the lack of formal semantic models is a prob-
lem when personalised analyses or external data links
are required. In this paper we have presented a seman-
tic platform for the analysis and visualisation of records in

an institutional cancer registry. Based on the analysis of
requirements, we have developed an ontology that models
the semantics of a regional cancer registry. We have used
this model and SWIT for transforming and storing simu-
lated data from a cancer registry in a semantic data store.
Our approach permits users to formulate incremental,
user-defined queries with a graphical user interface based
on the ODS. The results of the queries can be displayed in
several customisable ways, allowing for the generation of
on-demand dashboards. The complex timelines of the dis-
ease of individuals and aggregated patients can be clearly
represented.
Rule-based systems and logic-based models have been

semantic approaches applied to cancer registries, such as
analysis of cancer registry processes [7], quality assur-
ance [8] and decision support [9]. Our approach innovates
by combining traditional technologies such as relational
databases and semantic web technologies. We have cre-
ated an OWL ontology for representing some aspects of
an institutional, local cancer registry. We have developed
an RDF repository whose structure is driven by the OWL
ontology and permits to work by exploiting the seman-
tics of the content. In this way retrieval is semantically
enabled, so that queries are independent of the relational
data structures of conventional databases. Our technolog-
ical infrastructure has permitted us to develop a semantic
searcher for navigating through the complete cancer reg-
istry, to extract semantic profiles of the patients, and to
analyse the structure of disease courses.
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Table 3 SPARQL query generated by ODS for a dashboard

PREFIX ods:〈http://www.imib.es/ontologies/disease-times〉

SELECT count(DISTINCT ?s), ?t WHERE

{{?s rdf:type ?t FILTER (?t IN (ods:DrugTherapy, ods:Anti-hormoneTherapy,

ods:Anti-hormonal_anti-androgens, ods:Anti-hormonal_anti-estrogens,

ods:Anti-hormone_therapy_aromatase, ods:Other_Anti-hormoneTherapy,

ods:Chemotherapy, ods:Immunotherapy, ods:OtherdrugTherapy,

ods:Bisphosphonates, ods:Other_med_therapy,

ods:NuclearMedicineTherapy, ods:OpenRadionuclides,

ods:Other_nuclear_medicine_therapy, ods:RadioiodineTherapy,

ods:OtherTherapy, ods:Hyperthermia, ods:Locoregional_hyperthermia,

ods:Part-body_hyperthermia, ods:LightTherapy, ods:OtherLightTherapy,

ods:Selective_ultraviolet_phototherapy, ods:Wait_and_see,

ods:Radiotherapy, ods:Brachytherapy, ods:Interstitial_brachytherapy,

ods:Other_brachytherapy, ods:OtherHigh-voltageRadiotherapy,

ods:High-voltage_radiotherapy_n.n.bez.,

ods:Other_high-voltage_radiotherapy, ods:Whole-body_irradiation,

ods:Teletherapy, ods:OtherTeletherapy, ods:Teletherapy_n.n.bez.,

ods:Teletherapy_with_linear_accelerator, ods:StemCellTransplantation,

ods:AllogeneicSCT, ods:AutologousSCT, ods:SurgicalTreatment,

ods:Therapy ))} .

{{?s ods:hasDiagnosis ?a0.

{?a0 rdf:type ?ta0 FILTER (?ta0 IN (ods:Diagnosis))} }.

{?a0 ods:hasPathologicalStructure ?a01 .

{?a01 rdf:type ?ta01 FILTER (?ta01 IN (ods:Colorectal_cancer))} } .

{?s ods:hasPatient ?a1 . {?a1 rdf:type ?ta1 FILTER (?ta1 IN (ods:Patient))} } .

{?a1 ods:age ?a12 . FILTER (?a12 〉= 60)} }} group by ?t}

Our approach provides powerful and precise search
capabilities assisted by a customisable dashboard adapt-
able to the requirements of each user. This proposal is
very similar to the tools presented in [43], but we inno-
vate by permitting users to generate re-usable templates.

Furthermore, the templates do not only allow the gen-
eration of search forms but also of parameterised user-
customisable dashboards. The platform permits to use
the entities defined in the OWL ontology for creating
the queries in a more intuitive way than using a tradi-
tional relational model. Furthermore, the use of a NoSQL
database (e.g. RDF repository) allows to use a robust and
scalable architecture for large clinical data warehouses
[49]. Another important advantage of using semantic
knowledge modelling is the possibility of sharing informa-
tion and comparing clinical cases and processes.
The semantic profiles enable the generation of time-

lines for different patient records. Our approach combines
multimedia and temporal visualisations [24] which can
be customised by the users. The semantic profiles can
be aggregated, hence enabling the generation of time-
lines of a patient group with similar characteristics. This
visualisation can be used as a graphical representation
of a Bayesian network. Clinicians can interact with the
visualisation to discover likely courses of patients’ dis-
eases. The platform offers data analysis based on term
enrichment to support clinicians to generate groups of
patients.

Limitations
One limitation of this work is the application of a pre-
liminary version of an ontology of cancer registry data.
This ontology needs to be reviewed and extended. How-
ever, we believe that the OQuaRE quality scores of the
ontology permit to use it for proof-of-concept implemen-
tations and experiments such as the one presented in this
work.
Another limitation is the use of simulated data, because

real data would enable a more reliable (1) validation of the
correctness and completeness of the system, (2) testing of
the performance of the system, and (3) evaluation of the
impact of missing data in the performance [8].
In this work, we have been able to evaluate only

some components of the platform. A complete evaluation

Fig. 7 Excerpt of the timeline representation
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Fig. 8 Ontology-driven searcher view

would mean to measure the following metrics: efficiency,
usability, usefulness of the graphical representations of
the analysis of the disease courses or patients or group
or patients and the capacity to develop new customizable
dashboards by the users.

Future work
The results of this work were shown in a clinical session
of the epidemiological service of our largest regional hos-
pital, the Virgen de la Arrixaca Hospital in Murcia, Spain.
The physicians showed their interest in applying the same
methodology to the Colorectal Cancer Prevention Pro-
gram of the Region of Murcia (Spain). This use case will
include real data from 322,869 patients recruited since

Table 4 SPARQL query generated by ODS for a filter

PREFIX ods:〈http://www.imib.es/ontologies/disease-times〉

SELECT DISTINCT ?s WHERE {

{?s rdf:type ?t FILTER (?t IN (ods:Patient))} .

{

{?s ods:hasDiagnosis ?a0 .

{?a0 rdf:type ?ta0 FILTER (?ta0 IN (ods:Diagnosis))}

} . {?a0 ods:hasPathologicalStructure ?a01 .

{?a01 rdf:type ?ta01 FILTER (?ta01 IN (ods:Colorectal_cancer))}

} . {?s ods:gender ?a1 . FILTER (str(?a1) = ’M’)} .

{?s ods:age ?a2 . FILTER (?a2 〉= 50)} .

{?s ods:age ?a3 . FILTER (?a3 〈= 70)} .

{?s ods:hasTherapy ?a4 .

{?a4 rdf:type ?ta4 FILTER (?ta4 IN (ods:Chemotherapy))}

}

}

}

2006. Nowadays, the physicians can generate customis-
able dashboards12 and they are interested in a prediction
of their future level of risk of patients.
In addition, a study combining real data from the

Department of Epidemiology of Murcia Regional Health
Council (Spain) and the cancer registry of the Compre-
hensive Cancer Center Freiburg (Germany) is planned. On
the clinical side, this would permit to perform studies with
data originating in different registries as well as to perform
comparative studies on the characteristics and evolution
of cancer patients in different populations or on clinical
oncology practice in these regions. On the technical side,
this would permit to exploit the fact that ontology-based
approaches facilitate data integration. Although data inte-
gration has not been investigated in this work, we believe
that sharing the same ontology for different registries
would enable interoperability, and the data could be jointly
exploited by means of distributed SPARQL queries. By
the same means, they could also be used to create an
integrated data warehouse. The decision between both
implementation options depends on the requirements of
the use case, is due to the time cost of executing the dis-
tributed queries and the effort needed to maintain the
data warehouse. However, this effort does not imply major
changes in the RDF data representation. Such a study
could also test how the ontology copes with different reg-
istries, which we believe it is a relevant quality indicator
for our ontology.
We plan to extend the platform with studies of other

chronic pathologies, which might also include a clinical
validation. In this way, we plan to apply the platform for
monitoring clinical trials thanks to the flexibility of the
ODS and the customisable dashboards. Furthermore, we
plan to useD3SPARQL [60] to enrich the dashboard plots.
Finally, we would like to use this model to generate rules

that serve to automatically generate patient groups or for
quality assurance of the data.
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Fig. 9 Excerpt of the aggregated disease timeline of a patient group

Conclusion
This work has demonstrated that ontologies and the RDF
repositories can be effectively combined for exploiting a
local cancer registry. On the one hand, we constructed an
ontology that models the knowledge of local cancer reg-
istry. On the other hand, we have used semantic web tech-
nologies for building a platform to analyse the complex
timelines of a patients with cancer. Besides, our seman-
tic structure has allowed for representing the aggregated
disease timelines of patient groups.
The semantic infrastructure has also permitted the

generation of graphical representations of the stored
knowledge in the cancer registry with the generation of
customisable dashboards.
The work is an example of how ontologies can guide

the entire life cycle of a analysis platform: data trans-
formation, exploitation and knowledge generation. These
technologies allow users to configure advanced searches,

Table 5 Term enrichment for ICD10 cores of Lung cancer

ICD 10 Code P-value P-value
Male Female
(308) (152)

C34.0 (Main bronchus) 0.77 0.35

C34.1 (Upper lobe, bronchus or lung) 0.42 0.77

C34.2 (Middle lobe, bronchus or lung) 0.48 0.58

C34.3 (Lower lobe, bronchus or lung) 0.71 0.45

C34.8 (Overlapping lesion of bronchus and lung) 0.51 0.63

C34.9 (Bronchus or lung, unspecified) 0.55 0.40

Table 6 Term enrichment for ICD10 cores of colorectal cancer

ICD 10 Code P-value P-value
Male Female
(175) (127)

C17.0 (Duodenum) 0.21 0.90

C17.1 (Jejunum) 0.31 0

C17.2 (Ileum) 0.94 0.47

C17.8 (Overlapping lesion of small intestine) 0 0.41

C17.9 (Small intestine, unspecified) 0.81 0.65

C18.0 (Caecum) 0.99 0.03

C18.1 (Appendix) 0.86 0.28

C18.2 (Ascending colon) 0.90 0.26

C18.3 (Hepatic flexure) 0.11 0.96

C18.4 (Transverse colon) 0.15 0.93

C18.5 (Splenic flexure) 0.59 0.79

C18.6 (Descending colon) 0.86 0.30

C18.7 (Sigmoid colon) 0.94 0.18

C18.9 (Colon, unspecified) 0.37 0.75

C19 (Malignant neoplasm of rectosigmoid
junction)

0.96 0.18

C20 (Malignant neoplasm of rectum) 6.39E-4 0.99

C21.0 (Anus, unspecified) 0.98 0.18

C21.1 (Anal canal) 0.87 0.30

C21.8 (Overlapping lesion of rectum, anus and
anal canal)

0 0.07

D01.0 (Colon) 0.81 0.65

D01.2 (Rectum) 0.56 0



Esteban-Gil et al. Journal of Biomedical Semantics  (2017) 8:46 Page 15 of 16

build custom dashboards and establish complex analysis
from semantic profiles. Furthermore, semantic technolo-
gies establishes the bases to link to external data sources
and comparative analysis with other organizations. We
believe that this work provides new insights about how
semantic technologies can be applied to the exploitation
of clinical data in general, and to clinical registries in
particular.

Endnotes
1 http://www.elekta.com/healthcare-professionals/

products/elekta-software/cancer-registry.html
2 http://www.oncolog.com/?cid=7
3 http://www.askcnet.org/
4 http://protege.stanford.edu/
5 http://www.ncri.ie/
6 http://virtuoso.openlinksw.com/dataspace/doc/dav/

wiki/Main/
7 http://commons.apache.org/proper/commons-math/
8 http://sele.inf.um.es/ontologies/cancer-registry2.owl
9 http://sele.inf.um.es/SECARE/
10 http://sele.inf.um.es/ontologies/individuals.zip
11The test has been carried out in a local machine with

MySQL 5 as relational database and Virtuoso 7 as RDF
repository.

12 http://sele.inf.um.es/SECOLON/
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