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Abstract

Background: This article describes a high-recall, high-precision approach for the extraction of biomedical entities
from scientific articles.

Method: The approach uses a two-stage pipeline, combining a dictionary-based entity recognizer with a
machine-learning classifier. First, the OGER entity recognizer, which has a bias towards high recall, annotates the terms
that appear in selected domain ontologies. Subsequently, the Distiller framework uses this information as a feature for
a machine learning algorithm to select the relevant entities only. For this step, we compare two different supervised
machine-learning algorithms: Conditional Random Fields and Neural Networks.

Results: In an in-domain evaluation using the CRAFT corpus, we test the performance of the combined systems
when recognizing chemicals, cell types, cellular components, biological processes, molecular functions, organisms,
proteins, and biological sequences. Our best system combines dictionary-based candidate generation with
Neural-Network-based filtering. It achieves an overall precision of 86% at a recall of 60% on the named entity
recognition task, and a precision of 51% at a recall of 49% on the concept recognition task.

Conclusion: These results are to our knowledge the best reported so far in this particular task.

Keywords: Named entity recognition, Text mining, Machine learning, Natural language processing

Background
The scientific community in the biomedical domain is a
vibrant community, producing a large amount of scientific
findings in the form of data, publications, reports, and so
on, each year, making it difficult for scholars to find the
right information in this large sea of knowledge.
To tackle this problem, researchers have developed dif-

ferent text mining techniques with the goal of detect-
ing the relevant information for the intended purpose.
This paper’s focus is the technique called Named Entity
Recognition (herein NER), which solves the problem of
detecting terms belonging to a limited set of predefined
entity types.
NER can be performed on both “generic” documents,

to recognize concepts like person, date or location, or
on technical documents, to recognize concepts like cells,
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diseases or proteins. NER can be used by itself, with the
goal of recognizing themere presence of a term in a certain
portion of the text, or as a preliminary stage for Concept
Recognition (CR), also known as Entity Linking or Nor-
malization, where the term is not only recognized but also
linked to a terminological resource, such as an ontology,
through the use of a unique identifier [1].
NER can be solved using several techniques:

• Using manual, hand-written rules. A group of experts
develops these rules using domain knowledge. The
rules typically rely on orthographic patterns, such as
particular use of capitalization or punctuation. Even
though rule-based systems can perform well if
sufficient expert time is available for creating the
rules, their maintenance requires repeated manual
efforts, since the rules need to be revised or even
entirely replaced whenever the system is adapted to
new data (different entity types, another text
collection). In the biomedical domain, plain rule-
based approaches like [2] have become rare; however,
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they continue to be used in combination with other
techniques, such as dictionary look-up [3, 4].

• Using dictionaries to recognize known entities. An
automatic process looks for all the possible entities
(possibly, all the words in a document) in one or
more dictionaries (or ontologies, or databases, or
gazetteers) of known entities. This method has the
obvious drawback that new entities cannot be
recognized, because they are not yet present in the
dictionary. Pafilis et al. [5] and [6] use a
dictionary-based approach for NER of species and
chemicals, respectively.

• Using machine learning techniques. A machine
learning method, like Support Vector Machines or
Conditional Random Fields (herein CRF), can be
trained to recognize entities in a fragment of text
using a large set of pre-annotated documents as
examples. If trained properly, a machine learning
model can potentially recognize entities that are not
yet inserted in dictionaries or ontologies. The
drawback of this approach is the fact that training
material is not always available for a certain domain,
or if present, it may be unsatisfactory in terms of
quality or size. Examples for a CRF-based approach
are presented in [7, 8].

• Using a hybrid approach. Two or more of the
previously mentioned approaches are used together
to combine their strengths and, hopefully, overcome
their weaknesses. For example, [9] and [10]
successfully use a hybrid dictionary-machine learning
approach.

This paper presents an extension of the hybrid solu-
tion introduced in [11]. In that paper, we present a hybrid
dictionary-machine learning approach, where the dictio-
nary stage, performed by OntoGene’s Entity Recognizer
(OGER) [12, 13], generates a high recall, low precision set
of all the possible entities that can be found in a docu-
ment and then the machine learning stage, performed by
Distiller [14], filters these entities trying to select only the
relevant ones.
The aim of this work is to improve the system

presented in [11] by exploring new techniques both
for the dictionary and the machine-learning stage, in
particular by replacing the original machine learn-
ing approach with one based on CRFs. We present
these techniques, analyzing the new methods we intro-
duced, and we evaluate them on the CRAFT corpus
[15], a set of documents from the biomedical domain
where the relevant concepts have been linked to sev-
eral ontologies. Then, we compare the results obtained
with the ones found in the literature, exploring the
potential of using the system as a concept recognition
pipeline.

Methods
CRAFT corpus
The Colorado Richly Annotated Full Text (CRAFT) cor-
pus is a set of articles from the PubMed Central Open
Access Subset [16], a part of the PubMed Central archive
licensed under Creative Commons licenses, annotated
with concepts pointing to several ontologies.
The corpus is composed of 67 annotated articles avail-

able in the public domain, plus 30 articles that have been
annotated but are reserved for future competitions and
have to date not been released.
The ontologies used in the corpus are:

• ChEBI: Chemical entities of Biological Interest [17],
containing chemical names

• CL: Cell Ontology [18], containing cell type names
• Entrez Gene [19], containing gene names
• GO: Gene Ontology [20]. CRAFT provides two

sub-ontologies, one for physical entities (cellular
components, CC) and one for non-physical entities
(biological processes andmolecular functions,
BPMF).

• NCBI Taxonomy: the US National Center for
Biotechnology Information Taxonomy [21],
containing names of species and other taxonomic
ranks

• PR: Protein Ontology [22], containing protein names
• SO: Sequence Ontology [23], containing names of

biological sequence features and attributes

In total, the available articles are annotated with over
100,000 concepts. Moreover, each of the 67 articles con-
tains linguistic information, such as tokenized sentences,
part-of-speech information, and dependency parse trees.
For our experiments, we used all terminology resources

except for NCBI Entrez Gene. We decided to omit Entrez
Gene from the evaluation against CRAFT for a number
of reasons. For one, the distribution of the CRAFT cor-
pus does not include a reference version (unlike all other
terminologies); this means that we would have to use
an up-to-date version of Entrez Gene, which potentially
differs significantly from the version used in the anno-
tation process. Secondly, Entrez Gene contains a large
number of terms that overlap with frequent words of
the general vocabulary (such as “was”, “and”, “this”), tak-
ing care of which requires considerable additional effort,
such as manually creating blacklists. Furthermore, omit-
ting Entrez Gene has been suggested earlier by other
scholars (e.g. ([24], p. 8)).
We associated each (sub-)ontology with a single entity

type. For NCBI Taxonomy, we regarded species and
higher taxonomic ranks (genus, order, phylum etc.) from
both cellular organisms and viruses to a common entity
type “organism”. For the Gene Ontology, we followed
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CRAFT’s division into physical and non-physical entities,
i.e. we distinguished “cellular components” from “biologi-
cal processes/molecular functions”.

OGER
The OntoGene group has developed an approach for
biomedical entity recognition based on dictionary lookup
and flexible matching. Their approach has been used in
several competitive evaluations of biomedical text mining
technologies, often obtaining top-ranked results [25–28].
Recently, the core parts of the pipeline have been imple-
mented in a more efficient framework using Python [29]
and are now developed under the name OGER (Onto-
Gene’s Entity Recognizer). These improvements showed
to be effective in the BioCreative V.5 shared task [30]: in
the technical interoperability and performance of annota-
tion servers (TIPS) task, our system achieved best results
in four out of six evaluation metrics [31]. In the TIPS task,
participants were asked to provide an on-line service for
on-the-fly annotation of biomedical entities in given doc-
uments. The task’s goal was to investigate the feasibility
of installing an inter-institutional annotation cluster (con-
trolled by a biomedical annotation metaserver), therefore
the evaluation was based on processing time and avail-
ability of the participating systems [32]. OGER achieved
single first place in the speed measures (average response
time, mean time per document volume) and shared first
place in the stability measures (mean time between fail-
ures, mean time to repair).
OGER offers a flexible interface for performing

dictionary-based NER. It accepts a range of input formats,
e.g. PubMed Central full-text XML, gzip-compressed
chunks of Medline abstracts as made available for down-
load by PubMed, BioC XML [33], or simply plain text.
It provides the annotated terms along with the corre-
sponding identifiers either in a simple tab-separated text
file, in brat’s standoff format [34], in BioC XML, or in
a number of other, less common formats. It allows for
easily plugging in additional components, such as alterna-
tive NLP preprocessing methods or postfiltering routines.
We run an instance of OGER as a permanent web ser-
vice which is accessible through an API and a web user
interface [35].
For term matching, we used the terminology resources

included in the CRAFT corpus. We extracted the relevant
information from the various sources and converted it
into a unified, non-hierarchical format, in order for it to be
accepted by the annotation pipeline. For the format con-
version, we used the back-end software of the Bio Term
Hub [36], which is a meta-resource for biomedical ter-
minological resources. Through a web interface [37], any
user can obtain a customized dictionary, which is com-
piled on the fly from a number of curated, openly available
terminology databases.

By concatenating the selected seven terminologies, we
obtained a dictionary with 1.26 million terms pointing to
864,000 concept identifiers. Based on preliminary tests,
we removed all entries with terms shorter than three char-
acters or terms consisting of digits only; this reduced the
number of entries by less than 0.1%. In OGER, the entries
of the term dictionary were then preprocessed in the same
way as the documents with respect to tokenization, stem-
ming, and case sensitivity, as described below. Finally, the
input documents were compared to the dictionary with an
exact-match strategy.
OGER was configured to have a moderate bias towards

recall, at the cost of precision. We chose this strategy, tai-
lored to a greater number of false positives (i.e. lower pre-
cision) but less false negatives (i.e. greater recall), because
in the overall architecture OGER’s output is filtered or
used as a feature among many in the subsequent step,
so we let the subsequent ML step decide which of the
annotations produced by the dictionary step are actually
useful.
After sentence splitting, the input documents were tok-

enized with a simple method based on character class:
any contiguous sequence of either alphabetical or numer-
ical characters was considered a token, whereas any other
characters (punctuation and whitespace) were considered
token boundaries and were ignored during the dictionary
look-up. This lossy tokenization already has a normal-
izing effect, in that it collapses spelling variants which
arise from inconsistent use of punctuation symbols. For
example, the variants “SRC 1”, “SRC-1”, and “SRC1” were
all conflated to the two-token sequence “SRC”, “1”. In
a small evaluation on the training set, we verified that
this results in a moderate improvement of overall recall
(+ 2.7 percentage points) and worked particularly well for
sequences (+ 3.5) and proteins (+ 8.4), while the effect
on precision was negative, but smaller (− 2.1). A simi-
lar approach is described in [38], where the authors refer
to it as “regularization”. All tokens were then converted
to lowercase, except for acronyms that collide with a
word from general language (e.g. “WAS”). We enforced
a case-sensitive match in these cases by using a list of
the most frequent English words. As a further normal-
ization step, Greek letters were expanded to their letter
name in Latin spelling, e.g. “α” → “alpha”. Since both
spellings are common in the biomedical literature, con-
verting all occurrences to a canonical form allowed us
to increase the number of matches. Finally, we applied
stemming to all tokens except for the acronyms, using
NLTK’s [39] implementation of the Lancaster stemmer
[40]. We favored this algorithm over the more widely used
Porter stemmer because of its greater strength, i.e. its
higher amount of conflations produced, which increases
the overlap between the dictionary and the documents, in
line with our aim for higher recall.
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As a tweaking step, we fine-tuned the above default con-
figuration for the individual entity types. Based on their
respective coverage in the training set, we adjusted the
parameters as follows:

proteins no stemming
sequences less strict acronym filter (more cases of case-

insensitive matching)
cells always case-insensitive matching (even for

acronyms)
cellular components always case-insensitive matching

Distiller
The Distiller framework [41] is an open source project
which aims to build a flexible, extensible system for a
variety of natural language processing tasks [14].
The main focus of the Distiller framework is the task

of Automatic Keyphrase Extraction (herein AKE), which
is the process of extracting relevant phrases from a docu-
ment [42]. AKE is quite different from NER, as while the
former is interested in finding the small set of the most rel-
evant terms in a document, the latter is focused on finding
all the terms of some selected types.
AKE can be performed as both an unsupervised and

supervised task, and Distiller actually has its roots in an
unsupervised approach [43]. However, current state-of-
the-art systems use mostly a supervised approach [44],
so the framework offers the possibility to use such tech-
niques as well.
Supervised AKE is performed using a standard super-

vised machine-learning pipeline. The first step is generat-
ing the candidate keyphrases, using their part-of-speech
tags to select certain phrasal patterns. Then, the candidate
keyphrases are assigned some features, using statistical
[42], linguistic [45], or semantic [46] knowledge. Finally, a
machine learning algorithm is trained and then evaluated
over a set of documents associated with human-assigned
keyphrases.

Ensemble system
In order to integrate Distiller with OGER together and
build an effective NER system, the candidate generation
phase of the former system has been replaced by OGER’s
output. In fact, the original candidate generation phase
of the Distiller has to be completely discarded, because it
is tailored to recognizing “generic” noun phrases, which
might not even be technical terms.
For this reason, in this work we follow and extend the

same process we presented in [11], so the entity extraction
pipeline is structured as follows:

1. Given an input document, OGER matches all the
biomedical terms that appear in at least one of the
selected ontologies;

2. Distiller receives the terms selected by OGER and
assigns them some features, preparing them to be
processed by a machine learning system;

3. A machine learning system, trained on the CRAFT
corpus, selects the relevant entities in the document
using the information generated in the previous steps.

The machine learning algorithms used are neural net-
works (NN), as they were the best performing algorithm
in [11], and Conditional Random Fields (CRF), as they
are currently considered the state-of-the-art algorithm,
as pointed out in [24]. The architecture is slightly dif-
ferent for the two algorithms: In the NN case, Distiller
acts as a filter on OGER’s output, i.e. it performs a
binary accept/reject classification for each entity candi-
date. In contrast, the CRF-based version considers any
token sequence in the text as an entity candidate, using
OGER’s annotations only as a feature amongmany. Hence,
the output of the NN pipeline is always a subset of OGER’s
output, whereas this restriction does not hold for the CRF
pipeline.
For both algorithms, training is performed using 10-fold

cross validation. As in [11], in the present paper we split
the corpus for training/testing purposes, so the evalua-
tion is performed on 20 documents only. However, there
are two crucial differences from [11]. Fist, in our previ-
ous work we trained a binary classifier, i.e. a single model
to detect all entity types, while here we train a separate
model for each entity type present in the CRAFT cor-
pus. Second, here we evaluate our system not only on the
named entity recognition task, i.e. considering the spans
and entity types produced by our ensemble system, but
we also evaluate our system on concept recognition, i.e.
taking into account the concept identifiers produced by
OGER.

Features
Due to the differences of the algorithms, we used slightly
different features to train NNs and CRFs. In fact, the
main difference between neural networks and condi-
tional random fields features is that the former works
well with both n-ary features and continuous-valued fea-
tures, while the latter works better when using n-ary
features (labels) only. For this reason, some features
are implemented as continuous valued in NN and as
binary labels in CRF, to adapt them to the algorithm
used. For example, while with NN we used a counter
to determine how many uppercase characters are con-
tained in a term, the corresponding CRF feature would
be a binary label indicating the presence of uppercase
characters in the token. In any case, since the library
used to train CRF supports the use of numerical valued
features as well, we also tried to use the exact same fea-
tures used in NNs training for the CRFs training, but the
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resulting performance was lower than using just binary
labels.
The features and the configuration used to train our

algorithms are listed in Table 1. The features we selected
are derived from [11] where, after a process of feature
selection, the best performing feature set used informa-
tion about the shape of the token, i.e. the number of capital
letters, the number of uppercase characters, and so on,
plus some domain knowledge, i.e. features about the affixes
of the words and the presence of Greek letters inside
them.
In detail, affixes (i.e. prefixes and suffixes) are partic-

ularly useful in the biomedical domain because they are
often associated with a particular meaning. For example,
chemical compounds often end with “-ide”, like “sodium
chloride” (the common table salt), diseases often end with
“-itis” or “-pathy” (like “arthritis” or “cardiopathy”), and
so on.

In order to implement this feature, we used the Bio Term
Hub resource [36], and we generated four affixes lists, one
each for two- and three-character prefixes and suffixes
appearing in the following ontologies:

• Cellosaurus [47], developed by the Swiss Institute of
Bioinformatics;

• Chemical compounds and diseases found in the
Comparative Toxicogenomics Database (CTD) [48],
developed by the North Carolina State University;

• Entrez Gene [19], developed by the US National
Center for Biotechnology Information;

• Medical Subject Headings (MeSH) [49], developed
also by the US National Center for Biotechnology
Information (restricted to the subtrees “organisms”,
“diseases”, and “chemicals and drugs”);

• reviewed records from the Universal Protein
Resource (Swiss-Prot) [50], developed by the joint
USA-EU-Switzerland consortium UniProt.

Table 1 Feature sets: features used by the NN and CRF (see the “Features” section for details)

Neural network Conditional random fields

Implementation

Software R [67], nnet library CRFSuite [68]

Model parameters 1 hidden layer of size
2 × (number of input features), softmax out-
put layer

Training algorithm: averaged
perceptron, default epsilon, 2 words window

Input n-grams selected by OGER Single tokens

Features

Candidate character count Count —

Candidate is all uppercase Label yes/no Label yes/no

Candidate is all lowercase Label yes/no Label yes/no

Candidate contains Greek (i.e. “alpha”, α ) Label yes/no Label yes/no

Candidate contains dashes (‘-’) Count Label yes/no

Candidate contains numbers Count Label yes/no

Candidate ends with a number Label yes/no Label yes/no

Candidate contains capital letter not in first position Label yes/no Label yes/no

Candidate contains lowercase characters Count Label yes/no

Candidate contains uppercase characters Count Label yes/no

Candidate contains spaces Count Label yes/no

Candidate contains symbols Count Label yes/no

2-3 character affixes appearing in an ontology in [36] Normalized frequency Label yes/no

Candidate is symbol — Label yes/no

Candidate’s part-of-speech — Yes, using [69]

Candidate’s stem — Yes, using [70]

Candidate pre-selected by OGER — Yes (see the “Features” section)

Total features 36 About 2.8 million

Tagging speed (on an Intel 4720HQ CPU) 1286 tokens/sec 632 tokens/sec
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To weigh affixes based on their frequency, each affix a
from a terminological resourceD is assigned a normalized
score s ∈[0, 1] computed in this way:

s(a,D) = freq(a,D)

max({freq(a1,D) . . . freq(a|D|,D)})
where freq(a,D) is the frequency of an affix a in D. Two
weights (one prefix and one suffix) for each ontology con-
tained in BioTermHub are used as input for the neural net-
works, while for CRF we use only a binary flag indicating
whether the affix can be found in the selected ontology. As
mentioned before, we chose to use affix information dif-
ferently for CRF and NN, since after testing both binary
features and weighted features on both algorithms, we
determined that the former approach performed better on
CRF and the latter on NN.
For CRF, we also tried to add prefixes and suffixes of

each token as features, similarly to what we found in
[7]. We trained several models by adding affixes of two,
three, four, and five characters to each feature set, with
the model increasing from ∼2.8 million features to ∼11.6
million features, but we found no significant improve-
ment in performance with respect to using our dictionary
approach only.
Unfortunately, this approach would not have been fea-

sible when using neural networks, because it would have
generated a very large set of additional features, making
the network practically impossible to train.
Finally, it is also worth noting another fundamental dif-

ference between the NN and the CRF approach.While the
NN receives as input only the tokens selected by OGER,
the input of the CRF is composed by the whole tokenized
document, and the selection of a token as a potential entity
by OGER is used as a feature, as pointed out in Table 1.
For this reason, CRFs are able to recognize entities that are
not recognized by OGER, while NNs cannot do this, since
they know only the portions of the document selected by
the dictionary-based step, and therefore act simply as a
filter on OGER’s output.

Test hardware
We ran the OGER and Distiller systems on a computer
equipped with an Intel i7 4720HQ quad core processor
running at 2,6 GHz, 16 GB RAM and a Crucial M.2 M550
SSD. The operating system was Ubuntu 16.04 LTS.
OGER obtained a performance of 5994 tokens/second

when running in single thread mode, while the Distiller
system processed 1286 tokens/second when using NN
and 632 tokens/second when using CRF. If necessary, the
OGER system can be parallelized in a straightforward
manner. Its efficiency is demonstrated also by the excel-
lent result obtained in the recent TIPS challenge [31] (see
the “OGER” section).

Results
We examined the performance of our systems in two sep-
arate evaluations. First we evaluated the performance of
NER proper, i.e. we regarded only offset spans and the
(coarse) entity type of each annotation produced by each
system, ignoring concept identifiers. This is a direct con-
tinuation of the work presented in [11]. Subsequently,
we describe the results of a preliminary concept recog-
nition (CR) evaluation. To this end, we augmented the
ML-based output with concept identifiers taken from the
dictionary-based pre-annotations, which enabled us to
draw a fair comparison to previous work in CR on the
CRAFT corpus.

Named entity recognition
We present the results obtained in Table 2. They are
compared with the previous version of our system, as
described in [11].
The best recall is obtained by the new version of the

OGER system, which obtains an overall performance
higher than the previous OGER/Distiller pipeline. The
66% recall score obtained by the system offers an 11%
improvement over the previous version but, perhaps more
importantly, the precision of the annotations is much
higher, almost doubling the precision from 34 to 59%.
The higher quality of the annotations is reflected by

the fact that the neural network pipeline, which received
only minor improvements from the previous version, now
displays a less significant drop in recall, with a score of
60%, just six point less than OGER. In the version pre-
sented in [11], the recall drop when adding the machine
learning filtering stage was much higher (18%). The neu-
ral network version improves the precision score as well,
with a 1% increase. This result brings the overall F1-Score
to 0.70, which makes this version of the system the best
performing one.
On the other hand, the combined OGER-CRF pipeline

obtains a somewhat underwhelming performance, with
lower precision, recall and thus F1-score when compared

Table 2 Comparison of the NER performance obtained in this
paper with the previous version of the system [11]

System Precision Recall F1

OGER 2016 0.34 0.55 0.42

OGER+Distiller 2016 0.85 0.37 0.51

OGER 0.59 0.66 0.62

OGER+Distiller NN 0.86 0.60 0.70

OGER+Distiller CRF 0.69 0.49 0.58

OGER+Distiller Mixed 0.87 0.63 0.73

Distiller CRF 0.71 0.47 0.58

The best values are highlighted in boldface
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to the NN. Still, bothmodels perform better than the older
version, corroborating the validity of our approach.
Running the Distiller with a CRF-trained model without

OGER’s preprocessing step, i.e. without instructing the
CRF which tokens have been marked as entities accord-
ing to OGER, leads to an acceptable result, with higher
precision but lower recall (see Table 2, this pipeline is
called “Distiller CRF”). This is unsurprising, since CRFs
are known to be good systems for named entity recogni-
tion; still, using the CRF without using OGER’s dictionary
would imply the important caveat that the system would
not be able to associate terms with concept identifiers, but
only to recognize their presence and type.
In Tables 3, 4, and 5 we analyze the performance of

our system for the individual entity types. Here we con-
sider both a strict evaluation, which considers correct only
annotations where reference and system spans match per-
fectly, and a more lenient evaluation scheme, where we
consider a system annotation partially correct if it over-
laps just partially with a CRAFT annotation. To be pre-
cise, we used the average measure as defined by GATE’s
Annotation Diff Tool [51], which is the mean of preci-
sion/recall/F1 in the strict and lenient measures. When
a predicted annotation overlaps partially with a reference
annotation, it counts both as a false positive (FP) and a
false negative (FN) in the strict measure. In the lenient
measure, this corresponds to a true positive (TP). Conse-
quently, in the average measure, a partial match is counted
as 1

2 TP, 1
2 FP, and 1

2 FN, such that the denominators
in precision and recall (TP+FP and TP+FN, respectively)
remain constant across all three measures. If more than
one predicted annotation overlaps with the same refer-
ence annotation, it is counted as a partial match only once;
additional predictions are counted as false positives. The
same holds for a predicted annotation overlapping with
multiple reference annotations, which contribute to the
false-negative count.
It is interesting to see that the NN model obtains very

good F1-Scores (> 70%) on almost all entity types, but

has some problems to identify biological processes and
molecular functions. Nevertheless, the problems on this
category do not hinder the performance of the general
model, which is able to obtain the best precision on all cat-
egories except for cells. Unfortunately, an almost optimal
precision is not always followed by a good recall, like in
the previously mentioned case of biological processes and
molecular functions, where we have 78% precision and
only 22% recall.
The CRF model achieves good or acceptable F1-Scores

for the majority of the entity types, but appears to
have trouble with correctly identifying chemicals and –
severely – sequences. In fact, the scores for these two
entity types are so low that the overall score for the CRF
pipeline is lower than OGER, even though CRF clearly
beats OGER in five out of seven entity types. This par-
tially explains the counterintuitive finding that a plain
dictionary-based system achieves better results than the
CRF-based system.
Using these results, we built a “mixed” system com-

posed of the best performing models, i.e. using CRFs for
cells, biological processes and molecular functions, and
cellular components, and NNs for the other entity types.
This model, labeled “OGER+Distiller Mixed” in Table 2, is
obviously the best possible system, with a 3% increase in
F1-score when compared to the NN approach; however,
this is a purely academic exercise, since in practice it is
very difficult to combine the NN and the CRF models due
to their very different nature.
Finally, the assumption that CRFs are able to recognize

entities which are not detected by OGER is evident by
looking at the recall figures in Table 4. In fact, consid-
ering cells, biological processes and molecular functions,
and cellular components, we see that the CRF pipeline
improved OGER’s recall figures by 11%, 20% and 7%,
respectively. This happens because for CRF we adopt a
token-by-token process, where a correct item can be a
token annotated by the CRAFT annotators but not by
OGER, while in the NN pipeline the correct samples are

Table 3 Per-entity-type breakdown of the precision scores obtained by the different pipelines

Evaluation method: strict Evaluation method: average

Entity type OG OG+NN OG+CRF OG OG+NN OG+CRF

All 0.59 0.86 0.69 0.61 0.89 0.80

Chemicals 0.44 0.89 0.48 0.45 0.89 0.50

Cells 0.88 0.88 0.95 0.93 0.94 0.96

Biological processes/molecular functions 0.39 0.78 0.68 0.45 0.88 0.73

Cellular components 0.51 0.91 0.87 0.52 0.92 0.90

Organisms 0.29 0.98 0.82 0.29 0.98 0.83

Proteins 0.49 0.86 0.74 0.50 0.87 0.80

Sequences 0.46 0.89 0.23 0.48 0.91 0.27

The best values are highlighted in boldface
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Table 4 Per-entity-type breakdown of the recall scores obtained by the different pipelines

Evaluation method: strict Evaluation method: average

Entity type OG OG+NN OG+CRF OG OG+NN OG+CRF

All 0.66 0.60 0.50 0.69 0.61 0.58

Chemicals 0.73 0.68 0.26 0.75 0.68 0.27

Cells 0.77 0.67 0.88 0.77 0.71 0.89

Biological processes/molecular functions 0.25 0.22 0.45 0.29 0.25 0.49

Cellular components 0.60 0.56 0.67 0.61 0.58 0.69

Organisms 0.92 0.91 0.91 0.92 0.91 0.92

Proteins 0.84 0.75 0.66 0.85 0.75 0.72

Sequences 0.67 0.64 0.08 0.69 0.65 0.09

The best values are highlighted in boldface

n-grams annotated both by OGER and the CRAFT cor-
pus annotators. Unsurprisingly, these three entity types
are the ones where the CRF obtains an overall F1-score
higher than NN.

Concept recognition
The NER pipelines presented in this work are designed
to perform entity annotation in terms of identifying rel-
evant text regions without assigning identifiers to the
recognized terms. Nonetheless, OGER performs concept
recognition by default, and in the experiments reported
above, the identifiers produced were simply ignored in
the downstream processing and evaluation steps. For that
reason, we decided to verify the potential of using the
pipelines in a CR setting by carrying out an additional
experiment.
We chose a simple strategy to reintroduce the concept

identifiers provided by OGER into the output of the ML
systems. This step was as straightforward as joining the
corresponding annotations in OGER’s and Distiller’s out-
put. For the combined OGER-CRF pipeline, this meant
that CRF annotations were removed if no matching entry
was found in OGER’s output.
We did not resolve ambiguous annotations; instead,

multiple identifiers could be returned for the same span.

While having no disambiguation at all is arguably a defi-
ciency for a CR system, it is not imperative that each
and every ambiguity is reduced to a single choice. This is
particularly true when evaluating against CRAFT, which
contains a number of reference annotations with multi-
ple concept identifiers. For example, in PMID: 16504143,
PMCID: 1420314, the term “fish” (occurring in the last
paragraph of the “Discussion” section) is assigned six
different taxonomic ranks.
Table 6 shows the performance of the described sys-

tems in a CR evaluation against CRAFT, as well as the
results for a number of other systems as reported by
Tseytlin et al. [24], who carried out a series of experiments
using the same dataset. All figures reflect the “average”
evaluation method as described in the previous section;
however, at least for our systems, the difference between
strict and average evaluation is so small that the numbers
are the same at the given level of precision. Please note
that the results reported by [24] are not perfectly com-
parable to the ones we obtained, since the former were
tested on the whole CRAFT corpus, while our approach
was evaluated on 20 documents only (since we used the
remaining documents to train our system), as described in
the “Ensemble system” section. Still, the comparison
shows that even a relatively simple approach is sufficient

Table 5 Per-entity-type breakdown of the F1 scores obtained by the different pipelines

Evaluation method: strict Evaluation method: average

Entity type OG OG+NN OG+CRF OG OG+NN OG+CRF

All 0.62 0.70 0.58 0.65 0.72 0.67

Chemicals 0.55 0.77 0.34 0.56 0.77 0.35

Cells 0.80 0.76 0.91 0.84 0.81 0.92

Biological processes/molecular functions 0.30 0.35 0.54 0.35 0.39 0.58

Cellular components 0.55 0.70 0.75 0.56 0.71 0.78

Organisms 0.44 0.94 0.87 0.45 0.94 0.88

Proteins 0.62 0.80 0.70 0.63 0.80 0.76

Sequences 0.54 0.75 0.12 0.57 0.76 0.13

The best values are highlighted in boldface
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Table 6 Performance of the presented systems in a CR evaluation, compared to results reported in [24]

System Precision Recall F1

OGER 0.32 0.52 0.40

OGER+Distiller NN 0.51 0.49 0.50

OGER+Distiller CRF 0.49 0.29 0.37

MMTx 0.43 0.40 0.42

MGrep 0.48 0.12 0.19

Concept Mapper 0.48 0.34 0.40

cTakes Dictionary Lookup 0.51 0.43 0.47

cTakes Fast Lookup 0.41 0.40 0.41

NOBLE Coder 0.44 0.43 0.43

Please note that, as stated in the “Concept recognition” section, the systems described in [24] are evaluated on the whole corpus, while we use 20 documents for testing and
the remainder for training. The best values are highlighted in boldface

to transform our NER pipeline into a CR system with
reasonable quality. This is particularly true for the OGER-
NN configuration, where both precision and recall are as
good as or better than the figures for all the reported
systems.
Table 7 shows the CR performance on all the considered

entity types and for all the configurations of the system.
Here we see that applying NN filtering after the dictio-
nary matching results in an increment of precision in all
cases except for cells, where the drop is negligible. As for
the choice of ML algorithm, the NN pipeline is almost
always the best performing model, winning in all entity
types except for cells in terms of F1-score. However, the
main difference between NNs and CRFs is that the for-
mer retains a good recall, with the worst drop of just 9%
for proteins, while the latter shows a considerable drop
in recall in many categories. In particular, while the CRF
precision scores are generally good, if not almost opti-
mal for some categories, the results for chemicals and
sequences are very bad in terms of recall, hindering the
general performance of the system.

Discussion
In this section, we analyze the results of the experiments
presented in the “Results” section and we contextualize
them with related work.

Error analysis
NN pipeline
Since the NN output depends heavily on OGER’s input,
many of its mistakes are caused by the quality of the dic-
tionary matching. While the precision reached by this
model in filtering out non-interesting terms is quite high
at 85%, the majority of the errors of the NN pipelines con-
sist in generic terms, like verbs, adverbs, and so on, that
the neural network is not able to filter out. For example,
in three documents, the word “error” itself is erroneously
marked as an entity. Moreover, just using regular expres-
sions to detect common suffixes and manually inspecting
the results, we see that about 5% of the errors are adjec-
tives, about 5% are adverbs, and about 9% are verbs in
-ing form. Another typical error is constituted by common
substantives marked wrongly as entities. For example, the

Table 7 Per-entity-type breakdown of Precision, Recall, and F1 obtained by the different pipelines in the CR evaluation

Precision Recall F1

Entity type OG OG+ OG+ OG OG+ OG+ OG OG+ OG+

NN CRF NN CRF NN CRF

All 0.32 0.51 0.49 0.52 0.49 0.29 0.40 0.50 0.37

Chemicals 0.28 0.59 0.93 0.61 0.57 0.19 0.39 0.58 0.32

Cells 0.88 0.87 0.98 0.72 0.66 0.68 0.79 0.75 0.81

Biological processes/molecular functions 0.35 0.72 0.73 0.19 0.17 0.05 0.25 0.27 0.10

Cellular comp. 0.49 0.87 0.89 0.59 0.56 0.52 0.54 0.68 0.65

Organisms 0.16 0.49 0.47 0.71 0.70 0.67 0.26 0.58 0.55

Proteins 0.45 0.84 0.91 0.83 0.74 0.64 0.59 0.79 0.75

Sequences 0.27 0.59 0.37 0.53 0.51 0.06 0.36 0.54 0.10

The best values are highlighted in boldface
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word “region” by itself makes 4% of the errors. These
errors can probably be easily eliminated by using dedi-
cated part-of-speech features, and will eventually be tack-
led in future versions of the system.
The other most common category of errors are anno-

tations that are found by OGER but not present in
the CRAFT corpus. For example, in document PMID:
15917436, PMCID: 1140370, the genes “M13mp18” and
“M13mp19” are detected by OGER but not in the CRAFT
corpus. These errors are hard to catch with dedicated
features and, on the other hand, can potentially deliver
useful information, since the annotation is conceptually
correct, so we do not consider them as a highly critical
problem of our system. Nevertheless, these errors have
a high impact when evaluating the model. For example,
in document PMID: 16870721, PMCID: 1540739, the NN
pipeline selects the protein “p53”, which is not present
in the ontologies of the CRAFT corpus, but since this
particular protein is central in the paper, it is repeated
many times throughout the document, and its selection by
the NN pipelines accounts for about 4% of the total false
positives of the pipeline.
The false negatives of the NN pipeline depend largely

on the false negatives of OGER, since it cannot select
anything that has not been selected by OGER. Still, the
NN can theoretically remove correct OGER selections,
and analyzing the results of our system we see that this
happens in practice, too. In fact, the number of the false
negatives of the NN increases of about 20%, as expected
by the lower recall of the NN pipeline when compared
to OGER’s output. These false negatives are mostly short
strings, like “BLM”, “CD21”, “p34”, with no apparent con-
nection with the category of the word: 43% of the false
negatives introduced by the NN are in fact words of 3 or
4 characters (shorter terms had been removed from the
dictionary initially, as described in the “OGER” section).

CRF pipeline
One of the strengths of the model, i.e. detecting enti-
ties that are not annotated as such, is also a potential
weakness while evaluating its precision. For example, in
document PMID: 17696610, PMCID: 1941754, the model
produces the annotation “Mei1”, which is the name of a
gene/protein. This word is not annotated in the CRAFT
corpus with respect to the Protein Ontology, because at
the time of CRAFT’s annotation, the Protein Ontology
did not include Mei1 (recent versions of the ontology do
include it). CRAFT has annotations for Mei1 with respect
to Entrez Gene, but this resource was ignored in our eval-
uation, as is described in the “CRAFT corpus” section.
Differently from the false positives produced by the neu-
ral network pipeline described in the previous section, this
time the concept is not annotated by OGER either. How-
ever, the CRF identifies that Mei1 is a protein: this is again

conceptually correct, but still a mistake for the sake of
evaluating the performance of the system on the CRAFT
corpus.
We argue that, while these annotations hinder the

evaluation performance of the models, they are actually
desirable. This way, in fact, we are able to annotate what
OGER is not able to recognize due to shortcomings in
the dictionary used, thus providing information which we
think is valuable for the user. Moreover, the ability of the
model to select entities that are not yet present in a knowl-
edge base is one of the desirable aspects of using a ML
approach, as pointed out in the “Background” section.
In our example, “Mei1” could have been a recently dis-
covered protein which then is not yet present in the
ontologies used; we argue that the ability of recognizing it
as an entity and to classify its type, even without the abil-
ity of linking it to an actual knowledge base, would be a
positive feature of our system.
On the other hand, the CRF model makes many errors

where it includes punctuation in the annotation, like com-
mas, parentheses, and so on. The relatively high frequency
of this error is evident when we consider that the CRF
pipeline benefits from the average evaluation (which con-
siders partial matches as partially correct) by improving
the precision score by 20%, while the NN pipeline shows a
mere 3% improvement.
This model also fails to recognize certain words or their

derivatives. For example, about 5% of the false negatives
of the CRF pipeline consist in the failure of recognizing
the word “gene” or words with the same root (like “genes”,
“genetic”, “genome”, etc.); another 2% is due to the failure
of recognizing the word “expression” or similar. More-
over, many acronyms are not recognized: in the document
PMID: 15061865, PMCID: 400732, the model fails to rec-
ognize every reference to the acronym “D2R” (Dopamine
D2 receptor), weighing about 2% of the total false nega-
tives. The same holds for the acronyms or short names
(“MLH1“ or “MLH3”, “PPARα”, “PPARδ”, etc.), with about
15% of the false negatives being acronyms.
A particular case are annotations where the annota-

tion span is wrong. For example, in document PMID:
17425782, PMCID: 1858683, the pygopus genes “Pygo1”
and “Pygo2” often appear as “Pygo1/Pygo2”; in the
CRAFT corpus, the single gene names are annotated sepa-
rately, while the CRF annotated the whole string. The gene
is also often mentioned as “Pygo1 gene”, and here again
in the CRAFT corpus it is annotated as “Pygo1”, while the
CRF selects the whole phrase.

OGER
False negatives in the OGER output have an impact on
the entire system which is much higher than the one of
false positives. This is particularly true in combination
with the NN postfilter, since annotations missing from
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the beginning remain unreachable in any subsequent step.
In combination with the CRF system, where the OGER
annotations are seen as one feature among many, the
effect is less pronounced, since initial false positives might
be corrected eventually; however, OGER’s false negatives
still have a strong influence on the CRF’s decision. There-
fore, this error analysis focuses on annotations that were
missed by the OGER system.
A frequent cause for missing annotations are synonyms

that are not covered by the dictionaries. For example,
“antibody” is used in document PMID: 12925238, PMCID:
194730 for the more specific term “immunoglobulin com-
plex”, while the Gene Ontology does not list “antibody”
as a name for this (or any other) concept. Missing syn-
onyms occurred with all entity types, and they were the
predominant source of error for proteins (estimated to be
more than one third of all misses). Sometimes, terms are
abbreviated in text, such as “olfactory receptor” in docu-
ment PMID: 14611657, PMCID: 329117, which should be
“olfactory receptor activity” according to the dictionary.
This was seen frequently with cellular components (more
than 25%), organisms, biological processes and molecu-
lar functions (less than 10%), and proteins (around 5%).
Another cause of misses are splitting and reordering of
multi-word terms, as is both illustrated with “gene expres-
sion”, which is rephrased as “expression of [. . . ] gene” in
the same document. Along with hyperonymy (see the
“antibody” example above), splitting and reordering con-
tributed considerably to the low recall we obtained for
biological processes and molecular functions. Linguistic
variation at the level of morphology was another source
of mismatch between the terminologies and the texts.
Derivation (changes in part-of-speech, such as “mam-
mal”/“mammalian”, “nucleus”/“nuclear”, “gene”/“genetic”)
was the most common problem for organisms (more than
25%), and also occurred among cellular components and
sequences (less than 10%). Likewise, plural forms were not
always mapped correctly to their singular forms listed in
the dictionaries, especially in the case of acronyms (such
as “cDNAs”), where stemming was disabled.
Some instances are very close misses. For example,

given the dictionary spelling “PPAR-delta”, OGER was
unable to capture “PPARδ” in document PMID: 15328533,
PMCID: 509410. Even though the matching strategy was
designed to be robust against this kind of variation in
terms of punctuation and transliteration, this particular
case fell through the net. In order for two variants to be
considered equivalent, a hyphen may only be dropped if
it connects two strings with a different character class
(such as alphabetic and numeric, e.g. “CRB-1” matches
“CRB1”). However, a transition from one script to another
(Latin→Greek) does not qualify as a token boundary on
a par with a hyphen – a design decision which should be
reconsidered.

Related work
The field of named entity recognition has decades of his-
tory, with early work focusing on extracting a single entity
type, such as protein names, from scientific papers [52].
Later on, some scholars started to introduce the use of ter-
minological resources as a starting point for solving this
problem [53].
The most recent state-of-the-art performance is

obtained by using supervised machine-learning based
systems. For extracting chemical names, [7] describes
how two CRF classifiers are trained on a corpus of journal
abstracts, using different features and model parameters.
The output of the two classifiers is merged in differ-
ent ways, attempting to combine the strengths of each
method, using a-posteriori knowledge (performance on a
test set) or the models’ own confidence. The approach in
[8] also tackles chemical name extraction with CRF, partly
using the same software basis as the previous one. The
system is trained in a semi-supervised setting by adding a
large collection of unlabeled abstracts and full-text doc-
uments. For tagging gene names, [54] describes another
supervised sequence-labeling approach. The output of a
CRF classifier is post-processed through graph propaga-
tion in order to account for unseen data occurring in the
test set.
There is growing interest in hybrid machine learning

and dictionary systems such as the one described in [10],
which obtains interesting performance on chemical entity
recognition in patent texts. The authors of [55] use differ-
ent approaches for different entity types (machine learn-
ing for chemical names, dictionary-based for organism
and assay entities); given the complementary application,
this is not a hybrid approach in the strict sense. A con-
trastive overview that also covers rule-based approaches
is given in [56]. While focusing on chemical entity recog-
nition, their findings are equally applicable to other entity
types.
In the field of entity linking, dictionary-based methods

are predominant, since the prediction of arbitrary identi-
fiers cannot be modeled in a generalized way. In [57], the
authors explore ways to improve established information
retrieval techniques formatching protein names and other
biochemical entities against ontological resources. Using
the CRAFT corpus, they measure the impact of case sen-
sitivity and the information gain of individual tokens in
multi-word terms. Another strategy borrowed from infor-
mation retrieval for increasing the coverage of recognized
entities is term expansion, i.e. indexing additional term
synonyms drawn from another source of knowledge. For
example, known orthologous relations can be exploited by
substituting a mentioned protein with an evolutionarily
and functionally equivalent protein from another species.
This is applied to the detection of protein interactions in
full text in [58]. The TaggerOne system [59] uses a joint
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model for tackling NER and linking at the same time –
yet another example of a hybrid system that combines
machine learning and dictionaries. Using an annotated
corpus for training, the NER task is learned through a
semi-Markov model, which is an adaptation of Markov
models well-suited for detecting multi-word terms. For
linking, the extracted terms and the dictionary entries are
projected into the same vector space. Machine learning
also often plays an important role when it comes to entity
disambiguation. As an example, in [60] disambiguation
is addressed with word embeddings, which are used for
comparing the context of annotated terms with dictionary
definitions of the candidate concepts.
The Colorado Richly Annotated Full Text (CRAFT) cor-

pus [15, 61] has been built specifically for evaluating
these kinds of systems. In [62] (and, with some more
detail, in [63]), the authors used the corpus to evaluate
several concept recognition tools, showing how they per-
form on the individual entity types in the corpus. Later,
Tseytlin et al. [24] compared their ownNOBLE coder soft-
ware against other concept recognition algorithms, show-
ing a top F1-score of 0.44. Another system that makes
use of CRAFT for evaluation purposes is described in
[64]. In a series of experiments including all entity types
except for sequences, the authors were able to outperform
existing systems in terms of F1-score, achieving approx-
imately 93%, 75%, 78%, 60%, 54%, 44%, and 50% in an
exact-match evaluation (NER, no identifiers) for species,
cells, cellular components, chemicals, genes and proteins,
genes, and biological processes and molecular functions,
respectively.

Conclusions
In this paper, we have presented an efficient, high-quality
system for biomedical NER. We have shown that it can
be easily extended to produce concept identifiers, achiev-
ing state-of-the-art results in a Concept Recognition (CR)
evaluation. The presented system is a two-stage pipeline
with a dictionary-based pre-annotator (OGER) and a
machine-learning classifier (Distiller). In a contrastive
evaluation, we examined the respective quality of the pre-
annotations and two different classification approaches.
We evaluated both processing speed and annotation

quality in a series of in-domain experiments using the
CRAFT corpus. OGER’s scalability and efficiency was
also demonstrated in the recently held TIPS task of the
BioCreative V.5 challenge. For the NER performance, we
compared a NN classifier, which acted as a postfilter of
the dictionary annotations, to a CRF classifier that used
OGER’s output as a feature among many. While the CRF
pipeline showed interesting behavior by predicting terms
that were missing from OGER’s dictionary, it was beaten
by the NN system for the majority of the entity types
and in the global evaluation, where the latter achieved a

precision of 86% at a recall of 60% (F1: 70%). By augment-
ing the classifier output with concept identifiers from the
pre-annotations, we were able to perform a CR evaluation.
Again, the NN system outperformed the CRF approach
with a precision of 51% at a recall of 49%, which is well in
line with scores reported in related literature.
As future work, we will consider to tackle specific ter-

minological categories where the classifiers fail to obtain
good performance, like biological processes and molecu-
lar functions. Moreover, OGER performance can still be
improved in terms of recall by allowing multi-word terms
to be reordered or shortened, or even split apart. Also,
recall can be increased bymeans of term expansion, e.g. by
collecting additional synonyms from other sources (termi-
nologies or corpora). In particular for biological processes
and molecular functions, these two strategies can be com-
bined to generate new term variants, as is shown in [65].
Furthermore, we consider improving the classification
performance of our system on the entity types where we
fail to obtain satisfactory results and, more importantly,
to develop a concept disambiguation stage that is able
to choose between the many concept IDs suggested by
OGER. Finally, in order to better compare our work to
other state-of-the-art systems, we will consider to extend
the evaluation to the full CRAFT corpus by using other
resources to train our system, or to other corpora, like the
ShARe corpus [66] used by [24].
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