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Abstract

Background: One of the most successful approaches to develop new small molecule therapeutics has been to
start from a validated druggable protein target. However, only a small subset of potentially druggable targets has
attracted significant research and development resources. The Illuminating the Druggable Genome (IDG) project
develops resources to catalyze the development of likely targetable, yet currently understudied prospective drug
targets. A central component of the IDG program is a comprehensive knowledge resource of the druggable
genome.

Results: As part of that effort, we have developed a framework to integrate, navigate, and analyze drug discovery
data based on formalized and standardized classifications and annotations of druggable protein targets, the Drug
Target Ontology (DTO). DTO was constructed by extensive curation and consolidation of various resources. DTO
classifies the four major drug target protein families, GPCRs, kinases, ion channels and nuclear receptors, based on
phylogenecity, function, target development level, disease association, tissue expression, chemical ligand and substrate
characteristics, and target-family specific characteristics. The formal ontology was built using a new software tool to
auto-generate most axioms from a database while supporting manual knowledge acquisition. A modular, hierarchical
implementation facilitate ontology development and maintenance and makes use of various external ontologies, thus
integrating the DTO into the ecosystem of biomedical ontologies. As a formal OWL-DL ontology, DTO contains asserted
and inferred axioms. Modeling data from the Library of Integrated Network-based Cellular Signatures (LINCS) program
illustrates the potential of DTO for contextual data integration and nuanced definition of important drug target
characteristics. DTO has been implemented in the IDG user interface Portal, Pharos and the TIN-X explorer of protein
target disease relationships.

Conclusions: DTO was built based on the need for a formal semantic model for druggable targets including various
related information such as protein, gene, protein domain, protein structure, binding site, small molecule drug,
mechanism of action, protein tissue localization, disease association, and many other types of information. DTO
will further facilitate the otherwise challenging integration and formal linking to biological assays, phenotypes,
disease models, drug poly-pharmacology, binding kinetics and many other processes, functions and qualities
that are at the core of drug discovery. The first version of DTO is publically available via the website http://
drugtargetontology.org/, Github (http://github.com/DrugTargetOntology/DTO), and the NCBO Bioportal
(http://bioportal.bioontology.org/ontologies/DTO). The long-term goal of DTO is to provide such an
integrative framework and to populate the ontology with this information as a community resource.
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Background
The development and approval of novel small molecule
therapeutics (drugs) is highly complex and exceedingly
resource intensive, being estimated at over one billion
dollars for a new FDA approved drug. The primary reason
for attrition in clinical trials is the lack of efficacy, which
has been associated with poor or biased target selection [1].
Although the drug target mechanism of action is not re-
quired for FDA approval, a target-based mechanistic under-
standing of diseases and drug action is highly desirable and
a preferred approach of drug development in the pharma-
ceutical industry. Following the advent of the Human
Genome, several research groups in academia as well as
industry have focused on “the druggable genome” i.e. the
subsets of genes in the human genome that express pro-
teins that have the ability to bind drug-like small molecules
[2]. The researchers have estimated the number of drug-
gable targets ranging from few hundreds to several thou-
sands [3]. Furthermore, it has been suggested by several
analyses that only a small fraction of likely relevant drug-
gable targets are extensively studied, leaving a potentially
huge treasure trove of promising, yet understudied (“dark”)
drug targets to be explored by pharmaceutical companies
and academic drug discovery researchers. Not only is there
ambiguity about the number of the druggable targets, but
there is also a need of systematic characterization and an-
notation of the druggable genome. A few research groups
have made efforts to address these issues and have indeed
developed several useful resources, e.g. IUPHAR/BPS Guide
to PHARMACOLOGY (GtoPdb/IUPHAR) [4], PANTHER
[5], Therapeutic Target Database (TTD) [6], Potential Drug
Target Database (PDTD) [7], covering important aspects of
the drug targets. However, to the best of our knowledge, a
publically available structured knowledge resource of drug
target classifications and relevant annotations for the most
important protein families, one that facilitates querying, data
integration, re-use, and analysis does not currently exist.
Content in the above-mentioned databases is scattered and
in some cases inconsistent and duplicated, complicating data
integration and analysis.
The Illuminating the Druggable Genome (IDG) project

(http://targetcentral.ws/) has the goal to identify and
prioritize new prospective drug targets among likely tar-
getable, yet currently poorly or not at all annotated pro-
teins; and by doing so to catalyze the development of
novel drugs with new mechanisms of action. Data com-
piled and analyzed by the IDG Knowledge Management
Center (IDG-KMC) shows that the globally marketed
drugs stem from only 3% of the human proteome. These
results also suggest that the substantial knowledge deficit
for understudied drug targets may be due to an uneven
distribution of information and resources [8].
In the context of the IDG program we have been devel-

oping the Drug Target Ontology (DTO). Formal ontologies

have been quite useful to facilitate harmonization, integra-
tion, and analysis of diverse data in the biomedical and
other domains. DTO integrates and harmonizes knowledge
of the most important druggable protein families: kinases,
GPCRs, ion channels and nuclear hormone receptors.
DTO content was curated from several resources and the
literature, and includes detailed hierarchical classifications
of proteins and genes, tissue localization, disease associ-
ation, drug target development level, protein domain infor-
mation, ligands, substrates, and other types of relevant
information. DTO content sources were chosen by domain
experts based on relevance, coverage and completeness of
the information available through them. Most resources
had been peer reviewed (references are included in the re-
spective sections), published and were therefore considered
reliable. DTO is aimed towards the drug discovery and clin-
ical communities and was built to align with other ontol-
ogies including BioAssay Ontology (BAO) [9–11] and
GPCR Ontology [12]. By providing a semantic framework
of diverse information related to druggable proteins, DTO
facilitates the otherwise challenging integration and formal
linking of heterogeneous and diverse data important for
drug discovery. DTO is particularly relevant for big data,
systems-level models of diseases and drug action as well as
precision medicine. The long-term goal of DTO is to pro-
vide such an integrative framework and to populate the
ontology with this information as a community resource.
Here we describe the development, content, architecture,
modeling and use of the DTO. DTO has already been im-
plemented in end-user software tools to facilitate the
browsing [11] and navigation of drug target data [13].

Methods
Drug target data curation and classification
DTO places special emphasis on the four protein families
that are central to the NIH IDG initiative: non-olfactory
GPCRs (oGPCRs), Kinases, Ion Channels and Nuclear
Receptors. The classifications and annotations of these four
protein families were extracted, aggregated, harmonized,
and manually curated from various resources as described
below, and further enriched using the recent research lit-
erature. Proteins and their classification and annotations
were aligned with the Target Central Resource Databases
(TCRD) database [11] developed by the IDG project
(http://targetcentral.ws/ProteinFam). In particular, the Target
Development Level (TDL) classification was obtained from
the TCRD database.

Kinase classification
Kinases have been classified primarily into protein and
non-protein kinases. Protein kinases have been further
classified into several groups, families, subfamilies. Non-
protein kinases have been classified in several groups, based
on the type of substrates (lipid, carbohydrate, nucleoside,
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other small molecule, etc.). Classification information has
been extracted and curated from various resources e.g.
UniProt, ChEMBL, PhosphoSitePlus® (PSP) [14], Sugen
Kinase website (http://www.kinase.com/web/current/),
and the literature, and was organized manually, consoli-
dated and checked for consistency. Kinase substrates were
manually curated from UniProt and the literature. Pseudo-
kinases, which lack key functional residues and are (to
current knowledge) not catalytically active, were anno-
tated based on the Sugen kinase domain sequences and
the literature.

Ion-channel classification
Ion channels have been classified primarily into family,
subfamily, sub-subfamily. Most of the information has
been taken from the Transporter Classification Database
(http://www.tcdb.org/) [15], UniProt and several linked
databases therein. The classification is based on both the
phylogenetic and functional information. Additional infor-
mation regarding the gating mechanism (voltage gated,
ligand gated, etc.), transported ions, protein structural and
topological information has also been captured and in-
cluded as separate annotations. Moreover, the transported
ions, such as chloride, sodium, etc. have been mapped to
the “Chemical entity” of the ChEBI reference database [16].

GPCR classification
GPCRs have been classified based on phylogenetic, func-
tional and the endogenous ligand information. The primary
classification included class, group, family, and subfamily.
Most of the information has been taken from the GPCR.org
classification and had been updated using various sources
e.g. IUPHAR [4], ChEMBL, UniProt and also from our
earlier GPCR ontology [12]. Furthermore, the information
for the specific endogenous ligands for each protein has
been extracted from IUPHAR and has been integrated with
the classification. The information about the GPCR ligand
and ligand type (lipid, peptide, etc.) has also been included
and has been mapped manually to the “Chemical entity” of
the ChEBI reference database.

Nuclear receptor classification
This information has been adopted directly from IUPHAR.

External DTO modules and mapping
Proteins mapped to UniProt. Genes were classified identical
to proteins (above) and mapped to Entrez gene. The
external modules incorporated into DTO were extracted
from the Disease Ontology (DOID) [17], BRENDA Tissue
Ontology (BTO) [18], UBERON [19], the ontology of
Chemical Entities of Biological Interest (ChEBI) [20], and
Protein Ontology (PRO) [21]. Data about over 1000 cell
lines from the LINCS project [22] were integrated and
mapped to diseases and tissues. Gene/protein–disease [23]

and protein–tissue associations [24] were obtained from
the JensenLab at Novo Nordisk Foundation Center
for Protein Research. Mapping between UBERON and
BRENDA to integrate the tissue associations of cell
lines and proteins was retrieved from the NCBO BioPortal
[25, 26] and manually cross-checked. Target Development
Level (TDL) were obtained from TCRD and included as
separate annotation for all protein families.

Drug target ontology (DTO) development
Ontology modeling
While curators stored all classification and annotation data
into various spreadsheets, ontologists created the onto-
logical model to link the metadata obtained from those
spreadsheets, and to create the descriptive logic axioms to
define ontology classes using a semi-automated workflow.
Finalizing and optimizing the ontology model or design
pattern required iterative processes of intensive discussions,
modeling refinement, voting, and approval among domain
experts, data curators, IT developers, and ontologists. Once
ontologists proposed a conceptual ontology model, the se-
lection of the most robust ontology model was guided by
simple criteria: correct representation of domain content,
minimize the number of relations to link all metadata,
avoid contradiction with existing domain knowledge repre-
sentation ontologies, such as the OBO ontologies. For ex-
ample, in our conceptual model, the relations among
organ, tissue, cell lines and anatomical entity were adopted
and refined from the UBERON and CLO ontologies. Some
relations such as the shortcut relations between protein
and associated disease or tissue were created specifically for
DTO, which was a compromise for accommodating the
large amount of data in DTO. Approval process of accept-
ing a model proposal was driven by our domain experts
with contributing data curators, IT developers, and ontolo-
gists. The voting process was rather informal; however, the
model had to be agreed by all the parties involved in the
ontology development: domain experts, data curators, IT
developers, and ontologists. Once the most fit ontology
model was chosen, this piece of modeling was used as
template for a java tool (described below) to generate all
the OWL files by using above mentioned data annotation
spreadsheets as input.

Modularization approach
DTO was built with an extended modular architecture
based on the modular architecture designed and imple-
mented for BAO [9]. The modularization strategy devel-
oped previously was a layered architecture and used the
modeling primitives, vocabularies, modules and axioms.
Most significantly, DTO’s modular architecture includes
an additional layer to the modularization process by
automating the creation of basic subsumption hierarchies
and select axioms such as the axioms for disease and tissue
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associations. Three types of files are used in the modular
architecture: vocabulary files, module files, and combined
files, such as DTO_core and DTO_complete. Vocabularies
only contain concepts (classes with subsumption only).
Module layers enable combining vocabularies in flexible
ways to create desired ontology structures or subsets. Fi-
nally, in the combined files axioms are added to the vo-
cabularies to formally define the various concepts to allow
logical inferences. Classes and relationships are imported
(directly or indirectly) from module and/or vocabulary files
[9]. The external third-party ontologies were extracted
using the OWL API or OntoFox [27].

OntoJOG tool
To streamline the building process, a Java tool (OntoJOG)
was developed to automatically create the OWL module
files, vocabulary files as components of the whole ontol-
ogy. OntoJOG takes a flat CSV or TSV data file and loads
it as a table either into a temporary SQLite database or a
permanent MySQL database. This table is then used as a
reference for creating and generating the OWL files as
well as several relationship tables. The relationship tables
and the final OWL files are generated based on a CSV
mapping file that generates the commands for the
OntoJOG to perform and the various options for those
commands. The commands from the mapping file are
read in two passes to ensure everything is added cor-
rectly. In the first pass, all classes and their annotations
are inserted into the relationship tables and are assigned
IDs as necessary, and in the second pass all axioms and
relationships between classes are created. After this
process is completed an optional reparenting phase is
executed before each module of the ontology is gener-
ated into its own OWL vocabulary files with an accom-
panying module file containing the relationships for the
given vocabulary files.
Finally, the ontology was thoroughly reviewed, tested

and validated by developers, domain experts, and users in
the IDG-KMC.

Data quality control
Several steps of Quality Control (QC) at different stages
in the development process of the ontology were imple-
mented. First, data extracted from external resources is
checked for consistency against that original source by
the lead data curator. Depending on how the data was
extracted (APIs, download of files) this involves different
scripts, but in all cases thorough manual expert review.
Secondly, while developers load curated data into a local
staging database, another QC step is taking place to as-
sure data integrity during the loading process. Thirdly,
as soon as the auto-ontology building using OntoJOG
finishes, reasoning over the whole ontology checks for
consistency of the logical definitions and the ontology

itself. In a fourth QC step, the ontologist runs several
SPARQL queries against the ontology to retrieve the
data and arrange them in a format that can directly be
compared to the original datasets; any discrepancies are
flagged and resolved between the lead curator, developer
and ontologist. Fifth, for each new ontology build, an au-
tomated script reads all DTO vocabulary and module
files and compares them to the previous version. This
script generates reports with all new (not present in the
previous version), deleted (not present in current ver-
sion) and changed classes and properties based on their
URIs and labels. These reports are reviewed by curators
and ontologists and any expected differences among ver-
sions are resolved. Sixth and finally, the ontology is
loaded into Protégé and carefully manually reviewed by
curators and ontologists. In order to audit the QC
process, all the development versions are stored at a pri-
vate GitHub repository owned by our lab. Only when
data is in 100% consistency with original datasets and all
QC steps are completed and passed, the ontology is re-
leased to the designated public GitHub repository.

DTO visualization
Data visualization is important, especially with the increas-
ing complexity of the data. Ontology visualization, corres-
pondingly, has an appealing potential to help to browse and
comprehend the structures of ontologies. A number of
ontology visualization tools have been developed and ap-
plied as information retrieval aids, such as OntoGraf,
OWLViz as part of the Ontology development tool Protégé,
and OntoSphere3D [28] among others. Further, studies and
reviews on different visualization tools, e.g. [29, 30] and
[31], have been published by comparing each tool’s perfor-
mances. Preference of visualization models depends on the
type and query context of the visualized network and also
on users’ needs.
Data-Drive Document (D3) is a relatively novel

representation-transparent and dynamic approach to
visualize data on the web. It is a modern interactive
visualization tool available as a JavaScript library [29].
By selectively binding input data to arbitrary document
elements, D3.js enables direct inspection and manipula-
tion of a native representation. The D3.js JavaScript library
gained popularity as a generic framework based on widely
accepted web standards such as SVG, JavaScript, HTML5
and CSS.
Consequently, we use the D3.js library for the interactive

visualization of our DTO as part of the Neo4J graphical
database solution.

DTO and BAO integration to model LINCS data
The Library of Network-Based Cellular Signatures (LINCS)
program has been generating a reference “library” of mo-
lecular signatures, such as changes in gene expression and

Lin et al. Journal of Biomedical Semantics  (2017) 8:50 Page 4 of 16



other cellular phenotypes that occur when cells are exposed
to a variety of perturbing agents. One of the LINCS screen-
ing assays is a biochemical kinase profiling assay that mea-
sures drug binding using a panel of ~440 recombinant
purified kinases, namely, KINOMEscan assay. The HMS
LINCS Center has collected 165 KINOMEscan datasets in
order to analyze the drug-target interaction. All these
LINCS KINOMEscan data were originally retrieved from
Harvard Medical School (HMS) LINCS DB (http://
lincs.hms.harvard.edu/db/). KINOMEscan data was cu-
rated by domain experts to map to both Pfam domains,
and corresponding Kinases. Unique KINOMEscan do-
mains and annotations, including domain descriptions,
IDs, names, gene symbols, phosphorylation status, and
mutations were curated from different sources, includ-
ing the HMS LINCS DB, DiscoverX KINOMEscan®
assay list [32], Pfam (http://pfam.xfam.org/), and our
previous modeling efforts of the entire human Kinome
(publication in preparation). The kinase domain classi-
fication into group, family, etc. was the same as de-
scribed above (kinase classification). Gatekeeper and
hinge residues were assigned based on structural align-
ment of existing kinase domain crystal structures and
structural models of the human kinome and sequence
alignment with the full kinase protein referenced by
UniProt accession in the DTO. Pfam accession number
and names were obtained from Pfam [33]. The protocol
and the KINOMEscan curated target metadata table were
analyzed by ontologists to create kinase domain drug tar-
get ontology model.

Ontology source access and license
The official DTO website is publicly available at http://
drugtargetontology.org/, where it can be visualized and
searched. The DTO is an open source project, and re-
leased under a Creative Commons 3.0 License. The
source code including the development and release ver-
sions are freely available at the URL: http://github.com/
DrugTargetOntology/DTO . DTO is also published at
the NCBO BioPortal (http://bioportal.bioontology.org/
ontologies/DTO).

Results
In what follows, the italic font represents terms, classes,
relations, or axioms used in the ontology.

Drug targets definition and classification
Different communities have been using the term “drug
target” ambiguously with no formal generally accepted
definition. The DTO project develops a formal semantic
model for drug targets including various related informa-
tion such as protein, gene, protein domain, protein struc-
ture, binding site, small molecule drug, mechanism of

action, protein tissue localization, disease associations,
and many other types of information.
The IDG project defined ‘drug target’ as “a native (gene

product) protein or protein complex that physically inter-
acts with a therapeutic drug (with some binding affinity)
and where this physical interaction is (at least partially) the
cause of a (detectable) clinical effect”. DTO defined a DTO
specific term “drug target role”. The text definition of “drug
target role” is “a role played by a material entity, such as na-
tive (gene product) protein, protein complex, microorgan-
ism, DNA, etc., that physically interacts with a therapeutic
or prophylactic drug (with some binding affinity) and where
this physical interaction is (at least partially) the cause of a
(detectable) clinical effect.”
At the current phase, DTO focuses on protein targets.

DTO provides various asserted and inferred hierarchies
to classify drug targets. Below we describe the most rele-
vant ones.

Target development level (TDL)
The IDG classified proteins into four levels with respect
to the depth of investigation from a clinical, biological
and chemical standpoint (http://targetcentral.ws/) [8]:

1) Tclin are proteins targeted by approved drugs as they
exert their mode of action [3]. The Tclin proteins are
designated drug targets under the context of IDG.

2) Tchem are proteins that can specifically be manipulated
with small molecules better than bioactivity cutoff
values (30 nM for kinases, 100 nM for GPCRs and
NRs, 10 uM for ICs, and 1 uM for other target
classes), which lack approved small molecule or
biologic drugs. In some cases, targets have been
manually migrated to Tchem through human
curation, based on small molecule activities from
sources other than ChEMBL or DrugCentral [34].

3) Tbio are proteins that do not satisfy the Tclin or
Tchem criteria, which are annotated with a Gene
Ontology Molecular Function or Biological Process
with an Experimental Evidence code, or targets with
confirmed OMIM phenotype(s), or do not satisfy
the Tdark criteria detailed in 4).

4) Tdark refers to proteins that have been described at
the sequence level and have very few associated
studies. They do not have any known drug or small
molecule activities that satisfy the activity thresholds
detailed in 2), lack OMIM and GO terms that would
match Tbio criteria, and meet at least two of the
following conditions:

� A PubMed text-mining score < 5 [23]
� <= 3 Gene RIFs [35]
� <= 50 Antibodies available per Antibodypedia

(http://antibodypedia.com)
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Functional and phylogenetic classification
DTO proteins have been classified into various categories
based on their structural (sequence/domains) or functional
similarity. A high-level summary of the classifications for
Kinases, Ion Channels, GPCRs and Nuclear Receptors is
shown in Fig. 1. It should be noted that, as indicated above,
the classification information has been extracted from vari-
ous database and literature resources. The classification is
subject to continuous updating for greater accuracy, and
enriching the DTO using the most recent information as it
becomes available. The present classification of the four
protein families is briefly discussed below:
Most of the 578 kinases covered in the current version

of DTO are protein kinases. These 514 PKs are catego-
rized into 10 groups that are further sub-categorized in
131 families and 82 subfamilies. A representative classifi-
cation hierarchy for MAPK1 is:
Kinase > Protein Kinase > CMGC group > MAPK

family > ERK subfamily > Mitogen-activated Protein
Kinase 1.
The 62 non-protein kinases are categorized in 5

groups depending on the substrate that is phosphory-
lated by these proteins. These 5 groups are further sub-
categorized in 25 families and 7 subfamilies. There are
two kinases that haven’t been categorized yet into any of
the above types or groups.
The 334 Ion channel proteins (out of 342 covered in the

current version of DTO) are categorized into 46 families,
111 subfamilies, and 107 sub-subfamilies.
Similarly, the 827 GPCRs covered in the current ver-

sion of DTO are categorized into 6 classes, 61 families
and 14 subfamilies. The additional information whether

any receptor has a known endogenous ligand or is cur-
rently “orphan” is mapped with the individual proteins.
Finally, the 48 nuclear hormone receptors are catego-
rized into 19 NR families.

Disease- and tissue-based classification
Target-disease associations and tissue expressions were
obtained from the DISEASES [23]and TISSUES [24] data-
bases (see Methods). Examples of such classifications are
available as inferences in DTO (see below section 3.3.2).

Additional annotations and classifications
In addition to the phylogenetic classification of the pro-
teins, there are several relevant properties associated
with them as additional annotations. For example, there
are 46 PKs that have been annotated as pseudokinases
[36]. For ion channels, important properties, like trans-
porter protein type, transported ion(s), gating mechan-
ism, etc. have been associated with the individual
proteins. The gating mechanism refers to the informa-
tion regarding the factors that control the opening and
closing of the ion channels. The important mechanisms
include voltage-gated, ligand-gated, temperature-gated,
mechanically-gated, etc. Similarly, for the GPCRs, the
additional information whether any receptor has a
known endogenous ligand or is currently “orphan” is
mapped with the individual proteins. Current version of
DTO has approximately 255 receptors that have infor-
mation available regarding the endogenous ligands.
The analysis of drug target protein classification along

with such relevant information associated through separ-
ate annotations may lead to interesting inferences.

Fig. 1 Overview of protein classification hierarchies for Kinase, Ion Channel, GPCR, and NR protein families. Note that several other relevant target
annotations have been incorporated into DTO
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Chemical classifications
Known GPCR ligands and IC transported ions were catego-
rized by chemical properties and mapped to ChEBI (see
Methods). For example, depending upon their chemical
structure and properties, these known endogenous ligands
for GPCRs have been categorized in seven types, namely,
amine, amino acid, carboxylic acid, lipid, peptide, nucleo-
side and nucleotide. Similarly, the ions transported by the
ion channel proteins and ion types (anion/cation) have been
mapped to ChEBI. These annotations together with map-
pings of substrates and ligands to the proteins enable in-
ferred classification of the proteins based on their chemical
properties (see below).

DTO ontology implementation and modeling
Drug discovery target knowledge model of the DTO
The first version of the DTO includes detailed target
classification and annotations for the four IDG protein
families. Each protein is related to four types of entities:
gene, related disease, related tissue or organ, and target
development level. The conceptual model of DTO is il-
lustrated as a linked diagram with nodes and edges.
Nodes represent the classes in the DTO, and edges rep-
resent the ontological relations between classes. As
shown in Fig. 2, GPCRs, kinases, ICs and NRs are types
of proteins. GPCR binds GPCR ligands, and IC trans-
ports ions. Most GPCR ligands and ion are types of
chemical entity from ChEBI. Each protein has a target
development level (TDL), i.e., Tclin, Tchem, Tbio and Tdark.
The protein is linked to gene by ‘has gene template’ rela-
tion. The gene is associated with disease based on evi-
dence from the DISEASES database. The protein is also
associated with some organ, tissue, or cell line using

some evidence from TISSUES database. The full DTO
contains many more annotations and classifications
available at http://drugtargetontology.org/ .
DTO is implemented in OWL2-DL to enable further

classification by inference reasoning and SPARQL quer-
ies. The current version of DTO contains >13,000 clas-
ses and >220,000 axioms. The DTO contains 827
GPCRs, 572 kinase, 342 ion channels (ICs), and 48 NRs.

Modular implementation of the DTO combining auto-
generated and expert axioms
In DTO, each of the four drug target families has two
vocabulary files of gene and protein, respectively; other
DTO-native categories were created as separate vocabu-
lary files. Additional vocabulary files include quality,
role, properties, and cell line classes and subclasses. A
vocabulary file contains entities of a class, which only
contains “is-a” hierarchies. For example, the GPCR gene
vocabulary contains only GPCR gene list and its curated
classification. DTO core imports all the DTO vocabulary
files of four families, including genes and proteins, and
necessary axioms were added. Finally, DTO core was
imported into the DTO complete file, which includes
other vocabulary files and external files. External ontologies
used in DTO include: BTO, CHEBI, DOID, UBERON, Cell
Line Ontology (CLO), Protein Ontology (PRO), Relations
Ontology (RO) and Basic Formal Ontology (BFO). The
DTO core and DTO external are imported into the DTO
module with auto-generated axioms, which links entities
from different vocabulary files. Besides the programmatic-
ally generated vocabularies and modules, DTO also con-
tains manually generated vocabularies and modules, as
shown in Fig. 3.

Fig. 2 Conceptual high-level model of DTO. Including the main DTO (high-level) classes
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This modularization approach significantly simplifies the
maintenance of the ontology contents, especially when the
ontology is large in size. If the gene or protein list changes,
only the vocabulary file and the specific module file need to
be updated instead of the whole ontology. In addition, ex-
ternal and internal resources are maintained separately.
This design facilitates automated content updates from ex-
ternal resources including axioms generated using the
above-mentioned Java tool OntoJOG without the need to
re-generate manually axiomized domain knowledge, which
can be very resource intensive, by simply separating them
into two layers.

DTO to infer biologically and chemically relevant target
classes
Chemically relevant target classes inferred by DTO
In addition to detailed asserted target classifications, DTO
incorporates various other annotations including GPCR
endogenous ligands for GPCRs, transported ions for ICs,
gating mechanism for ICs, or pseudokinases. Endogenous
GPCR ligands were manually mapped to ChEBI and clas-
sified by chemical category such as amine, lipid, peptide,
etc. As ligands relate to receptor properties, GPCRs are
typically classified based on their ligands; however, the
ligand-based classification is orthogonal to the classifica-
tion based on class A, B, C, adhesion, etc. and it changes
as new ligands are deorphanized.
In DTO we therefore infer the ligand-based receptor, for

example aminergic GPCR, lipidergic GPCR, peptidic
GPCR, and orphan GPCR, which are of particular interest,
by defining their logical equivalent as follows:

aminergic GPCR ≡ GPCR and (‘binds molecular entity’
some amine);
lipidergic GPCR ≡ GPCR and (‘binds molecular entity’

some lipid);
peptidic GPCR ≡ GPCR and (‘binds molecular entity’

some peptide);
orphan GPCR ≡ GPCR and (not (‘binds molecular entity’

some ‘GPCR ligand’)).
An example for 5-hydroxytryptamine receptor is shown

in Fig. 4; the receptor is inferred as aminergic receptor
based on its endogenous ligand.
DTO has classified 39 aminergic GPCR, 37 lipidergic

GPCR, 119 peptide GPCR and 582 orphan GPCR.

Disease relevant target classes inferred by DTO
In a similar way, we categorized important disease targets
by inference based on the protein - disease association,
which were modeled as ‘strong’, ‘at least some’, or ‘at least
weak’ evidence using subsumption. For example, DTO uses
the following hierarchical relations to declare the relation
between a protein and the associated disease extracted from
the DISEASES database.
has associated disease with at least weak evidence from

DISEASES

– has associated disease with at least some evidence
from DISEASES
– has associated disease with strong evidence from

DISEASES

In the DISEASES database, the associated disease and
protein are measured by a Z-Score [23]. In DTO, the “at

Fig. 3 Illustration of the DTO modular architecture
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least weak evidence” is translated as a Z-Score between zero
and 2.4; the “some evidence” is translated as a Z-Score
between 2.5 and 3.5; and the “strong evidence” is translated
as a Z-Score between 3.6 and 5.
This allows querying or inferring proteins for a disease of

interest by evidence. Diseases related targets were defined
using following axioms (as illustrative as examples):

Putative infectious disease targets ≡ Protein and (‘has
associated disease with strong evidence from DISEASES’
some ‘disease of metabolism’);
Putative infectious disease targets ≡ Protein and (‘has
associated disease with strong evidence from DISEASES’
some ‘disease by infectious agent’);
Putative mental health disease targets ≡ Protein and
(‘has associated disease with strong evidence from
DISEASES’ some ‘developmental disorder of mental
health’)

We created such inference examples in DTO, including 29
metabolic disease targets, 36 mental health disease targets,
and 1 infectious disease target.

Modeling and integration of Kinase data from the LINCS
project
The Library of Network-Based Cellular Signatures (LINCS,
http://lincsproject.org/) program has a systems biology

focus. This project has been generating a reference “library”
of molecular signatures, such as changes in gene expression
and other cellular phenotypes that occur when cells are
exposed to a variety of perturbing agents. The project also
builds computational tools for data integration, access, and
analysis. Dimensions of LINCS signatures include the
biological model system (cell type), the perturbation
(e.g. small molecules) and the assays that generate di-
verse phenotypic profiles. LINCS aims to create a full
data matrix by coordinating cell types and perturba-
tions as well as informatics and analytics tools. We have
processed various LINCS datasets, which are available
at the LINCS Data Portal (http://lincsportal.ccs.mia-
mi.edu/) [37]. LINCS data standards [22] are the foun-
dation of LINCS data integration and analysis. We have
previously illustrated how integrated LINCS data can
be used to characterize drug action [38]; among those,
KINOME-wide drug profiling datasets.
We have annotated the KINOMEscan domains data

generated from HMS LINCS KINOMEscan dataset. The
annotation includes domains descriptions, names, gene
symbols, phosphorylation status, and mutations. To inte-
grate this information into DTO, we built a kinase
domain module following the modularization approach
described in section 2.2.
We started with an example scenario given by domain

expert shown below:

Fig. 4 Inferred classifications in DTO. a 5-hydroxytryptamine receptor as an aminergic receptor based on its endogenous ligand, b mevalonate
kinase as a putative metabolic drug target
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– ABL1 is a tyrosine-protein kinase with UNIPROT
ID P00519 (human). The sequence itself is 1131
AA long.

– The KINOMEscan domain named “ABL1” is a part
of the protein (AA Start/Stop S229/K512)
containing the “Pkinase-Tyr” domain (pFam
accession PF07714.14, AA Start/Stop I242/F493).

– The KINOMEscan domain named “ABL1(F317I)-
nonphosphorylated” is the same part of the protein
(AA Start/Stop S229/K512) with a mutation at
position 317 in which the wild type Phe is mutated
into Ile. pFam (accession PF07714.14) identifies the
same domain. In addition, it is annotated as
nonphosphorylated (see below).

– The KINOMEscan domain named “ABL1(F317I)-
phosphorylated” is the same protein, but instead of
nonphosphorylated it is phosphorylated (see below).

In this scenario, there are four major ontological con-
siderations or relations that need to be considered when
building an ontology module (Fig. 5).

Kinase domain and kinase protein
DTO uses the “has part” relation to link the kinase protein
and kinase domain, which reflects the biological reality that
the kinase domain is a part of the full protein.

Kinase domain variations: Mutated kinase domain and
phosphorylated kinase domain
A mutated kinase domain relates to its wild type kinase
domain by simply using “is mutated form of” relation.
Both, phosphorylated and nonphosphorylated forms of a
kinase domain are children of a kinase domain from which
they were modified to their current phosphorylation forms.
Since the KINOMEscan assay does not provide the specific
phosphorylation position information, the definition of a

phosphorylated form of a kinase domain, either mutated or
wild-type, is generally constituted using an ad-hoc axiom:
has part some “phosphorylated residue”. Note that
“phosphorylated residue” (MOD_00696) is an external class
imported from Protein Modification Ontology (MOD).

Pfam domain mapping to kinase domain and its variations
DTO data curators / domain experts have mapped all
kinase domains (including their variations) to Pfam fam-
ilies using sequence level data. This information was
captured by using “map to pfam domain” relation, which
links a kinase domain to a pfam domain.
Figure 5 shows how in DTO the above scenario is mod-

eled by connecting ABL1 Kinase domain with ABL1 protein
using relation is part of, as well as how kinase domain re-
lates to Pfam domain using map to pfam domain relation.
In this scenario, all the variations of ABL1 kinase domain
are mapped to the same Pfam domain.

Kinase gatekeeper and mutated amino acid residues
The kinase gatekeeper position is an important recogni-
tion and selectivity element for small molecule binding.
One of the mechanisms by which cancers evade kinase
drug therapy is by mutation of key amino acids in the
kinase domain. Often the gatekeeper is mutated. Located
in the ATP binding pocket of protein kinases, the gate-
keeper residue has been shown to influence selectivity
and sensitivity to a wide range of small molecule inhibi-
tors. Kinases that possess a small side chain at this
position (Thr, Ala, or Gly) are readily targeted by struc-
turally diverse classes of inhibitors, whereas kinases that
possess a larger residue at this position are broadly
resistant [39].
DTO includes a “gatekeeper role” to define residues an-

notated as gatekeeper. In the case of ABL1 kinase domain,
the THR74 within the ABL1 kinase domain is identified as

Fig. 5 Relations between protein, kinase domain, mutated kinase domain, phosphorylated kinase domain, and pfam domains in the DTO
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a gatekeeper by the data curator / domain expert. This
gatekeeper residue is further mapped to the 315th residue
located in the whole ABL1 kinase amino acid sequence.
DTO defines a term: THR315 in ABL1 kinase domain
with an axiom of “has role some gatekeeper role”. With an
equivalence definition of term “gatekeeper residue” as any-
thing that satisfied the condition of “has role some gate-
keeper role”, DTO can group all the gatekeeper residues in
this KINOMEscan dataset (Fig. 6).

DTO shines light on Tdark proteins
With integrated information about drug targets avail-
able in DTO, it is possible, for example to query in-
formation for Tdark kinases for which data in LINCS
is available. Kinases in the LINCS KINOMEscan assay
were annotated by their (kinase) domain, phosphoryl-
ation status, gatekeeper residue and mutations as
explained above. To illustrate this integration, we
conducted a simple SPARQL query to identify Tdark
(kinase) proteins that have a gatekeeper annotation in
DTO.
The SPARQL query we use to search DTO are as

following:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-
schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX dto: <http://www.drugtargetontology.org/dto/>

select? subject? subject_label? p_label? tdl_label.
Where {.
?subject rdfs:subClassOf? s1 .
?s1 owl:onProperty <http://purl.obolibrary.org/obo/

RO_0000087>; owl:someValuesFrom dto:DTO_00000002 .
?subject rdfs:label?subject_label .
?subject owl:equivalentClass?s2 .
?s2 owl:intersectionOf?list .
?list rdf:rest*/rdf:first? l .
?l owl:onProperty dto:DTO_90000020; owl:allValuesFrom? k .
?k rdfs:subClassOf* dto:DTO_61000000 .
?k rdfs:subClassOf?s3 .
?s3 owl:onProperty dto:DTO_90000020; owl:some

ValuesFrom?p .
?p rdfs:subClassOf* <http://purl.obolibrary.org/obo/

PR_000000001> .
?p rdfs:label?p_label .
?p rdfs:subClassOf?s4 .
?s4 owl:onProperty<http://www.drugtargetontology.org/

dto/DTO_91000020>; owl:someValuesFrom?TDL .
?TDL rdfs:label?tdl_label.
}
We found in total 378 (kinase) proteins containing gate-

keeper residue annotations. Of those 378 proteins, one
(Serine/threonine-protein kinase NEK10) is a Tdark pro-
tein, two (Mitogen-activated protein kinase 4 and Serine/
threonine-protein kinase WNK1) are Tbio proteins, 320 are

Fig. 6 Protégé screen shot shows the inferred subclasses of gatekeeper residue
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Tchem proteins, and 54 are Tclin proteins (Add-
itional file 1: Table S1). We then could look for the
associated disease and tissue expression information
in DTO. For example, the Serine/threonine-protein
kinase NEK10 (Tdark), which contains the gatekeeper
residue Thr301, is associated with breast cancer by “weak
evidence”, and expressed in liver, testis, trachea with
“strong evidence”. This way, DTO provides rich informa-
tion to prioritize proteins for further study, linked directly
to KINOMEscan results via the LINCS Data Portal.

Integration of DTO in software applications
DTO visualization
The drug target ontology consists of >13,000 classes
and >122,000 links. Our visualization has two options:
a) a static pure ontology viewer starting with the top-
level concepts featured by a collapsible tree layout
(mainly for browsing concepts) and b) a dynamic
search and view page where a search-by-class user
interface is combined with a collapsible force layout
for a deeper exploration. Figure 7 shows an excerpt
of an interactive visualization of the DTO. Users can
search for classes, alter the visualization by showing
siblings, zoom in/out, and alter the figure by moving
classes within the graph for better visualization.

Pharos: The IDG web portal
Pharos is the front-end Web Portal of the IDG project
(http://pharos.nih.gov). Pharos was designed and built to
encourage “serendipitous browsing” of a wide range of pro-
tein drug target information curated and aggregated from a
multitude of resources [11]. Via a variety of user interface
elements to search, browse and visualize drug target

information, Pharos can help researchers to identify and
prioritize drug targets based on a variety of criteria. The
DTO is an integral part of Pharos; its user interface has
been designed to integrate DTO at multiple levels of detail.
At the highest level, the user can get a bird’s-eye view of
the target landscape in terms of the development level
through the interactive DTO circle packing visualization
(http://pharos.nih.gov/dto); see Fig. 8. For any suitable set
of targets (e.g., as a result of searching and/or filtering),
Pharos also provides an interactive sunbrust visualization of
the DTO as a convenient way to help the user navigate the
target hierarchy. At the most specific level, each appropriate
target record is annotated with the full DTO path in form
of a breadcrumb. This not only gives the user context but
also allows the user to easily navigate up and down the tar-
get hierarchy with minimal effort.

Tin-X: Target importance and novelty explorer
TIN-X is a specialized, user-friendly Web-based tool to ex-
plore the relationship between proteins and diseases
(http://newdrugtargets.org/) extracted from the scientific
literature [13]. TIN-X supports searching and browsing
across proteins and disease based on ontological classifica-
tions. DTO is used to organize proteins and content can be
explored using the DTO hierarchy.

Discussion
The IDG program is a systematic effort to prioritize
understudied, yet likely druggable protein targets for the
development of chemical probes and drug discovery entry
points [3]. DTO covers proteins as prospective druggable
targets. Druggability can be considered from a structural
point of view, i.e. proteins to which small molecules can

Fig. 7 An excerpt of an interactive visualization of the DTO. The viewer is available at http://drugtargetontology.org/
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bind. This structural druggability is implicit in the selec-
tion of the IDG target families, GPCRs, kinases, ion chan-
nels and nuclear receptors for which there exist a large
number of small molecule binders. Another aspect of
druggability is the ability to induce a therapeutic benefit
by modulating the biological function of the protein that
the drug binds to. Establishing and prioritizing this func-
tional druggability is one of the main goals of the IDG
project. DTO includes knowledge of protein disease asso-
ciation and the target development level for all proteins as
a foundation to formally describe drug mechanisms of ac-
tions. DTO provides a framework and formal classification
based on function and phylogenetics, rich annotations of
(protein) drug targets along with other chemical, bio-
logical, and clinical classifications and relations to diseases
and tissue expression. This may facilitate the rational and
systematic development of novel small molecule drugs by
integrating mechanism of action (drug targets) with dis-
ease models, mechanisms, and phenotypes. DTO is
already used in the Target Central Resource Database
(TCRD - http://juniper.health.unm.edu/tcrd), the IDG
main portal Pharos (http://pharos.nih.gov/) and the Target
Importance and Novelty eXplorer (TIN-X - http://new-
drugtargets.org/) to prioritize drug targets by novelty and
importance. The search and visualization uses the inferred
DTO model, including the inferred classes described in
this report.

We have illustrated how DTO and other ontologies are
used to annotate, categorize and integrate knowledge
about kinases, including nuanced target information of
profiling data generated in the LINCS project. By doing
so, DTO facilitates contextual data integration, for ex-
ample considering the kinase domain or the full protein,
phosphorylation status or even information important for
small molecule binding, such as gatekeeper residues and
point mutations. As we develop DTO and other resources,
we will facilitate the otherwise challenging integration and
formal linking of biochemical and cell-based assays, phe-
notypes, disease models, omics data, drug targets and drug
poly-pharmacology, binding sites, kinetics and many other
processes, functions and qualities that are at the core of
drug discovery. In the era of big data, systems-level models
for diseases and drug action, and personalized medicine, it
is a critical requirement to harmonize and integrate these
various sources of information.
The development of DTO also provided an example of

building a large dataset ontology that can easily be extended
and integrated with other resources. This is facilitated by
our modularization approach. The modular architecture al-
lows the developers create terms in a more systematic way
by creating manageable and contained components. For ex-
ample, DTO vocabularies are created as separate files by
the OntoJOG java tool. Vocabulary files contain only clas-
ses and subsumption relations; the files are subsequently

Fig. 8 Visualization of the drug target ontology: using the circle packing layout available in the D3 visualization framework
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combined (imported) into the DTO core module. A similar,
separate module is created of classes from external ontol-
ogies; thus, cleanly separating responsibilities of ontology
maintenance while providing a seamless integrated prod-
uct for the users. OntoJOG auto-generated axioms import
these vocabulary modules. The manual (expert-created)
more complex axioms are layered on top. This way, when
an existing data resources is updated, one only needs to up-
date the corresponding auto-created file, e.g. the kinase vo-
cabulary, or target-disease associations from the DISEASES
database. Updating of the auto-generated modules (includ-
ing axioms) does not overwrite expert-created, more
complex axioms, which formalize knowledge that cannot
easily be maintained in a relational database. Separating
domain-specific vocabularies also improves maintenance by
multiple specialized curators and may improve future
crowd-based development and maintenance. The modular
design also makes it simpler to use DTO content in related
projects such as LINCS or BAO. Last but not least, the
modular architecture facilitates different “flavors” of DTO by
incorporating upper-level ontologies, such as BFO or SUMO,
via specific mapping (axiom) files; different DTO flavors can
be useful for different user groups, e.g. a native version for
typical end users of software products (such as Pharos or
TinX) or a BFO version for ontologists who develop more
expansive, integrated and consistent knowledge models.
Several drug target-related resources have been devel-

oped, such as the ChEMBL Drug Target Slim [40], where
GO annotations are available for drug targets in ChEMBL.
Protein Ontology recently enhanced the protein annotation
with pathway information and phosphorylation sites
information [41]. Comprehensive FDA-approved drug and
target information is available in DrugCentral, http://drug
central.org/ [34]. The Open Targets Partnership between
pharmaceutical companies and the EBI (http://www.open
targets.org/) is a complementary project with similarities to
IDG. It developed the Open Target Validation Platform
(//www.targetvalidation.org/) [42]. Both, IDG and Open
Target make use of ontologies for data standardization and
integration. Although there is significant overlap in the
content integrated by both projects, there is currently little
coordination with respect to data standards including on-
tologies and data representation. For example, Open Target
uses the Experimental Factor Ontology (EFO) [43] to
annotate diseases whereas IDG and the DTO uses DOID,
primarily because of its use in DISEASES. Ongoing ontol-
ogy mapping efforts will remedy these challenges. As DTO
evolves, we aim to include additional content sources and
ontologies to support integrative drug discovery and target
validation efforts via a semantic drug target framework.

Conclusions
DTO was built based on the need for a formal semantic
model for druggable targets including various related

information such as protein, gene, protein domain, pro-
tein structure, binding site, small molecule drug, mech-
anism of action, protein tissue localization, disease
association, and many other types of information. DTO
will further facilitate the challenging integration and formal
linking to biological assays, phenotypes, disease models,
drug poly-pharmacology, binding kinetics and many other
processes, functions and qualities that are at the core of
drug discovery. The first version of DTO is publically avail-
able via the website http://drugtargetontology.org/, Github
(http://github.com/DrugTargetOntology/DTO), and the
NCBO Bioportal (http//bioportal.bioontology.org/ontol-
ogies/DTO). The long-term goal of DTO is to provide such
an integrative framework and to populate the ontology with
this information as a community resource.

Additional file

Additional file 1: Table S1. SPARQL query results to identify kinase
domains in the KINOMEscan assay with gatekeeper annotations. Shown
are TDL classification, DTO ID, kinase domain description, and protein
name. (XLSX 28 kb)
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