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Abstract

Background: One important type of information contained in biomedical research literature is the newly discovered
relationships between phenotypes and genotypes. Because of the large quantity of literature, a reliable automatic
system to identify this information for future curation is essential. Such a system provides important and up to date
data for database construction and updating, and even text summarization. In this paper we present a machine
learning method to identify these genotype-phenotype relationships. No large human-annotated corpus of
genotype-phenotype relationships currently exists. So, a semi-automatic approach has been used to annotate a small
labelled training set and a self-training method is proposed to annotate more sentences and enlarge the training set.

Results: The resulting machine-learned model was evaluated using a separate test set annotated by an expert. The
results show that using only the small training set in a supervised learning method achieves good results (precision:
76.47, recall: 77.61, F-measure: 77.03) which are improved by applying a self-training method (precision: 77.70, recall:
77.84, F-measure: 77.77).

Conclusions: Relationships between genotypes and phenotypes is biomedical information pivotal to the
understanding of a patient’s situation. Our proposed method is the first attempt to make a specialized system to
identify genotype-phenotype relationships in biomedical literature. We achieve good results using a small training set.
To improve the results other linguistic contexts need to be explored and an appropriately enlarged training set is
required.

Keywords: Genotypes, Phenotypes, Genotype-phenotype relationship, Semi-automatic corpus annotation,
Self-training, Computational linguistics

Background
Many research experiments are being performed to dis-
cover the role of DNA sequence variants in human health
and disease and the results of these experiments are pub-
lished in the biomedical literature. An important category
of information contained in this literature is the newly
discovered relationships between phenotypes and geno-
types. Experts want to know whether a disease is caused
by a genotype or whether a certain genotype determines
particular human characteristics. This information is very
valuable for researchers, clinicians, and patients. There
exist some manually curated resources such as OMIM [1]
which are repositories for this information, but they do
not provide complete coverage of all genotype-phenotype
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relationships. Because of the large quantity of literature
possessing this information, a reliable automatic system
to identify these relationships for future curation is desir-
able. Such a system provides important and up to date data
for database and ontology construction and updating, and
even for text summarization.

Related work
Identifying relationships between biomedical entities by
analyzing only biomedical text
Finding the relationships between entities from infor-
mation contained in the biomedical literature has been
studied extensively and many different methods to
accomplish these tasks have been proposed. Generally,
current approaches can be divided into three types:
Computational linguistics-based (e.g., [2–4]), rule-based
(e.g., [5, 6]), and machine learning and statistical methods
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(e.g., [7, 8]). Furthermore some systems (e.g., [9–11]) have
combined these approaches and have proposed hybrid
methods.
RelEx [10] makes dependency parse trees from the text

and applies a small number of simple rules to these trees
to extract protein-protein interactions. Leroy et al. [12]
develop a shallow parser to extract relations between enti-
ties from abstracts. The type of these entities has not been
restricted. They start from a syntactic perspective and
extract relations between all noun phrases regardless of
their type. SemGen [9] identifies and extracts causal inter-
action of genes and diseases from MEDLINE citations.
Texts are parsed using MetaMap. The semantic type of
each noun phrase tagged by MetaMap is the basis of this
method. Twenty verbs (and their nominalizations) plus
two prepositions, in and for, are recognized as indicators
of a relation between a genetic phenomenon and a disor-
der. Sekimizu et al. [2] use a shallow parser to find noun
phrases in the text. The most frequently seen verbs in the
collection of abstracts are believed to express the relations
between genes and gene products. Based on these noun
phrases and frequently seen verbs, the subject and object
of the interaction are recognized.
Coulet et al. [4] propose a method to capture phar-

macogenomics (PGx) relationships and build a semantic
network based on relations. They use lexicons of PGx
key entities (drugs, genes, and phenotypes) from Phar-
mGKB [13] to find sentences mentioning pairs of key
entities. Using the Stanford parser [14] these sentences
are parsed and their dependency graphs1 are produced.
According to the dependency graphs and two patterns,
the subject, object, and the relationship between them
are extracted. This research is probably the closest to
the work presented here, the differences being that the
method to find relationships is rule-based and the enti-
ties of interest include drugs. Direct comparison with our
results is difficult because the genotype-phenotype rela-
tionships with their associated precision and recall values
are not presented separately. Temkin and Gilder [3] use
a lexical analyzer and a context free grammar to make
an efficient parser to capture interactions between pro-
teins, genes, and small molecules. Yakushiji et al. [15]
propose a method based on full parsing with a large-scale,
general-purpose grammar.
The BioNLP module [5] is a rule-based module which

finds protein names in text and extracts protein-protein
interactions using pattern matching. Huang et al. [6] pro-
pose a method based on dynamic programming [16] to
discover patterns to extract protein interactions. Katrenko
and Adriaans [8] propose a representation based on
dependency trees which takes into account the syntac-
tic information and allows for using different machine
learning methods. Craven [7] describes two learning
methods (Naïve Bayes and relational learning) to find

the relations between proteins and sub-cellular struc-
tures in which they are found. The Naïve Bayes method
is based on statistics of the co-occurrence of words.
To apply the relational learning algorithm, text is first
parsed using a shallow parser. Marcotte et al. [17]
describe a Bayesian approach to classify articles based
on 80 discriminating words, and to sort them accord-
ing to their relevance to protein-protein interactions.
Bui et al. [11] propose a hybrid method for extracting
protein-protein interactions. This method uses a set of
rules to filter out some PPI pairs. Then the remaining
pairs go through a SVM classifier. Stephens et al. [18],
Stapley and Benoit [19], and Jenssen et al. [20] discuss
extracting the relation between pairs of proteins using
probability scores.
Supervised learning approaches have been used to rec-

ognize concepts of prevention, disease, and cure and
relations among these concepts. Work using a standard-
ized annotated corpus beginning with Rosario and Hearst
[21] and continuing with the work of Frunza and Inkpen
[22, 23] and Abacha and Zweigenbaum [24, 25] has seen
good performance progress.
An approach to extract binary relationships between

food, disease, and gene named entities by Yang et al. [26]
has similarities to the work presented here because it is
verb-centric.
Most of the biomedical relation extraction systems

focus on finding relations between specific types of named
entities. Open Information Extraction (OIE) systems aim
to extract all the relationships between different types of
named entities. TextRunner [27], ReVerb [28], and OLLIE
[29] are examples of OIE systems. They first identify
phrases containing relations using part-of-speech patterns
and syntactic and lexical constraints, and then with some
heuristics detect related named entities and relation verbs.
PASMED [30] extracts diverse types of binary relations
from biomedical literature using deep syntactic patterns.
Advanced OIE systems [31, 32] have been proposed to
extract nominal and n-ary relations.
Increasing interest in neural network models, such as

deep [33], recurrent [34], and convolutional [35] net-
works, and their applications to Natural Language Pro-
cessing, such as word embeddings [36] have provided
a new set of techniques for relationship identification,
some which deal with relationships of a general nature,
such as Miwa and Bansal [37], and some which deal
with biomedical relationships, such as Jiang et al. [38].
Our method is a more traditional pipeline method—
identifying genotypes and phenotypes, and then using
surface, syntactic, and dependency features to identify
the relationships. So, rather than developing an exten-
sive overview of these neural network models, we instead
point the reader to Liu et al.’s excellent summary of these
methods [39].
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Identifying genotype-phenotype relationships using
biomedical text and/or other curated resources
The research works mentioned in the previous section
have been highlighted because they are concerned with
identifying various relations among biomedical entities by
analyzing only the natural language context in whichmen-
tions of these relations and entities are immersed. There is
a vast literature presenting research focussed specifically
on the genotype-phenotype relation. Most of this research
presents the discovery of novel genotype-phenotype rela-
tions based on biomedical evidence and is beyond the
intent of this paper and would be out of place to be sur-
veyed here. Incidentally, it is this type of literature that we
are interested in mining to extract genotype-phenotype
relationships.
While not finding genotype-phenotype relationships,

many research works are concerned with a related
question: disease-gene relationships. One of the earli-
est works in this area is that of Doughty et al. [40]
which provides an automated method to find cancer-
and other disease-related point mutations. The method of
Singhal et al. [41] to find disease-gene-variant triplets
in the biomedical literature makes strong use of a num-
ber of modern natural language tools to analyze the text
in which these triplets reside, but this method also uses
information mined from all of the PubMed abstracts, the
Web, and sequence analysis which requires the use of a
manually curated database. Another research work that
investigates gene variants and disease relationships is that
of Verspoor et al. [42]. Another work that investigates
mutation-disease associations is Mahmood et al. [43].
A recent review of algorithms identifying gene-disease
associations using techniques based on genome variation,
networks, text mining, and crowdsourcing is provided by
Opap and Mulder [44].
Other literature reports on techniques to extract

genotype-phenotype relationships combining biomedical
text mining with a variety of other resources. An exam-
ple of this type of technique is the pioneering work of
Korbel et al. [45]. Being the first to use evidence from
biomedical literature, it uses the correlation of gene and
phenotype mentions in the text together with compar-
ative genome analysis that depends on a database of
orthologous groups of genes to provide gene-phenotype
relationship candidates. Novel relationships that were not
mined directly from the text are reported. Another type
of technique, exemplified by the work of Goh et al. [46]
is the integration of curated databases to find genotype-
phenotype relationship candidates.
A work by Bokharaeian et al. [47] which is very close

to the research presented here uses two types of Sup-
port Vector Machines for their learning method and the
type of relationship being identified is between single-
nucleotide polymorphisms (SNPs) and phenotypes. This

work presents three types of association (positive, nega-
tive, and neutral) and three levels of confidence (weak,
moderate, and strong).
In each of the referred to works, either the presentation

of the genotype-phenotype relationship is complicated by
being part of a larger relationship, such as in the work
of Coulet et al. [4], or the method to suggest the rela-
tionship requires information found in manually curated
databases, such as the works of Korbel et al. [45], Goh
et al. [46], and Singhal et al. [41]. Our work then stands out
by being different on each of these fronts: we identify only
the genotype-phenotype relationships and we use only the
text in the PubMed abstract being analyzed. Also, we are
not attempting to find new relationships, rather we are
only mining those relationships that occur in the abstract.
In addition, we are using a machine learning method that
requires human annotated data. We view the method pro-
vided in this paper as complementing these othermethods
in the ways just described.
Briefly then, in this paper we discuss a semi-supervised

learningmethod for identifying genotype-phenotype rela-
tionships from biomedical literature.We start with a semi-
automatic method for creating a small seed set of labelled
data by applying two named entity relationship tools [48]
to an unlabelled genotype-phenotype relationship dataset.
This initially labelled genotype-phenotype relationship
dataset is thenmanually cleaned. Then using this as a seed
in a self-training framework, a machine learned model is
trained. It is worth noting that throughout this paper we
do not take into account the phenotypes at the subcellular
level. The evaluation results are reported using precision,
recall and F-measure derived from a human-annotated
test set. Precision (or positive predictive value) is the ratio
of correct relationships in all relationships found and can
be seen as a measure of soundness. Recall (or sensitiv-
ity) is the ratio of correct relationships found compared
to all correct relationships in the corpus and can be used
as a measure of completeness. F-measure combines pre-
cision and recall as the harmonic mean of these two
numbers.

Semi-supervised learning
To train machine learning systems, it is easier and cheaper
to obtain unlabelled data than labelled data. Semi-
supervised learning is a bootstrapping method which
incorporates a large amount of unlabelled data to improve
the performance of supervised learning methods which
lack sufficient labelled data.
Much of the semi-supervised learning in Computational

Linguistics uses the iterative bootstrapping approach, ini-
tially proposed by Riloff and Shepherd [49] for building
semantic lexicons, which later evolved into the learning
of multiple categories [50]. These methods have further
transformed to the semi-supervised learning of multiple
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related categories and relations as a method to enhance
the learning process [51].
Instead of using this category of semi-supervised learn-

ing, we use a methodology called self-training. Ng and
Cardie [52] proposed this type of semi-supervised learn-
ing to combat semantic drift [53, 54], a problem with
the bootstrapped learning of multiple categories. They
used bagging and majority voting in their implementa-
tion. A set of classifiers get trained on the labelled data,
then they classify the unlabelled data independently. Only
those predictions which have the same label by all clas-
sifiers are added to the training set and the classifiers
are trained again. This process continues until a stop
condition is met. For Clark et al. [55] a model is sim-
ply retrained at each iteration on its labelled data which
is augmented with unlabelled data that is classified with
the previous iteration’s model. According to this sec-
ond method, there is only one classifier which is trained
on labelled data. Then the resulting model is used to
classify the unlabelled data. The most confident predic-
tions are added to the training set and the classifier is
retrained on this new training set. This procedure repeats
for several rounds. We adopt this latter methodology in
our work.

Rule-based andmachine learning-based named entity
relationship identification tools
Ibn Faiz [48] proposed a general-purpose software
tool for mining relationships between named entities
designed to be used in both a rule-based and a machine
learning-based configuration. This tool was originally
tailored to recognize pairs of interacting proteins and
has been reconfigured here for the purpose of iden-
tifying genotype-phenotype relationships. Ibn Faiz [48]
extended the rule-based method of RelEx [10] for iden-
tifying protein-protein interactions. In this method the
dependency tree of each sentence is traversed according
to some rules and various candidate dependency paths are
extracted.
This extended method is able to detect the more general

types of relationships found between named entities in
biomedical text. For example the rule-based system is able
to find relationships with the following linguistic patterns,
where PREP is any preposition, REL is any relationship
term, and N is any noun:

• ENTITY1 REL ENTITY2; e.g., GENOTYPE causes
PHENOTYPE

• Relations in which the entities are connected by one
or more prepositions:

– ENTITY1 REL (of | by | to | on | for | in |
through | with) ENTITY2; e.g., PHENOTYPE is
associated with GENOTYPE

– (PREP | REL | N)+ (PREP)(REL | PREP | N)*
ENTITY1 (REL | N | PREP)+ ENTITY2; e.g.,
expression of PHENOTYPE by GENOTYPE

– REL (of | by | to | on | for | in | through | with |
between) ENTITY1 and ENTITY2, e.g.,
correlation between GENOTYPE and
PHENOTYPE.

• ENTITY1 (/ | \ | −) ENTITY2; e.g.,
GENOTYPE/PHENOTYPE correlation.

In addition to the linguistic patterns this method requires
a good set of relationship terms. To find protein-protein
interaction relationships, a list of interaction terms (a
combination of lists from RelEx [10] and Bui et al. [11])
was used by Ibn Faiz to elicit protein-protein interactions.
In the work reported below an appropriate set of relation-
ship terms for genotype-phenotype relationships has been
developed and used in the rule-based system to recognize
this type of relationship.
Ibn Faiz [48] also used his general-purpose tool in a

machine learning approach using a maximum entropy
classifier and a set of relationship terms appropriate for
identifying protein-protein interactions. This approach
considers the relationship identification problem as a
binary classification task. The Stanford dependency
parser produces a dependency tree for each sentence. For
each pair of named entities in a sentence, proteins in
this case, the dependency path between them, the parse
tree of the sentence, and other features are extracted.
These features include: dependency features coming from
the dependency representation of each sentence, syntactic
features, and surface features derived directly from the raw
text (the relationship terms and their relative position).
The extracted features along with the existence of a rela-

tionship between named entity pairs in a sentence make a
feature vector. A machine learning model is trained based
on the positive (a relationship exists) and negative (a rela-
tionship does not exist) examples. To avoid sparsity and
overfitting problems, feature selection is used. Because
the maximum entropy classifier and the linguistic depen-
dency and syntactic features are the common foundation
for this technique, only an appropriate set of relationship
terms need to be provided for genotype-phenotype rela-
tionship identification. In the work reported below, the
same set of relationship terms as used in the rule-based
approach are used in the machine-learning approach.

Methods
A block diagram showing the complete workflow is pro-
vided in Fig. 1. Details of this workflow are presented in
the following.

Curating the data
As mentioned before we did not have access to any
data prepared specifically for the genotype-phenotype
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Fig. 1Workflow

relationship identification task, so our first task was to
collect a sufficient number of sentences containing phe-
notype and genotype names that include both genotype-
phenotype relationships and non-relationships. Three
sources of data have been used in this project:

• Khordad et al. [56] generated a corpus for the
phenotype name recognition task. This corpus is
comprised of 2971 sentences from 113 full papers. It
is designated as the MKH corpus henceforth.

• PubMed was queried for “genotype and phenotype
and correlation” and 5160 abstracts were collected.

• Collier et al. [57] generated and made available to us
the Phenominer corpus which contains 112 PubMed
abstracts. Both phenotypes and genotypes are
annotated in this corpus, but not their relationships.
The annotation was carried out with the same
experienced biomedical annotator who accomplished
the GENIA corpus [58] tagging. Phenominer
contains 1976 sentences with 1611 genotypes and 472
phenotype candidates. However, there are two issues
with this corpus:

– The phenotypes at the cellular level are
labelled in the Phenominer corpus. Our work
on genotype-phenotype relationships does not
consider this type of phenotype because the
linguistic context is different from

relationships involving the non-cellular level
phenotypes.
In all of the steps explained below, this type of
phenotype is included. We report precision,
recall, and F-measure with and without this
type of phenotype involved in
genotype-phenotype relationships labelled in
the test set.

– Generic expressions (e.g., gene, protein,
expression) referring to a genotype or a
phenotype earlier in the text are tagged in this
corpus as genotypes and phenotypes. For
example locus is tagged as a genotype in the
following sentence: “Our original association
study focused on the role of IBD5 in CD; we
next explored the potential contribution of
this locus to UC susceptibility in 187
German trios.”
The work reported here only considers
explicitly named genotypes and phenotypes.
Thus, including these examples will have a
slightly negative effect on the trained model
and any relationships that include entities that
are named implicitly will not be identified in
the test set, reducing the precision and recall
slightly.
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Genotype and phenotype names were already anno-
tated in the third resource and phenotypes were already
annotated in the first resource. So, we had to annotate
genotypes in the first resource and genotypes and pheno-
types in the second resource. BANNER [59], a biomedical
NER system, has been used to annotate the genotype
names and an NER system specialized in phenotype name
recognition [56] has been used to annotate the phenotype
names. Only sentences with both phenotype and genotype
names have been selected from the above resources to
comprise our data and the remaining sentences have been
ignored. In this way, we have collected 460 sentences from
the MKH corpus, 3590 sentences from the PubMed col-
lection and 207 sentences from Phenominer. These 4257
sentences comprise our initial set of sentences. All the
sentences are represented by the IOB label model (Inside,
Outside, Beginning). The phenotype names and genotype
names are tagged by their token offset from the beginning
of each sentence because they can occur multiple times in
a sentence.

Training set
At the beginning of the project we did not have any
labelled data. Instead of using annotators knowledge-
able in biomedicine to label a sufficiently large corpus of
biomedical literature, we decided instead to use the previ-
ously described relationship identification tools modified
to work with our data and use their agreed upon out-
puts, cleaned by a non-expert, as our labelled training set.
This methodology has allowed us to partially evaluate this
method of semi-automatic annotation.
As mentioned previously, the rule-based and machine

learning-based systems for identifying biomedical rela-
tionships have been appropriately tailored to this task by
supplying a set of genotype-phenotype relationship words
that are appropriate for identifying this type of biomed-
ical relationship. This set of relationship words includes
a list of 20 verbs and two prepositions (in and for) from
Rindflesch et al. [9] which encode a relationship between
a genetic phenomenon and a disorder and the PPI rela-
tionship terms from Ibn Faiz’s work [48] which we found
to apply also to genotype-phenotype relationships.2
Our initial corpus is separately processed by the

rule-based and the machine learning-based relationship
identification tools. Each of these tools find some rela-
tionships in the input sentences. After the results are
compared, those sentences that contain at least one agreed
upon relationship3 are initially considered as the train-
ing set. From the original corpus, 519 sentences com-
prised the initial training set as the result of this process.
However, as these tools have been developed as general
named entity relationship identifiers, we could not be
certain that even their similar results produce correctly
labelled examples. Therefore, the initial training set was

further processed manually. Some interesting issues were
observed.

1. Some sentences do not state any relationship
between the annotated phenotypes and genotypes.
Instead, these sentences only explain the aim of a
research project. However, these sentences are
labelled as containing a relationship by both tools;
e.g., “The present study was undertaken to
investigate whether rare variants of TNFAIP3 and
TREX1 are also associated with systemic sclerosis.”

2. The negative relationships stated with the word “no”
are considered positive by both tools; e.g., “With the
genotype/phenotype analysis , no correlation in
patients with ulcerative colitis with the MDR1 gene
was found.”

3. Some sentences from the Phenominer corpus are
substantially different compared to other sentences,
because of the two issues we discussed earlier about
this corpus. The phenotypes below the cellular level
have different relationships with genotypes. For
example, they can change genotypes while the
supercellular-level phenotypes are affected by
genotypes and are not capable of causing any change
to them.

4. Some cases have both tools making the same
mistakes: suggesting incorrect relationships (i.e.,
negative instances are suggested as positive
instances) or missing relationships (i.e., positive
instances are given as negative instances).

After making corrections (see issues 2 and 4) and delet-
ing sentences exhibiting issues 1 and 3, 430 sentences
remained in the training set. These corrections and dele-
tions were made by the first author. To increase the train-
ing set size, 39 additional sentences have been labelled
manually and have been added to the training set. The
data set is skewed: there are few negative instances. To
address this imbalance, 40 sentences without any relation-
ships have been selected manually and have been added to
the training set. As shown in Table 3, the final training set
has 509 sentences. There are 576 positive instances and
269 negative instances.

Test set
To ensure that the training set and the test set are inde-
pendent, the test set is chosen from the initial set with
the training set sentences removed. To select the sen-
tences to be included in the test set, the results from
processing our initial set with the two general purpose
relationship identification tools have been used. In some
cases both tools identify relationships from the same sen-
tence but the relationships differ. For example in sentence
“Common esr1 gene alleles-4 are unlikely to contribute
to obesity-10 in women, whereas a minor importance of
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esr2-19 on obesity-21 cannot be excluded.” the machine
learning-based tool finds a relationship between esr2-19
and obesity-21 but the rule-based tool claims that there is
also a relationship between esr1 gene alleles-4 and obesity-
10. Since we were confident that this type of sentence
would provide a rich set of positive and negative instances,
this type of sentence is extracted to make our initial test
set of 298 sentences.
In order for the test set to provide a reasonable evalua-

tion of the trained model, the sentences must be correctly
labelled. A biochemistry graduate student was hired to
annotate the initial test set. Pairs of genotypes and pheno-
types are extracted from each sentence and her task was to
indicate whether there is any relationship between them.
Issues 1 and 3 discussed in the previous section have

been observed by the annotator in some of the sentences.
Also, there are some cases where she is not sure if there
is a relationship or not. Furthermore, she disagreed with
the phenotypes and genotypes annotated in 54 sentences.
After deleting these 54 problematic sentences the final test
set comprises 244 sentences (which contain 536 positive
instances and 287 negative instances). See Table 3.

Unlabelled data
After choosing the training and testing sentences from the
initial set of sentences, the remaining sentences have been
used as unlabelled data. The unlabelled set contains 3440
sentences. A subset of these (408 sentences containing 823
instances which approximates the number found in the
original training set) are used in the self-training step4.

Training a model with the machine learning method
Now that we have a labelled training set, it is pos-
sible to train a model using a supervised machine
learning method to be evaluated on the test set. We
have applied the maximum entropy classifier devel-
oped for relationship identification (described above) [48]
for our genotype-phenotype relationship identification
application. A genotype-phenotype pair is represented by
a set of features derived from a sentence. Tables 1 and 2
provide the list of features.
Dependency parse trees can contain important infor-

mation in the dependency path between two named enti-
ties. Figure 2 shows the dependency tree produced by
the Stanford dependency parser5 for the sentence “The
association of Genotype1 with Phenotype2 is confirmed.”.
The dependency path between the phenotype and the
genotype is “Genotype1-prep_of -association-prep_with-
Phenotype2”. Association is the relationship term in this
path and prep_of and prep_with are the dependency rela-
tionships related to it. The presence of a relationship term
can be a signal for the existence of a relationship and
its grammatical role along with its relative position gives
valuable information about the entities involved in the
relationship. Sometimes two entities are surrounded by
more than one relationship term. Key term is introduced
to find the relationship term which best describes the
interaction. Ibn Faiz [48] used the following steps to find
the key term: when one step fails the process continues to
the next step, but if the key term is found in one step the
following steps are ignored.

Table 1 List of dependency features

Features Description

Relationship term Root of the portion of the dependency tree connecting pheno-
type and genotype

Stemmed relationship term Stemmed by MALLET

Relative position of relationship term Whether it is before the first entity, after the second entity or
between them

The relationship term combinedwith the dependency relation-
ship

To consider the grammatical role of the relationship term in the
dependency path.

The relationship term and its relative position

Key term Described in Ibn Faiz’s four step method [48]

Key term and its relative position

Collapsed version of the dependency path All occurrences of nsubj/nsubjpass are replaced with subj,
rcmod/partmod with mod, prep x with x and everything else
with O, a placeholder to indicate that a dependency has been
ignored.

Second version of the collapsed dependency path Only the prep_* of dependency relationships are kept.

Negative dependency relationship A binary feature that shows whether there is any node in
the path between the entities which dominates a neg depen-
dency relationship. This feature is used to catch the negative
relationships.

prep_between A binary feature that checks for the existence of two consecu-
tive prep_between links in a dependency path.
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Table 2 List of syntactic and surface features

Features Description

Syntactic features

Stemmed version of relationship term in the Least Common Ancestor
(LCA) node of the two entities

If the head6 of the LCA node of the two entities in the syntax tree is a
relationship term then this feature takes a stemmed version of the head
word as its value, otherwise it takes a NULL value.

The label of each of the constituents in the path between the LCA and
each entity combined with its distance from the LCA node

Surface features

Relationship terms and their relative positions The relationship terms between two entities or within a short distance (4
tokens) from them.

1. Any relationship term that occurs between the
entities and dominates them both in the dependency
representation is considered to be the key term.

2. A word is found that appears between the entities,
dominates the two entities, and has a child which is a
relationship term. That child is considered to be the
key term.

3. Any relationship term that occurs on the left of the
first entity or on the right of the second entity and
dominates them both in the dependency
representation is considered to be the key term.

4. A word appears on the left of the first entity or on the
right of the second entity, dominates the two entities,
and has a child which is a relationship term. That
child is considered to be the key term.

Self-training algorithm
The first model is trained using the training set and the
machine learning method described earlier. To improve
the performance of our model, a self-training process
has been applied. Figure 3 outlines this process. This
process starts with the provided labelled data and unla-
belled data. The labelled data is used to train a model
which is used to tag the unlabelled data. In most self-
training algorithms the instances with the highest confi-
dence level are selected to be added to the labelled data.
However, as has been observed in some self-training algo-
rithms, choosing the most confident unlabelled instances
and adding them to the labelled data can cause overfitting

[60]. We encountered a similar overfitting when we added
themost confident unlabelled instances. So we considered
the following two measures to select the best unlabelled
instances.

• The confidence level must be in an interval. It must
be more than a threshold α and less than a specified
value β .

• The predicted value of the selected instances must be
the same as their predicted value by the rule-based
system.

In each iteration an at most upper-bounded number of
instances are selected and added to the labelled data to
prevent adding lots of incorrectly labelled data to the
training set in the first iterations when the model is not
powerful enough to make good predictions.
We used relationship identification output from the

PPI-tailored rule-based tool as an added level of conser-
vatism in the decision to add an unlabelled instance to
the training set. It has only moderate performance on
genotype-phenotype relationship identification. So, using
this tool’s advice along with the confidence level means
that the relationship must be of a more general nature
than just genotype-phenotype relationships. However, at
some point this conservatism holds the system back from
learning broader types of relationships in the genotype-
phenotype category. Therefore this selection factor is used
only for the first i iterations, and after i iterations the best

Fig. 2 Dependency tree related to the sentence “The association of Genotype1 with Phenotype2 is confirmed”
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Fig. 3 The self training process

unlabelled data is chosen based only on the confidence
level. Again, here, the confidence level must be in an
interval.
This proposed self-training algorithm has been tried

with various configurations and each variable in this pro-
cess has been given several values. Each resulting model
has been tried separately with our test set and the best sys-
tem is selected based on its performance on the test set. In
our best configuration 15 unlabelled instances are added
to the labelled data in each iteration, in the first 5 itera-
tions predictions made by the rule-based system are taken
into account, the least confidence level is 85%, the high-
est confidence level is 92% and the process stops after 6
iterations.

Results and discussion
The proposed machine-learned model has been evalu-
ated using the separate test set manually annotated by
a biochemistry graduate student. The distribution of our
data (number of sentences and number of genotype-
phenotype pairs in each set) is illustrated in Table 3. The
numbers of positive instances and negative instances in
the unlabelled data are not available.
Table 4 shows the results obtained by the super-

vised learning algorithm and the proposed self-training
algorithm. The results of testing Ibn Faiz’s rule-based and

Table 3 Distribution of data in our different sets

Data set Sentences Instances Positive
instances

Negative
instances

Training set 509 845 576 269

Test set 244 823 536 287

Unlabelled data 408 823 N/A N/A

machine learning-based relationship identification tools
[48] originally configured to find protein-protein inter-
actions have been included in the table for comparison
purposes. Although these tools were not configured to
be used for our application, as can be seen in the table,
the PPI-configured tools, especially the rule-based system,
have good precisions. This performance by the rule-based
system led us to consider the rule-based predictions as
one factor in choosing which unlabelled data to add to the
labelled data. The recalls of the PPI-configured tools are
quite low as one would expect. The precision results mean
that there are some linguistic structures that are common
between protein-protein and genotype-phenotype rela-
tionships and these structures are useful for distinguishing
correct from incorrect relationship candidates.The low
recall values indicate there are some genotype-phenotype
relationship contexts which are specific to this type of
relationship and the relation terms used to configure the
general purpose relationship tools are key to finding these
relationships.
As illustrated in Table 4, we get good performance by

using a small initial training set and then we are able
to gain a modest improvement by using our proposed
self-training algorithm. The initial results with the
small training set were: precision: 76.47, recall: 77.61,
F-measure: 77.03. The self-training algorithm gave the

Table 4 Evaluation results

Method Precision Recall F-measure

Supervised learning method 76.47 77.61 77.03

Self-training method 77.70 77.84 77.77

PPI-configured ML-based tool 75.19 53.17 62.29

PPI-configured rule-based tool 77.77 38.04 51.09
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following results: precision: 77.70, recall: 77.84, F-
measure: 77.77. The self-training step provided only
slightly more than 10% extra training examples (90 rela-
tionship instances added to the original 845 instances), so
the modest performance improvement is not unexpected.
The following details will help to better appreciate these

results. First, we have not attempted to find the best
parameter settings by using the test set to determine these
settings (this would lead to over-fitting to the test set).
Rather, we have experimented with various parameter set-
tings to understand how the semi-supervisedmethodmay
work.We are using themodified learnedmodel on the test
set only to give precision and recall values to gauge the
appropriateness of this technique. Second, instead of hav-
ing a separate validation set and choosing the best model
based on its performance with this set, every learned
model (682 models were developed using 22 parameter
settings and 1 to 31 iterations of the semi-supervised
training step) has been tested with the test set. So, the
results can be interpreted as: if a particular parameter
setting and number of iterations of the semi-supervised
algorithm would have produced the best model based
on its performance on the validation set, this parameter
setting and number of iterations of the semi-supervised

algorithm would give the results based on its performance
on the test set. Rather than reporting the best F-measure
over all parameter settings, the data was studied to see
certain trends. In particular, the reported values are for
the best performing model in the semi-supervised iter-
ation that happens before a decline in precision that is
witnessed in almost all of the parameter settings. This we
determined to be the sixth iteration. We chose this trend
because the semi-supervised method at this point had
provided the best ratio of true to false positives which we
considered a worthwhile goal. Although some parameter
settings performed better in terms of precision than these
reported results, it was felt that using this (almost) global
trend in precision as a cutoff point would be a better mark
of the performance rather than looking solely at a single
parameter setting that might be seen to be over-fitted to
the test set.
Graphs of the precision, recall, and F-measure val-

ues for each parameter setting for the 31 iterations of
the semi-supervised learning algorithm are presented in
Figs. 4, 5, and 6, respectively. Table 5 highlights the max-
imum values for each of these measures. The values for
each of these measures for all 682 parameter settings can
be found in https://github.com/mkhordad/Pheno-Geno-

Fig. 4 Precision values on the test set for all 22 parameter settings for 31 semi-supervised learning iterations

https://github.com/mkhordad/Pheno-Geno-Extraction
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Fig. 5 Recall values on the test set for all 22 parameter settings for 31 semi-supervised learning iterations

Fig. 6 F-measure values on the test set for all 22 parameter settings for 31 semi-supervised learning iterations
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Table 5 Maximum values for precision, recall, and F-measure

Precision Recall F-Measure

Parameter setting Maximum value Iteration Maximum value Iteration Maximum value Iteration

0.82 0.92 0.7699 4 0.8138 17 0.7880 19

0.83 0.92 0.7714 5 0.8287 31 0.7911 31

0.84 0.92 0.7709 7 0.8250 30 0.7889 26

0.85 0.92 0.7780 5 0.8268 31 0.7935 17

0.86 0.92 0.7709 5 0.8156 13 0.7870 12

0.87 0.92 0.7743 5 0.8063 20 0.7788 20

0.88 0.92 0.7698 5 0.8231 23 0.7907 23

0.85 0.93 0.7770 6 0.8268 24 0.7870 12

0.86 0.93 0.7757 5 0.8324 25 0.7856 25

0.87 0.93 0.7689 4 0.8287 15 0.7857 19

0.88 0.93 0.7704 7 0.8343 20 0.7946 17

0.89 0.93 0.7665 1 0.8399 27 0.7923 30

0.85 0.94 0.7755 9 0.8250 31 0.7836 14

0.86 0.94 0.7712 2 0.8250 31 0.7849 19

0.87 0.94 0.7741 5 0.8436 26 0.7961 26

0.88 0.94 0.7689 5 0.8194 25 0.7849 13

0.89 0.94 0.7715 6 0.8156 13 0.7892 13

0.85 0.95 0.7694 2 0.8156 20 0.7866 11

0.86 0.95 0.7688 2 0.8287 19 0.7896 15

0.87 0.95 0.7694 2 0.8268 31 0.7848 11

0.88 0.95 0.7705 7 0.8231 28 0.7875 14

0.89 0.95 0.7681 10 0.8212 21 0.7848 13

Extraction. There are two general trends in all of the
parameter settings that we tried. First, there is a short
increase in precision followed by a slow decline in this
measure. Second, a short decline in recall is followed
by a general increase in this measure until the point
(approximately iteration 15 to 17) when few new instances
are being added to the training set. See Fig. 7 for a
presentation of the addition of instances to the train-
ing set for each parameter setting. It should be noted
that shortly after iteration 15, few instances are avail-
able to be added to the training set. The minimum and
maximum value range proves to be too narrow in some
instances, but eventually all experimental settings lack
instances to add. The precision and recall curves tend
to flatten out at about this point. It would be inter-
esting to see how an increase in unlabelled instances
would affect the outcome of the semi-supervised
learning.
Recalling the work of Singhal et al. [41], they investi-

gated disease-gene-variant triplets, which is close to the
focus of this paper, and they provided precision, recall,
and F-measure values based on the performance of their

system on two datasets curated from human-annotated
PubMed articles concerning prostate and breast cancer.
The precision, recall, and F-measure results were 0.82,
0.77, and 0.794, and 0.742, 0.73, and 0.74, respectively for
the two datasets. Also recalling the work of Bokharaeian
et al. [47], they investigated relationships between SNPs
and phenotypes. Looking at their reported results that are
closest to what is reported here, they achieve precision up
to 69.2, recall up to 68.7, and F-measure up to 71.3. With
the understanding that the datasets are different and the
relationships being identified are closely related but not
exactly the same, we can say that the method presented
here, which is based only on the natural language text
surrounding the genotype-phenotype relationship, com-
pares favourably with the results obtained by these other
methods.
Looking forward, some improvements to the current

model can be suggested. Some of these improvements
are typical of the machine-learning paradigm. First is the
balance of positive and negative examples in the train-
ing set. While we tried to add some negative sentences
to our data to make it more balanced, Table 3 shows that

https://github.com/mkhordad/Pheno-Geno-Extraction
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Fig. 7 Instances added for all 22 parameter settings for 31 semi-supervised learning iterations on the test set

our data is still biased: the number of negative instances
is less than the number of positive instances. A more
balanced training set is likely to improve the performance
of the trained model. Second, the quality of the original
set of examples which forms the seed for the self-training
algorithm affects the ability of that algorithm to increase
the size of our training set. Because the best results were
reached only after 6 iterations, the last training set has
only 935 instances. Our suggestion is to add more man-
ually annotated sentences to the original seed training
set, so that the first model made by this set makes better
predictions with a stronger level of confidence.
In addition to these methodological improvements, the

similarity of false positives and false negatives can indi-
cate some aspects of the problem to focus on. For instance,
our system incorrectly finds relationships in sentences
which address the main objective of the research being
discussed, i.e., those sentences suggesting the possibility
of a relationship rather than stating a relationship. Finding
and ignoring such sentences would improve the results.
As mentioned before, certain relationships contained

in the Phenominer corpus are undetectable in the test
set data because the relationship identification system
does not have the appropriate biological and linguistic
knowledge to recognize them. Table 6 shows the results
after deleting the Phenominer sentences from our test

set. The improved results (precision: 80.05, recall: 81.07,
F-measure: 80.55) demonstrate the true performance of
the relationship tool to identify relationships for which it
was constructed to find. Detecting these problematic rela-
tionships would require some significant changes to the
system.
First, the current system does not recognize relation-

ships that deal with sub-cellular phenotypes. To include
this type of phenotype, biomedical knowledge will need
to be enhanced to identify these phenotypes in the text.
Our system was built to consider only clinically observ-
able phenotypes. Additionally, the linguistic knowledge
will need to be supplemented because the direction of
this relationship is different. Second, the current sys-
tem is not able to extract complicated relations where
a pronoun refers to a phenotype or a genotype in the
same sentence or the previous sentences (anaphora),
or where a non-explicit noun phrase is used to refer

Table 6 Results after deleting Phenominer sentences from the
test set

Method Precision Recall F-measure

Supervised learning method 80.20 79.79 80.00

Self-training method 80.05 81.07 80.55
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(e.g., the gene), or where a part of or the whole geno-
type or phenotype is omitted (ellipsis) in a sentence.
For example in the following sentence “Serum levels of
anti-gp70 Abs-7 were closely correlated with the pres-
ence of renal disease-16, more so than anti-dsDNA Abs-
24.” only the relationship between anti-gp70 Abs-7 and
renal disease-16 is identified by our system but the
more complicated relationship between renal disease-
16 and anti-dsDNA Abs-24 is missed. Resolving these
problems will require a more sophisticated linguistic
model, the focus of computational linguistics research
generally.

Conclusions
To summarize, our contributions in this paper are the
following:

• Reconfiguring a generic relationship identification
method to perform genotype-phenotype relationship
identification.

• Proposing a semi-automatic method for making a
small training set using two relationship
identification tools.

• Developing a self-training algorithm to enlarge the
training set and improve the genotype-phenotype
relationship identification results.

• Analysing the results and specifying the types of
sentences and relationships that our system has poor
performance finding and giving some suggestions on
how to improve the results.

In conclusion, we have generated a machine-learned
model dedicated solely to the identification of genotype-
phenotype relationships mentioned in biomedical text
using only the surrounding text. With a test corpus, we
have provided a baseline measure of precision, recall, and
F-measure for future comparison. An analysis of the false
negatives and false positives from this corpus have sug-
gested some natural language processing enhancements
that would decrease the false negative and false positive
rates. From a biological perspective, determining the type
of relationship, e.g., does the relationship describe a direct
expression of a gene or is the relationship indicative of a
pathway effect, would be an important aspect of the rela-
tionship to mine from the text and is an interesting next
research direction to consider.

Endnotes
1A directed graph representing dependencies of words

in a sentence.
2 Seven verbs from [9] are not found in [48]. The approx-

imately 270 relationship words (808 surface forms) can
be found in https://github.com/mkhordad/Pheno-Geno-
Extraction. These words have a good overlap with the

current relations in the UMLS Semantic Network that
were used in Sharma et al.’s verb-centric approach [61].

3Genotype-phenotype pairs that have a relationship are
the positive instances. Genotype-phenotype pairs that do
not have a relationship are the negative instances. The
sentences mentioned have both positive and negative
instances.

4 Each self-training iteration requires each sentence to
be evaluated using the current model. Using the full unla-
belled set proved to be too computationally expensive for
the experimental setting, so a subset was used instead.

5 http://nlp.stanford.edu/software/stanford-
dependencies.shtml

6Collins’ head finding rule [62] has been used.
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