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Abstract

Background: High-throughput technologies produce huge amounts of heterogeneous biological data at all cellular
levels. Structuring these data together with biological knowledge is a critical issue in biology and requires
integrative tools and methods such as bio-ontologies to extract and share valuable information. In parallel, the
development of recent whole-cell models using a systemic cell description opened alternatives for data integration.
Integrating a systemic cell description within a bio-ontology would help to progress in whole-cell data integration
and modeling synergistically.

Results: We present BiPON, an ontology integrating a multi-scale systemic representation of bacterial cellular
processes. BiPON consists in of two sub-ontologies, bioBiPON and modelBiPON. bioBiPON organizes the systemic
description of biological information while modelBiPON describes the mathematical models (including parameters)
associated with biological processes. bioBiPON and modelBiPON are related using bridge rules on classes during
automatic reasoning. Biological processes are thus automatically related to mathematical models. 37% of BiPON
classes stem from different well-established bio-ontologies, while the others have been manually defined and
curated. Currently, BiPON integrates the main processes involved in bacterial gene expression processes.

Conclusions: BiPON is a proof of concept of the way to combine formally systems biology and bio-ontology. The
knowledge formalization is highly flexible and generic. Most of the known cellular processes, new participants or
new mathematical models could be inserted in BiPON. Altogether, BiPON opens up promising perspectives for
knowledge integration and sharing and can be used by biologists, systems and computational biologists, and the
emerging community of whole-cell modeling.
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Background
Systems biology emerged as a promising framework to
integrate the whole-cell for different model-organisms
[1–3]. However, current cell representations usually refer
to specific model organisms, which limits in practice the
transfer of whole-cell models to non-model organisms.
In contrast, bio-ontologies are a suitable framework for
systematically describing biological objects and thus fa-
cilitating knowledge transfer among organisms [4, 5]. In
this paper, we address the following question: how to
combine systems biology and bio-ontology?
Systems biology has its roots in engineering science and

conceptualizes the cell as a system composed of interacting
sub-systems [1, 6–11]. In this context, cellular processes are
typically described as biological subsystems whose inputs
(e.g. metabolites, proteins, or sequences, etc.) are converted
into outputs by dedicated molecular machines. The mo-
lecular machines are usually composed of proteins, con-
sume energy and chemical building blocks, and display a
characteristic of operation. This operation can be static or
dynamic, deterministic or/and stochastic and is generally
described by a formal mathematical model having inputs,
outputs and model parameters. For example, a mathemat-
ical model can be a nonlinear function or a set of ordinary
differential equations. The systemic representation of cells
is an efficient framework to interrelate all cellular entities
(metabolites, proteins, cellular processes, sequences, etc.),
together with their physical or biochemical properties (e.g.
kinetic parameters, etc.) [1, 2]. System biologists thus need
now an adequate format of systemic description of the
whole cell to transfer and share their models. Existing stan-
dardized formats for file exchange are adequate to exchange
mathematical models for specific cell processes [12, 13],
but remain limited to describe a whole-cell model, i.e. a sys-
temic multi-scale representation of interacting complex
subsystems.
Bio-ontologies have been developed to formalize and

integrate different pieces of biological knowledge [4].
The well-established Gene Ontology (GO) integrates the
molecular functions of gene products (GO-MF) with cel-
lular components (GO-CC) and biological processes
(GO-BP) [14]. The combined sub-ontologies are com-
monly used to annotate and characterize gene products
[5, 15], but there are also other useful bio-ontologies.
The Ontology of Microbial Phenotypes links the pheno-
types of bacteria to cellular processes [16]. The Ontology
of Genes and Genomes provides a list of genes from dif-
ferent organisms including prokaryotes [17], while the Se-
quence Ontology (SO) provides a detailed description of
polymers and polymer sequence patterns [18]. At another
level, the Pathway Ontology (PW) provides a classification
of metabolic, signaling and altered eukaryotic pathways
[19]. Independently, ChEBI (Chemical Entities of Bio-
logical Interest) acts as a reference for the classification of

general chemicals according to their chemical structures
and modifications [20]. The Systems Biology Ontology
(SBO) provides a controlled vocabulary for kinetic param-
eters and mathematical models of biological processes
[21]. Taken together, the existing bio-ontologies cover the
concepts necessary to the systemic representation of cells,
i.e., biological processes, molecules and mathematical
models of biological processes. However, the systemic rep-
resentation of the whole cell cannot be handled without
the addition of further logical relations between existing
ontologies.
In this paper, we demonstrates that a systemic multi-

scale representation of biological processes, the typical
perspective of systems biology, can be formally described
as an ontology, and how this ontology can be built based
on existing sparse bio-ontologies. As a proof of concept,
we developed the Bacterial interlocked Process ONtol-
ogy (BiPON) and showed that a) heterogeneous bio-
logical processes can be described with the systemic
representation and b) be linked automatically to math-
ematical models, and that c) information about these
processes can be enriched by automatic reasoning. As a
use case, we focus on bacterial gene expression pro-
cesses, which are well established and representative of
known biological processes. They cover, among many
other things, combination of polymers, sequence pat-
terns, single molecules or complexes within biological
processes, as well as cyclic or branched-point processes.
We demonstrated on the use case how a systemic repre-
sentation of living cells can be formally described and in-
tegrated into an ontological model, and what benefits
ensue from automatic reasoning on this ontology.

Methods
Description of biological processes, corpus building and
entity tagging
In the absence of an exhaustive controlled vocabulary in
systems biology, we use hereafter the notion of a “bio-
logical process”, which comprises the notions of (a) “bio-
logical reaction” and “biochemical reaction” as in KEGG
(Kyoto Encyclopedia of Genes and Genomes [22]) Reac-
tions database, (b) “biological phenomenon”, “biological
pathway” and “biochemical pathway” as in PW or KEGG
Pathway database, and finally (c) “biological process” as
in GO-BP. Moreover, we use the notion of a “chemical
entity” to denote any type of biological compound, in-
cluding metabolites, proteins, protein complexes, poly-
mers, to cite a few.
To develop a dedicated systemic representation for

each biological process involved in the bacterial gene ex-
pression, we applied the standard state-of-art approach
of system engineering. The approach involves two main
tasks. (A) We first gathered up-to-date available bio-
logical information about the biological process. (B) We
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then converted the biological information into a sys-
temic representation using boxes, arrows, inputs and
outputs, and a mathematical model. We describe and
apply below the approach (A) and (B) on a specific ex-
ample (the formation of the 30S initiation complex) for
illustrative purposes. Note that the approach is generic
and can be applied on any biological process.

(A)We collected up-to-date knowledge about the bio-
logical processes from scientific literature (books,
peer-reviewed original articles, and reviews; see Add-
itional file 1 for a list of references). We primarily fo-
cused on figures since they facilitate the conversion
from biological knowledge to the systemic represen-
tation in the task (B) (as illustrated in Fig. 1).

Elementary steps composing a biological process are
usually found in research articles while books or re-
view articles provide global descriptions of processes.
In a few cases, we used figures from didactic web
sites and we checked the biological information
using original research papers systematically.

(B)We then converted the selected figure into a
systemic representation. Despite the heterogeneity of
sources, several common features were identified
from these schemas (as illustrated Fig. 1): title (t),
arrows (a) and shapes (s) with legend or label (l).

Tagging entities of interest
Given a graphical representation of any biological process
with sub-processes (Fig. 1):

Fig. 1 From biological knowledge to systemic description: Identification of the entities of interest for the process of initiation of translation in
prokaryotes on a representative figure extracted from Wikimedia. Entities for systemic model design are marked by the following symbols: title (t);
arrows divided in bifid at origin or head (a) or divided in more than two parts (a*) or closing cycle (dotted); shapes (s) with legend or label (l).
Depending on their relative position regarding arrows (origins or heads), three types of biological entities (BioE) are identified (i, f, c): an
unframed BioE at arrow-origins (i) represents an initial reactant of a process (input); an unframed BioE at arrow-heads (f) represents a final product
of a process (output); a framed BioE (c) represents a product (output) of a process that is the reactant (input) of the next process, and thus that
consumed BioE
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� The title (t) defines the name of the main biological
process that embeds the succession of all identified
individual processes.

� The arrows are identified as sub-reactions that cor-
respond to the individual processes. Three types of
arrow are distinguished on Fig. 1: linear (dotted),
bifid at origin or head (a) and divided in more than
two parts (a*).

� The shapes (s) are identified as the chemical
entities (BioE) that participate in a biological
process and are related to legends or labels (l).
Depending on their relative position regarding
arrows (origins or heads), three types of BioE are
identified (i, f, c): an unframed BioE at arrow-
origins (i) represents an initial reactant of a
process (input), called iBioE; an unframed BioE at
arrow-heads (f ) represents a final product of a
process (output), called fBioE; a framed BioE (c)
represents a product of a process (output) which
is the reactant of the next process (input), called
cBioE (for consumed BioE).

Note that

� Arrows that correspond to BioE recycling within a
process are not considered (as illustrated by the
dotted arrow in Fig. 1).

� Any BioE may be an initial reactant and/or a
product of several distinct processes.

Biological processes as interlocked systems
After identifying the entities necessary in the biological
process, we organized them as a main system composed
of different interlocked sub-systems of lower granularity,
as follows.
An elementary process is formally defined by its par-

ticipants, i.e. the input(s) and output(s). The standard
systemic representation of an elementary process corre-
sponds to a box framed by its input(s)/output(s) (see
Fig. 2a). In this graphical representation, inputs are
placed on the left of the box at the tail of the incoming
arrows, while outputs are placed on the right of the box
at the head of the outgoing arrows (Fig. 2a). In our bio-
logical context, an elementary process corresponds to a
biological reaction and the inputs are the BioEs required
for the production of the BioEs that served as outputs.

Multi-scale representation of processes
In a multi-scale representation, the same process is rep-
resented at different levels of granularity (Fig. 2b). On
the top level of granularity, there is a unique aggregated
process that leads to output(s) (B1 in a dark gray box).
An aggregated process can be formally defined either by
its input(s)/output(s), like an elementary process, or by
the composition of successive sub-processes. On the
bottom level of granularity, there is a succession of
elementary processes that lead to the same output(s) as
those produced by other levels (B3 in white boxes). Via
decomposition and aggregation of processes, we can

Fig. 2 Systemic decomposition of biological processes. a Input/output representation of a generic process. b Decomposition of a biological
process (e.g. initiation of translation) (level B1) into sub-processes of higher granularity, down to the decomposition into elementary processes
(level B3). Abbreviations are EP for Elementary Process, MAP for Middle Aggregated Process, ncBioE for next consumed biological entity
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navigate between the different levels of granularity
(represented by a gray scale on Fig. 2b).

Systemic model of the main process (level B1 on fig. 2b)
The fully aggregated process (at the lowest granularity
level) is the main process having iBioEs as inputs and
fBioEs as outputs. In the graphics, it is represented by a
box and labeled according to the name of the global re-
action. The box is framed by BioEs, one iBioE per input
of the main process on the left, and one fBioE per out-
put of the main process, on the right.

Systemic model of elementary processes (level B3 on fig. 2b)
An elementary process is a sub-reaction of an aggregated
process (arrows in Fig. 1), having typically one or two in-
puts and one or two outputs. In Fig. 1, such a reaction
usually concerns bifid arrows (case a). In the case of ar-
rows divided into more than two parts (case a* on Fig. 1),
and thus implicating at least three inputs or outputs, the
process is further split into a sequence of elementary
processes through the addition of new consumed BioEs
(ncBioE), using additional literature information when
available. Two successive elementary processes which
share a common participant, i.e. an output of the first
elementary process is an input of the second one
(cBioE). Elementary processes follow each other until all
outputs of the main process are produced (B1 level).
Note that cBioEs and ncBioEs never appear as partici-
pants in the main process (the fully aggregated one).

Systemic model of intermediate processes (level B2 on
fig. 2b)
Intermediate processes provide intermediary levels of
granularity between the main process and the elementary
processes. In the graphical representation, an intermediate
process consists of a box that merge boxes of elementary
processes. Intermediate processes define sub-processes of
specific biological interest. They are built by aggregation
of successive elementary processes, following biological
considerations, e.g. about the presence of irreversible reac-
tions, the relevance of an intermediate process and of the
special nature of a BioE, or the capability to experimen-
tally detect or quantify a specific BioE.

Mathematical models of biological systems
In systems biology, the community has investigated and
developed numerous mathematical models [23, 24] en-
abling the description, analysis, and simulation of bio-
logical processes. Mathematical models can be very
different in nature (static, dynamical, stochastic, etc.)
and depend on various parameters and variables. One
biological process can be described with several math-
ematical models. For instance, protein translation can be
modeled by deterministic [25] or by stochastic models

[26]. Conversely, several biological processes can have
the same type of mathematical model, such as the
Michaelis-Menten equation for the kinetics of different
enzymes. In the bio-ontology BiPON, we formalize the
relation between biological processes and their mathem-
atical description(s).

BiPON design
BiPON is a bio-ontology that is composed of two sub-
ontologies: bioBiPON and modelBiPON. bioBiPON
organizes the systemic description of biological informa-
tion, while modelBiPON describes the mathematical
models associated with biological processes. In the fol-
lowing, a class that has no sub-class for the property
is_a is called a leaf-class. BiPON has been designed
using the software editor Protégé 5 and the Description
Logic Manchester syntax [27].

bioBiPON ontological model
Main classes
BioBiPON contains four main classes, which corresponds
to the main structure of major bio-ontologies: Biological
process (GO:0008150), Chemical entity (CHEBI:24,431),
Sequence feature (SO:0000110) and Cellular component
(GO:0005575).
The classes Biological process and Cellular component

include a selection of GO classes, while the Chemical
entity class includes a selection of ChEBI classes for
small molecules, of SO classes for gene products (e.g.
primary transcript), and terms of the KEGG database
orthology (KO) for proteins [22]. The Sequence feature
class includes a selection of SO classes for sequence pat-
terns. Finally, classes which were not present in existing
bio-ontologies were created manually.
The Biological process class contains as subclasses the

biological processes and sub-processes (irrespective of
their granularity level). The Chemical entity class con-
tains as subclasses the participants (BioE) of a biological
process, e.g. molecules, proteins, molecular complexes,
polymers, etc. The Sequence feature class contains as sub-
classes any sequence patterns carried by molecules. Poly-
mers such as DNA and RNA (which belong to the class
Chemical entity) act as template (have a matrix role): they
carried different sequences patterns (e.g. promoter se-
quences, transcription factor binding site, ribosome bind-
ing site, pausing site for ribosomes, etc.). Some of these
polymers can participate in several processes. For instance,
the same mRNA can be an input of the translation process
and of the mRNA degradation process. However, the mo-
lecular complexes or proteins involved in these distinct
biological processes recognize the sequence patterns. For
instance, in Figs. 1 and 2, the specific mRNA sequence
patterns named “GGAGG” and “AUG” are involved in
two successive elementary processes. Effectively, the
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inputs of these processes are thus the sequence patterns,
and not the whole mRNA itself. When a process is
decomposed as in the previous example, we choose to use
the sequence patterns of polymers as process participants
instead of the molecules themselves. In addition, sequence
patterns and molecular complexes have to interact and
thus have to share a common localization on chromo-
somes or mRNAs. We defined the Cellular component
class, which contains as subclasses the parts of cells in
which molecules can be localized, and the polymers that
carried sequence patterns or bounded chemical entities.
In the case of bacteria (a cell without organelle), Cellular
component class contains the cytosol and polymers such
as chromosome or mRNA.

Class hierarchy and subclass property Inside the four
main classes, subclasses are organized according to the
is_a relation to get a Directed Acyclic Graph (DAG) struc-
tured model. Unlike in a tree, a class can not only have
several subclasses but also be a subclass of several classes
(multiple inheritance). The hierarchy of the classes that
were imported from GO, ChEBI and SO is kept within the
DAG model. Processes, chemical entities and patterns are
placed as leaves of the bioBiPON DAG model.

Importation and interoperability For all classes and
properties that were imported from other bio-ontologies
(e.g. translation initiation; see Fig. 3), we kept the ori-
ginal references, such as the Internationalized Resource
Identifier (IRI) and Identifier (id) in bioBiPON, to ensure
interoperability. In BiPON, the SO classes of gene prod-
ucts are now considered as subclasses of the Chemical
entity class instead of the Sequence feature class. Due to
this semantic change, we considered these SO classes as
new classes: we gave a new IRI and kept the original one
with the hasDbXref annotation (e.g. hasDbXref
SO_0000185). When a class refers to a term in an exist-
ing database (such as KO), the original id is also kept
with the hasDbXref annotation (e.g. prokaryote transla-
tion initiation factor IF-3: hasDbXref K02520; see Fig. 3).

Labeling For any imported class, the original label is still
used in bioBiPON. For any newly created class, we have
manually defined a label that was the most representative
of the biological process, molecule or sequence repre-
sented by the class. The final label can be (a) a term com-
monly used in the biological schemes of peer-reviewed
articles that we considered, or else (b) a Wikipedia term
and, otherwise, (c) a term that we chose by taking into ac-
count length, completeness and non-ambiguity criteria.

Fig. 3 Ontological representation of the formation of 30S–mRNA complex in bioCMON into interlocked subsystems. The aggregated process
formation of 30S–mRNA complex is composed of four elementary processes: “free 30S fixation”, “A-site hinding”, “mRNA binding translational
preinitiation” and “mRNA scanning for start codon recognition”. Whenever a class was imported from an existing bio-ontology (GO, ChEBI, KEGG
or SO), the original Id is indicated
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Main properties
Properties were partly imported from the Relation
Ontology (RO) [28] and partly created manually. Two
main properties, has_participant (RO_0000057; (IN-
VERSE OF participates_in RO_0000056)) and has_part
(BFO_0000051) were used to formalize elementary or
aggregated processes, respectively. The has_participant
property includes the sub-properties has_input
(RO_0002233), has_output (RO_0002234), and has_ca-
talyst. In the ontological model, they are represented by
arrows between the biological processes and the BioEs
(see Fig. 3). These properties are used to formalize rela-
tions between elementary processes. The has_part prop-
erty is transitive and is further specialized into two
intransitive sub-properties called cyclication_of and
has_subprocess. The has_subprocess is further specialized
into starts_with, ends_with, has_intermediate_process
and has_fork_process disjoint sub-properties that can be
used to formalize aggregated processes. The has_part
property enables the decomposition of an aggregated
process along the granularity levels down to elementary
processes, while the has_subprocess property manages
the relation between two successive granularity levels.
starts_with, ends_with, has_intermediate_process and
has_fork_process participate in the management of suc-
cessive processes that are part of a process of the same
granularity level. The properties starts_with and ends_-
with define which sub-process starts and ends the aggre-
gated process respectively. We further define the property
has_fork_process in the case of several sub-processes start
an aggregated process. The properties has_intermediate_-
process define the sub-processes that occur between the
starting and the ending sub-processes.
The located_in property is used to define the

localization of Chemical entity class inside the cell.
As mentioned above, the Chemical entity and Se-

quence feature classes are in relation through the is_mo-
tif_of, binds_to and has_template properties. The
transitive property is_motif_of localizes the sequence
patterns in a larger one and finally in a polymer. The
binds_to property (a located_in sub-property) defines the
sequence where a Chemical entity binds a polymer. The
has_template property points out a sequence that affects
the recruitment of a specific Chemical entity.

Formal definition of biological processes We used the
Protégé editor, which is based on Description Logics, to
formalize the classes. We distinguished two kinds of clas-
ses, namely primitive classes, which are described by ne-
cessary conditions (e.g. subclass of other classes), and
complex classes, which are defined by equivalence using
both necessary and sufficient conditions. Thus, the formal
definition of classes follows templates that may combine

universal (ONLY) and existential (SOME) restrictions
[27]. The structure of bioBiPON is displayed on Fig. 4.
Elementary process class is related to chemical entity or

sequence features classes via has_participant sub-
properties by the following general class axiom:
elementary_process ≡ has_input SOME chemical entity

AND has_output SOME chemical entity AND has_input
ONLY (chemical entity OR sequence feature) AND
has_output ONLY (chemical entity OR sequence feature).
In the previous definition, Chemical entity is a primi-

tive class (defined as a subclass of bioBiPON), while ele-
mentary_process is a class defined by equivalence using
two kinds of restrictions. Any subclass of elementary_-
process must have at least one Chemical entity subclass
as an input and as an output. Moreover, the inputs and
the outputs of a subclass of elementary_process must be
either subclasses of Chemical entity, either subclasses of
Sequence feature.
For instance, the elementary process subclass Free 30S

fixation in Fig. 3 is defined as follows:
Free 30S fixation ≡ has_input SOME IF3 AND has_in-

put SOME 30S AND has_output SOME 30S–IF3 complex
AND has_input ONLY (IF3 OR 30S) AND has_output
ONLY 30S IF3 complex.
In this definition of the class Free 30S fixation, we spe-

cialized the type of chemical entity that at least one in-
put (output) must satisfy. For instance, one input has to
belong to the class IF3, a sub-class of chemical entity.
Aggregated process class are related to cellular process

class via has_part sub-properties according to the fol-
lowing general class axiom:
aggregated_process ≡ has_subprocess SOME cellular

process AND has_subprocess ONLY cellular process.
For instance, the aggregated process subclass Formation

of 30S–mRNA complex in Fig. 3 is defined as follows:
Formation of 30S–mRNA complex ≡ starts_with

SOME free 30S fixation AND has_intermediate_process
SOME A site hiding AND has_intermediate_process
SOME mRNA binding, translation preinitiation AND
ends_with SOME mRNA scanning for start codon rec-
ognition AND has_subprocess ONLY (free 30S fixation
OR A site hiding OR mRNA binding, translation preini-
tiation OR mRNA scanning for start codon recognition).
Fig. 3 illustrates the ontological representation of the

formation of 30S–mRNA complex into aggregated and
elementary processes using the classes and properties of
bioBiPON.

modelBiPON ontological model
The ontological model called modelBiPON aims at relat-
ing generic biological processes to their mathematical
models including parameters. Knowledge about math-
ematical models was gathered from two sources. A first
flat source of knowledge was provided by systems biology
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specialists who established a list of generic, useful and well-
established models of biological processes. The second
source of knowledge was a selection of ontology classes that
were directly imported from SBO, more specifically from
the mathematical expression (SBO:0000064) and the system
description parameters (SBO:0000545) classes. These clas-
ses and subclasses include fairly enough pieces of know-
ledge for laws and parameters, respectively.

Main classes
We defined four main classes: Modeled process, React-
ant, Mathematical expression and System description pa-
rameters (Fig. 4).
The Modeled process class corresponds to the process

class of SBO (SBO:0000375) and contains, as sub-
classes, specific biological processes of bioBiPON for
which it exists a mathematical model. The Reactant
class is an abstract representation of the inputs and
outputs of a Modeled process. Reactant is specialized
into two disjoint subclasses, Motif Entity and Chem-
ical, corresponding to the subclasses of Sequence fea-
ture and Chemical entity of bioBiPON that are

inputs/outputs of a Biological process (see Fig. 4). The
Chemical class is further specialized into the disjoint
subclasses Free Chemical and Bound Chemical. Sub-
classes of Free Chemical represent the chemical en-
tities that are freely available to interact with any
other chemical entities in the cytoplasm. The sub-
classes of Bound Chemicals represent molecular com-
plexes composed of one or several chemical entities
that are bound specifically to a sequence pattern. The
Modeled process and Reactant classes are abstract
representations and are therefore at the top level of
the modelBiPON ontology.
Mathematical expression and System description pa-

rameters include subclasses from SBO and subclasses
that were defined according to the mathematical models.
For the classes that were imported from SBO, we care-
fully kept the IRIs and the Ids to ensure interoperability
between ontologies.

Main properties
In modelBiPON, the sub-properties of has_participant in
bioBiPON were used to relate the classes of Modeled

Fig. 4 BiPON structure: focus on automatic reasoning on bioBiPON and modelBiPON. Dotted red arrows represent the inferred relation between
classes of bioBiPON and modelBiPON using automatic reasoning, while straight red arrows stand for the standard is_a property. Abbreviations are
GO: Gene Ontology; SO: Sequence Ontology; ChEBI: Chemical Entities of Biological Interest; SBO: System Biology Ontology; BFO: Basic Formal
Ontology; RO: Relation Ontology
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process and Reactant while the sub-properties of has_part
managed the decomposition of Modeled process. Two new
types of properties were defined (Fig. 4): has_model and
has_parameter. The has_model property links the Mod-
eled process and Mathematical expression classes while
the has_parameters property links the Mathematical ex-
pression and System description parameter classes (Fig. 4).

Formal definition of modeled processes
The Modeled process subclasses are defined by the specifi-
city of their participants (belonging to the class Reactant)
or by the nature of their discriminating sub-processes. For
instance, the most common process belonging to Modeled
process is elementary chemical process. By definition, an
elementary chemical process has exclusively participants
in the Chemical class:
elementary chemical process ≡ elementary process

AND has_input ONLY Chemical AND has_output ONLY
Chemical.
In the same way, a Sequence binding process corre-

sponds to the elementary process of binding a FreeChe-
mical to a Motif Entity and leads to the formation of a
BoundChemical. This process is formalized as follows:
sequence binding process ≡ elementary process AND

has_input SOME Motif entity AND has_input SOME
FreeChemical AND has_output SOME BoundChemical
AND has_input ONLY (Motif entity OR FreeChemical)
AND has_output ONLY BoundChemical.
Aggregated processes that are included in Modeled

process might be defined by the nature of their discrim-
inating sub-processes such as Matrix dependent process
and Polymer production process:
matrix dependent process ≡ aggregated process AND

has_part SOME Sequence binding process.
polymer production process ≡ matrix dependent

process AND has_part SOME Release process.
In the previous formal definition, Release process is

also a subclass of Modeled process.
Finally, a Modeled process can be refined using the

biological property of its participants. For example, the
transcription process and translation process are defined
in modelBiPON as follows:
Transcription process ≡ native polymer production

process AND has_output SOME primary_transcript.
Translation process ≡ native polymer production

process AND has_output SOME pre-process polypeptide.

BiPON consistency with GO, ChEBI, SO and SBO
To evaluate the logical consistency of BiPON with respect
to GO, ChEBI, SO and SBO, we imported the whole set of
classes of each ontology into BiPON. Then, we ensured lo-
gical consistency using the HermiT 1.3.8 reasoner within
the Protégé editor [29].

Results
Reasoning on bioBiPON using SWRL rules
Since the BiPON ontology is described using DL syntax,
automatic reasoning can be performed within the DL
SROIQ framework [29]. However, reasoning on classes
alone has its limitations, especially when negations or
properties intersection need to be handled [30]. This dif-
ficulty can be bypassed by instantiation of classes. We
first instantiated leaf-classes with a unique and distinct
individual indiv: i_NameOfTheClass, s_NameOfThe-
Class, and p_NameOfTheClass for the Chemical entity,
Sequence feature and Biological process leaf-classes re-
spectively. Leaf-classes were restricted to these single-
tons. We assume that the unique individual indiv is
considered as the typical member of its class. Other in-
dividuals can be instances of that class, but they will all
be inferred to be the same as the typical individual indiv,
since each singleton leaf-class is defined as equivalent to
{indiv}. After the instanciation, we designed rules in Se-
mantic Web Rule Language (SWRL), as supported in
Protégé, to formalize additional constraints between
classes and properties [30].

Automatic input/output building of aggregated processes
In the rest of the paper, we call “sub-process of a process
p “any process that is related to p by a has_subprocess
property.
Elementary processes are manually defined by specifying

the classes of their inputs and outputs using has_input
and has_output properties, while aggregated processes are
manually defined by the composition of their sub-
processes (see Fig. 5a). The naive composition of has_par-
ticipant (has_input or has_output) and has_subpro-
cess sub-properties would result in the list of all inputs/
outputs of elementary processes. However, intermediate
macromolecules that are produced and consumed by two
successive elementary processes should be removed from
the inputs/outputs of aggregated processes (see Fig. 5b).
To overcome this difficulty, we built the inputs/out-

puts of aggregated processes by automatic reasoning
using SWRL rules in two steps.

Step1: We identified a first set of input(s) and output(s)
of the aggregated process: (a) the input(s) of all sub-
processes that start the aggregated process and (b) the
output(s) of the sub-process that ends the aggregated
process. In formal language, we have:
Let p_agg be an aggregated process. IF pagg starts
with p_sub and p_sub has the molecule chem_i as an
input, THEN p_agg has the molecule chem_i as an
input. And IF pagg has as fork process p_sub and
p_sub has the molecule chem_i as an input, THEN
p_agg has the molecule chem_i as an input. And IF
pagg ends with p_sub and p_sub has the molecule
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chem_i as an output, THEN p_agg has the molecule
chem_i as an output.

Step2: We identified a second set of inputs and outputs
of the aggregated process, containing any input or
output that is not produced then consumed by two
successive intermediate sub-processes. To do so, we
first had to determine the successive order of two sub-
processes in an aggregated process. We defined the
property precedes as follows. Since by definition two
successive elementary processes are linked by one inter-
mediate molecule, the process that provides the mol-
ecule (as output) precedes the process that consumes
the molecule (as input).
Let p_agg be an aggregated process and p_sub1 and
p_sub2 be some distinct processes. IF p_sub1 and
p_sub2 are sub-processes of p_agg and p_sub1 has the
molecule chem_i as an output and p_sub2 has the mol-
ecule chem_i as an input, THEN p_sub1 precedes
p_sub2.

Then any output of the first sub-process that is
not an input of the second sub-process, will be an
output of the aggregated process. Conversely, any in-
put of the second sub-process that is not an output
of the first sub-process will be an input of the aggre-
gated process.
Let p_agg be an aggregated process that starts with a

sub-process, let p_sub1 and p_sub2 be some successive
processes, and let chem_i and chem_j be different mole-
cules. IF p_sub1 has the molecule chem_i as an output
and p_sub2 has the molecule chem_i as an input and
p_sub2 has the molecule chem_j as an input, THEN
p_agg has the molecule chem_j as an input.

Automatic identification of consumed participants
We also identified intermediate molecules that are con-
sumed by an aggregated process, e.g. molecules that are
produced and then consumed by two successive elemen-
tary processes.

Fig. 5 Inputs/outputs aggregation for the formation of 30S–mRNA complex. a Formal description of formation of the 30S–mRNA complex and
manual has_input and has_output properties of elementary processes. b Inferred has_input, has_output and consumes properties that were
designed using SWRL rules after HermiT automatic reasoning

Henry et al. Journal of Biomedical Semantics  (2017) 8:53 Page 10 of 16



IF an aggregated process p_agg is composed of sub-
processes p1 and p2. IF p_agg starts with process
p_starts and ends with process p_ends, IF the macro-
molecule m is an output of p1 and the macromolecule
m is an input of p2 and p1 is different from p2, IF p1 is
different from p_ends, and IF p2 is different from
p_starts, THEN p_agg consumes m.
An example, the aggregation of inputs and outputs of

the “formation of 30S–mRNA complex” process is given
on Fig. 5. The process is represented twice, before
(Fig. 5a) and after (Fig. 5b) aggregation. In Fig. 5b, we
highlight the three intermediate molecules (30S–IF3
complex, 30S–IF3-IF1 complex and 30S–mRNA preini-
tiation complex at RBS) that were identified with the
consumes property. These three intermediate molecules
do not appear as participants in the aggregated process.

Automatic identification of key participants
For some elementary processes, an input participant can
also appears as an output participant. Such a participant
is a reactant that is necessary to the realization of the
process, but that is not modified in the process. This
participant can then be considered as a key component
of the elementary process. An example of such a partici-
pant is the enzyme that catalyzes an enzymatic reaction.
Identification of the key participants of aggregated pro-
cesses is obtained after automatic aggregation of inputs
and outputs. To identify these key participants by auto-
matic reasoning, we designed the new property has_-
key_element with an SWRL rule (see Additional file 2 for
the formal definition):
IF m is a macromolecule and p has m both as an input

and as an output THEN p has m as a key element.
The key elements of a process can further be linked to

this process by means of the inverse property of has_-
key_element: key_element_of. A macromolecule may be a
key element of several different processes, which in turn
may be involved in different cellular functions. The
property key_element_of enables to find all processes for
which a macromolecule appears as a key element. For
instance, the “Class I translation release factor” (RF,
BiPON_00000361) is key_element_of the processes “ArfA
system rescue” (BiPON_00001193) and “bacterial cyto-
plasmic translational termination” (BiPON_00002268).
By rating this statement, we automatically point out the
dual functional role of RF in the translation process. In
total, we obtained 44 key elements for the processes
contain in the bacterial gene expression.

Reasoning on bioBiPON and modelBiPON
To establish relationships between the sub-ontologies
bioBiPON and modelBiPON, we applied automatic in-
ference. We first defined the Reactant class and

subclasses of modelBiPON by bridge rules with bioBi-
PON subclasses. Inference then proceeds in two steps
based on the formal definition of modelBiPON (Fig. 4
red dotted arrow): (1) a linking operation between
Chemical entity or Sequence feature of bioBiPON and
Reactant of modelBiPON, and then (2) a hierarchical
classification of Biological process of bioBiPON within
Modeled process of modelBiPON according to their
model and participant characteristics obtained in step 1
through the is_a property. Modeled process and Reactant
classes from modelBiPON are then filled with a set of
Biological process and Chemical entity subclasses from
bioBiPON, respectively. This consists in an automatic
selection of biological processes for which a mathemat-
ical model exists (Fig. 4 dotted red arrow).

Definition of bridge rules
For the first step of automatic inference, bridge rules be-
tween the classes of both ontologies must be defined.
The Reactant, Chemical, and Motif Entity classes as well
as their subclasses in modelBiPON are related, via these
rules, to the Chemical entity and Sequence feature clas-
ses in bioBiPON. More precisely, the class Reactant is
defined as follows:
Reactant ≡ participates_in SOME biological process.
As stated in the Methods section, the Chemical and

Motif Entity subclasses of Reactant are disjoint. The
Chemical class includes subclasses of Chemical entity,
while subclasses of Motif Entity in modelBiPON corres-
pond to subclasses of Sequence feature in bioBiPON:
Chemical ≡ Reactant AND Chemical entity.
Motif Entity ≡ Reactant AND Sequence feature.
Moreover, due to their importance for modeling pur-

poses, we formally defined the Free Chemical and Bound
Chemical subclasses as follows:
FreeChemical ≡ Chemical AND located_in ONLY

cytosol.
BoundChemical ≡ Chemical AND binds_to SOME Se-

quence feature.
Since binds_to is a sub-property of located_in, the

localization of Bound Chemical corresponds to the one
of Motif entity.

modelBiPON filling by automatic reasoning
The class hierarchy of the Reactant, Chemical, and Motif
Entity classes was inferred by automatic reasoning. Once
initial inputs and outputs of a Biological process class in
bioBiPON are related to the abstract class Reactant of
modelBiPON, the Modeled process class hierarchy is per-
formed by automatic reasoning. At last, the most special-
ized subclasses for the is_a relation of the Reactant and
Modeled process classes in modelBiPON are the leaf-
classes of bioBiPON. Fig. 6 illustrates the results of the
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inference process for an example, the formation of the
30S–mRNA complex.

Computing performance
Using HermiT 1.3.8 [29] within the Protégé editor, the
consistency of BiPON can be computed in less than 5 s.
The automatic building of the class hierarchy (including
the identification of inputs/outputs of aggregated pro-
cesses and of key participants) and the inference of rela-
tionships between bioBiPON and modelBiPON takes
240 min (2.33GHz, 16Go).

Flexibility and genericity
New aggregated processes can be easily defined by speci-
fying (a) the elementary sub-processes to be aggregated
using the has_subprocess sub-properties. The inputs/out-
puts of the aggregated process and the consumed mole-
cules can then be inferred by automatic reasoning. In
addition, participant element that have a key role in
elementary or aggregated processes can be automatically

determined. Altogether, combining DL syntax, SWRL
rules and automatic reasoning make BiPON highly flex-
ible and generic regarding the addition of new processes,
participants, or models. Due to the flexibility of SWRL,
new rules can be created and added easily. For test pur-
poses, we provided a simple ontological model (toyBi-
PON) that is representative of BiPON in
Additional file 3. This model is schematically described
in Additional file 4.

BiPON content
The set of BiPON statistical metrics and mapping is pre-
sented on Table 1. The ontology BiPON consists of 1746
classes (including 767 distinct individuals representing
leaf-classes) and 30 object properties. Definitions of clas-
ses use 15,054 Axioms, including 4265 logical axioms, 8
SWRL rules for identification of the inputs/outputs of
aggregated processes and 2 SWRL rules for alternative
biological information feature (identification of key par-
ticipants and consumed molecules).

Fig. 6 Results of reasoning on bioBiPON and modelBiPON for elementary processes involved in the formation of the 30S–mRNA complex
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bioBiPON classes cover 91% of BiPON classes. One
third of them are subclasses of Biological process, and
two thirds are Chemical entity or Sequence feature sub-
classes. The difference in proportion is due to the fact
that a Biological process is defined by different partici-
pants in input-output. 28% of the Biological process clas-
ses were imported from GO (123) and KEGG (34), while
45% of the participants were imported from GO (17),
ChEBI (183), SO (92) and KEGG (152; Table 1). Classes
imported from GO and SO were mainly used for hier-
archy building, classes imported from ChEBI and espe-
cially KEGG were mostly used as leaf-classes. The
remaining 976 non-imported classes (62%) were manu-
ally designed. modelBiPON classes represent only 11%
of BiPON classes due to their abstract representation.
This low coverage of BiPON classes by modelBiPON
classes is particularly interesting. Despite their apparent
diversity, many biological processes can thus be repre-
sented by the same type of mathematical models. Most
of modelBiPON classes are distributed between math-
ematical expression and system description parameters
and 26% of them were imported from SBO (49).
Biological processes include 243 elementary processes

that are successively aggregated in 131 aggregated pro-
cesses up to final aggregates. The elementary processes
have 514 participants as input or output: 34 of this par-
ticipants describes molecules, 444 gene products or mo-
lecular complex, 36 sequences. Altogether, molecules
and sequence patterns represent only 14% of the inputs
or outputs of biological processes, but they are involved
in the definition of 63% of elementary processes. These
proportions highlight the difference between basic mole-
cules (e.g. water, ions or ATP) and sequence patterns

(e.g. codons), which are often involved in many bio-
logical processes of gene expression, and macromole-
cules such as proteins, which are usually specific to a
few biological processes.
After automatic reasoning, Modeled process classes in-

clude 213 elementary processes subclasses and 66 aggre-
gated processes subclasses of bioBiPON. A large
proportion among them (69%) are Chemical process sub-
classes in modelBiPON and was automatically linked to the
mathematical expression “chemical reaction rate law” and
its parameters (see Fig. 5). The remaining 31% correspond
to other types of mathematical models, such as “sequence
binding rate law” for Sequence binding process.
Currently, bioBiPON contains 77 biological processes

subclasses that have no associated mathematical model
and are therefore not included in modelBiPON. These
classes correspond to intermediate processes that are
not critical in a modeling perspective, but interesting for
the biological knowledge description. However, in the fu-
ture, if a mathematical model was built for them, it
could be included in modelBiPON straightforwardly.

Discussion
In engineering science, the development of complex sys-
tems such as airplanes or nuclear power plants involves
the development of specifications to ensure that the
whole system will function in normal and/or degraded
modes. As a prerequisite, such specifications will usually
contain a catalog of sparse parts and an interaction map
of the entire system. Each piece of the system must be
described and characterized. To tackle the intrinsic com-
plexity of managing thousands of entities, the design of
the whole system is achieved by using a systemic

Table 1 Numbers and provenance of BiPON classes

Numbers Provenance of classes (nb of classes)

Class name Class count % of BiPON GO ChEBI KEGG SO SBO

BiPON 1746 100,0% 145 183 186 92 49

└ modelBiPON 194 11% – – – – 49

└ bioBiPON 1582 91% 145 183 186 92 –

└ biological process 551 32% 123 – 34 – –

└ elementary process 243 14% 29 – 32 – –

└ aggregated process 131 7% 21 – – – –

└ Cellular component 19 1% 5 1 – 5 –

└ Chemical entity 754 43% 17 183 152 41 –

└ Sequence feature 234 13% – – – 51 –

input/output (i/o)a 514 29% 8 90 144 36 –

└ i/o AND molecule 34 2% – 34 – – –

└ i/o AND macromolecule 444 25% 8 56 144 28 –

└ i/o AND sequence feature 36 2% – – – 8 –

The proportions in the columns “Numbers” are computed with respect to the total class count (1746) of BiPON
a ≡ Reactant
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approach: the whole system is broken down into sub-
systems of lower complexity, where each sub-system is
well characterized and can be simulated. Adopting such
a systemic representation was clearly the cornerstone of
the development of complex engineering systems [11].
At the beginning of the twenty-first century, the field of
systems biology was established based on exactly the same
idea: that a cell is a complex system and that a systemic
representation can help understand how the whole cell
works [10]. Kitano’s analysis in [10] appeared to be espe-
cially fruitful. Since 2012, the first developed whole-cell
models were based on the systemic description of cells
and showed a high capability of prediction [1, 2]. This
effectively demonstrates the relevance of the systemic
approach to progress in the understanding of living organ-
isms. Systems biology can thus greatly profit from system-
atically importing relevant concepts and know-how from
engineering science into the biological field [10].
In this article, we introduced the ontology BiPON,

which is intrinsically based on a systemic representation
of cells [1, 6, 7]. In particular, BiPON focuses and clari-
fies the notion of biological processes by breaking down
the cell into subsystems and by automatically relating
them to mathematical models. Each subsystem is
formally defined in terms of the cellular components it
contains. Consequently, the function of each cellular
component is conditioned to the subsystem to which it
belongs. If a cellular component participates in multiple
subsystems, it can also have different functions in the
cell. In other words, the function of a cellular compo-
nent now depends on the biological processes in which
it is involved, and not only on its own chemical
properties.
In describing biological knowledge, BiPON relies as

much as possible on existing, well-established and com-
monly used bio-ontologies (GO, ChEBI, SO, SBO) in
order to avoid the conception of unnecessary classes
and, thus, to prevent redundancy. To ensure interoper-
ability, we carefully stored IRI or Ids of each imported
class and added new classes only when necessary. Ap-
proximately 72% of the Biological process classes in
BiPON were created manually (see Table 1). Among the
new Biological process classes, we created 175 elemen-
tary processes to further refine the biological description
of bacterial cellular processes, thereby contributing to
enrich the biological knowledge for prokaryotes. Finally,
78% of the Biological process classes in BiPON were
linked to mathematical models by automatic reasoning.
Altogether, combining the systemic description of the
cell with an ontology enabled us to detect and fill gaps
in the description of bacterial gene expression. BiPON is
suited to help users to refer and share the same concepts
regardless of their scientific background (biologist, math-
ematician, etc).

BiPON complements several ongoing efforts of the
GO consortium, including GO-plus [31–33] and the
Linked Expression using the Gene Ontology (GOCAM)
formalism [32], which aim at promoting the comprehen-
sion, consistency and integration of biological knowledge
within ontologies. GO-Plus provides relations between
classes in GO-BP, GO-CC, GO-MF, metabolite classes in
ChEBI, and polymer classes in SO. Compared to GO-
plus, BiPON went a step further by integrating the SO se-
quence patterns involved in bacterial gene expression, and
the mathematical models and related parameters of SBO.
Specific sequence patterns had to be integrated because
they are involved in 33% of elementary processes as partici-
pants. Beyond their content, GO-Plus, GOCAM and now
BiPON provide promising formal frameworks to relate bio-
logical processes to their molecular functions. In [34, 35],
the authors suggested that the formal relationship between
GO-BP and GO-MF should be refined to improve the rep-
resentation of biological knowledge. GO-Plus includes GO-
BP and GO-MF sub-ontologies [33] without the addition of
new relations. Within the GOCAM project [32], the GO
consortium has defined a new relation (affects) to link GO-
MF to GO-BP. Using BiPON, we expect to infer such links
by automatic reasoning. For example, we automatically
identified in BiPON the key participant of a biological
process as the relevant Chemical entity that is necessary
and unchanged during a Biological process. In the case of
an enzymatic reaction, the key participant is the enzyme it-
self. Relating biological processes to molecular functions in
BiPON could be achieved as follows: IF a chemical entity is
a “key element” of a “process” and “has_function” a “mo-
lecular function”, THEN this “molecular function” “affects”
the “process” and all “aggregated process” of higher level
(see Additional file 2 for the formal SWRL rule). We pro-
vided an example of such a reasoning in the toyBiPON
ontology (see Additional file 3). Altogether, this illustrates
the usefulness of bio-ontologies through the ability of infer-
ring new relations by automatic reasoning.
Beyond that, ontologies are also widely used to

organize data warehouses [36–38]. BiPON is currently
used to drive the development of a data warehouse for
the bacterial gene expression processes. BiPON supports
the design of the relational model of the database that
stores and connects biological knowledge, heterogeneous
multi-omics data [2, 25, 39, 40], static data such as se-
quence patterns, and mathematical models [23, 24]. High-
throughput technologies already enable the acquisition of
data at a large scale: transcriptome, proteome (including
post-translational modifications), fluxome, interactome,
metabolome, degradome, etc. [41]. In the future, new infor-
mation could be obtained by combining omics data acquisi-
tion with statistical tools and computational algorithms for
data analyses [42], model simulations, and accumulated
biological knowledge. Typically, the combination of omics
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data and data analysis methods [43] may help to identify
large sets of molecular compounds together with their bio-
logical functions, their interactions [44], and some of their
kinetic properties, including for instance equilibrium con-
stants or the half-lives of proteins or mRNAs. Using
BiPON, any new omics data, new in silico predictions or
new dynamical parameter sets (such as half-life of a protein,
affinity constant, kinetic parameters, etc.) can be automatic-
ally anchored to systemic description of the cell and be
linked to appropriate chemical entities or biological process
of interest at any scale. BiPON and the data warehouse
could serve as a point of entry into a shared resource of in-
formation that may be useful for biologists, computational
biologists, statisticians and modelers.
BiPON currently contains a rather exhaustive descrip-

tion of the bacterial gene expression (including mecha-
nisms of regulation), i.e. transcription, RNA processing
and decay, ribosome biogenesis, tRNA aminoacylation
and translation. However we are aware that BiPON is not
yet complete and that new classes will have to be added in
the future. In fact, the description methodology proposed
in this article is highly flexible and generic. We expect that
any new process, new participant, or other knowledge
resource can be inserted in BiPON and be linked to math-
ematical models. BiPON is an ongoing project and future
releases of BiPON will cover not only other bacterial
processes such as DNA replication, cell wall synthesis or
metabolism, but also cellular compartments (cytosol,
membrane, periplasm, etc.). This will be a key step for ex-
tending BiPON to compartmentalized eukaryotic cells.

Conclusions
In this manuscript, we developed BiPON an ontology
dedicated to the systemic representation of bacterial bio-
logical processes. This ontology is a proof of concept in
several ways. It demonstrates that a large set of inter-
locked bacterial processes can be formally described,
with an ontology, as input/output subsystems on differ-
ent levels of granularity using a few set of properties and
can automatically be linked through inference with their
mathematical models and related parameters. The pro-
posed methodology to build the systemic representation
of bacterial processes is generic and could thus be easily
implemented for other processes. BiPON links elementary
entities such as single molecules or sequence patterns to
biological processes and enables users to navigate from
elementary to high-level processes and vice versa. Finally,
combining instantiation and SWRL rules during auto-
matic reasoning on BiPON enrich the knowledge by pro-
viding new properties with high flexibility. By interlacing
biological knowledge with mathematical models, BiPON
should open up promising perspectives for biologists, for
data scientists, for computational, and system biologists
and more largely for the emerging multi-disciplinary

community of researchers studying whole-cell integration,
modeling and simulation.
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