
RESEARCH Open Access

Using OWL reasoning to support the
generation of novel gene sets for
enrichment analysis
David J. Osumi-Sutherland1*, Enrico Ponta2, Melanie Courtot1, Helen Parkinson1 and Laura Badi2

Abstract

Background: The Gene Ontology (GO) consists of over 40,000 terms for biological processes, cell components and
gene product activities linked into a graph structure by over 90,000 relationships. It has been used to annotate the
functions and cellular locations of several million gene products. The graph structure is used by a variety of tools to
group annotated genes into sets whose products share function or location. These gene sets are widely used to
interpret the results of genomics experiments by assessing which sets are significantly over- or under-represented in
results lists. F Hoffmann-La Roche Ltd. has developed a bespoke, manually maintained controlled vocabulary (RCV) for
use in over-representation analysis. Many terms in this vocabulary group GO terms in novel ways that cannot easily be
derived using the graph structure of the GO. For example, some RCV terms group GO terms by the cell, chemical or
tissue type they refer to. Recent improvements in the content and formal structure of the GO make it possible to use
logical queries in Web Ontology Language (OWL) to automatically map these cross-cutting classifications to sets of
GO terms. We used this approach to automate mapping between RCV and GO, largely replacing the increasingly
unsustainable manual mapping process. We then tested the utility of the resulting groupings for over-representation
analysis.

Results: We successfully mapped 85% of RCV terms to logical OWL definitions and showed that these could be used
to recapitulate and extend manual mappings between RCV terms and the sets of GO terms subsumed by them. We
also show that gene sets derived from the resulting GO terms sets can be used to detect the signatures of cell and
tissue types in whole genome expression data.

Conclusions: The rich formal structure of the GO makes it possible to use reasoning to dynamically generate novel,
biologically relevant groupings of GO terms. GO term groupings generated with this approach can be used in.
over-representation analysis to detect cell and tissue type signatures in whole genome expression data.

Keywords: OWL, EL, gene ontology, GO, gene set enrichment analysis, enrichment, over-representation analysis,
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Background
The Gene Ontology (GO) consists of almost 40,000 terms
and has been used to annotate millions of gene products
to record their subcellular location (e.g., lysosome), their
molecular function (e.g., kinase activity) and their wider
role in cellular, developmental and physiological processes
(e.g., signal transduction) [1]. In its original form, the GO
was conceived of as a directed acyclic graph in which

terms referring to classes are nodes and edges record rela-
tionships between classes including classification (is a)
and partonomy (part of). This graph structure is com-
monly used to group genes annotated with related terms
in user-facing tools such as QuickGO [2] and AmiGO [3]
and to generate gene sets for enrichment (over- represen-
tation) analyses [4] to interpret the results of genomics
experiments. For example, an experiment to assess the
how treatment of liver cells with a particular drug effects
the transcriptome (genome-wide gene expression profile)
in liver cells may result in a list of all genes whose expres-
sion is increased by the drug treatment. The GO graph
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structure can be used to group all genes in the relevant
genome into sets sharing function or location. One can
then ask which gene sets are statistically over or under-
represented in the gene list compared to the expected
number of of genes from that set in an equivalent length
list generated by random sampling from the set of all
genes in the genome.
In recent years, the GO has developed into a richly

axiomatised formal ontology specified using Web Ontol-
ogy Language (OWL) [5, 6] and defining GO terms with
reference to terms from other ontologies. For example,
the GO now records the chemical participants in over
12,000 processes and functions via axioms referencing
chemical entities defined by the Chemical Entities of
Biological Interest (ChEBI) ontology [7, 8]. Over 8000
GO classes have some direct or indirect logical link to a
term from the Cell Ontology (CL) [9] or the Uber anat-
omy ontology (Uberon) [10]. These record, for example,
the location of cellular components (the acrosome and
its parts are present only in sperm), cell types that are
the sole location of some process (‘natural killer cell de-
granulation’ only occurs in natural killer cells), and the
products of developmental processes (bone is a product
of ‘bone morphogen- esis’). There are also over 2500
logical axioms recording the functions of cellular
components via links to molecular function and bio-
logical process terms.
When combined with standard OWL reasoning tech-

nologies, this improved axiomatisation opens up new
possibilities for grouping terms and their xannotations
in biologically meaningful and semantically precise ways
that are potentially useful in enrichment analyses. For
example, we can use OWL reasoning queries to group
processes occurring in T-cells or in the pancreas, or
processes involving nitric oxide or collagen fibers.
The results of enrichment analyses using gene sets for

all GO terms can be difficult and slow to interpret due
to high levels of overlap between gene sets. There are a
number of sources of overlap: grouping via class and
part hierarchies means that gene sets derived from anno-
tation to a class subsumes the gene sets of its subclasses
and subparts; one GO class can sit in multiple branches
of the hierarchy; a single gene product may be annotated
to terms in multiple branches. For this reason, many en-
richment analyses rely on a more limited number of
gene sets, corresponding to grouping under a limited
number of high or intermediate level GO terms
commonly referred to as a slim.
Rather than use a slim of GO terms, F. Hoffmann-La

Roche Ltd. (“Roche”), maintains an internal controlled
vocabulary (referred to hereafter as the RCV) for use in
enrichment analyses. The RCV consists of around 360
terms, each of which is mapped to a set of terms from
the GO. It is tailored to the research interests of Roche,

and its terms were chosen with the aim of achieving
gene set composition descriptive and broad enough to
allow robust and statistically significant results though
not so broad and redundant in composition that it pre-
vents easy interpretation of results. Detecting enrich-
ment to gene products involved in anatomy, organ or
cell-specific processes or components can be critical for
pharmacological research, especially when working with
complex tissues where there is a need to tease apart
events occurring in specific tissue compartments or cell
types. To support this, many RCV terms group GO
terms in ways that are out of scope for classes in the
GO, including groupings of GO terms related to specific
cell, tissue or molecule types.
Here we describe the development and testing of a

dynamic, computable mapping between RCV terms and
the GO that makes use of OWL reasoning. We show
that RCV groupings of GO terms related to specific cell,
and molecule types can be used to identify the transcrip-
tomes of those cell types via enrichment analyses.

Methods
As the RCV is a flat list and includes classifications that
are orthogonal to the classification schemes used by the
GO, it is not amenable to mapping via ontology align-
ment techniques that use ontology structure [11]. Given
the small size of the RCV, it is viable to manually map
each RCV term to an OWL class expression (DL query),
which can then be used in conjunction with an OWL
reasoner to generate lists of GO terms. The RCV does
not include textual definitions to clarify meaning, so for
each RCV term we attempted to find a class expression
(a mapping query) that reflected the intended meaning
of the RCV term, as judged by the RCV term name,
manual mappings and discussion with RCV developers.

Query strategy
We manually mapped each RCV term to an OWL class
expression (a mapping query) and used a standard OWL
reasoner to generate a combined list of classes equiva-
lent to and classes subsumed by the class expression.
We tested classification and query answering using the

GO with imports of CHEBI, CL and Uberon on a
2.9 GHz Intel Core i7 Mac laptop, assigning 10Gb of
RAM to the JVM. Classification with the OWL 2 EL rea-
soner ELK [12] com- pleted in under 6 s and used less
than 4Gb of RAM. Subsequent queries of the classified
ontology took 10-100 ms milliseconds. In contrast, clas-
sification using the HermiT reasoner [13], which
supports OWL 2 DL took ~70 min and used 7.5Gb of
RAM. Subsequent query answering was very slow, with
some test queries timing out. To ensure speed and scal-
ability, we therefore chose to restrict mapping queries to
the EL profile of OWL 2 and use the ELK reasoner. The
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expressiveness of the GO and of imported ontologies is
almost entirely within the OWL 2 EL profile (the only
exception is a handful of inverse property assertions), so
while some incompleteness in query answering is
possible, we don’t expect it to be common.
In order to keep the mapping process simple, only a

single GO, CL, Uberon or ChEBI mapping class was
specified for each mapping query.
To compensate partially for the lack of disjunction

(OR) in OWL-EL, we developed a hierarchy of high level
object properties for use in queries. For example, we de-
fine occurs in OR has participant as a grouping relation
allowing queries for processes that occur in a specified
cell, or have that cell as a participant. Many RCV terms
group processes in which a specified chemical or cell
participates with processes regulating those in which it
participates (see Table 1 for example). To support such
groupings, we used an OWL property chain axiom [5] to
define a relation, regulates o has participant, which can
be used to query for processes that regulate a process in
which some specified entity is a participant. We then de-
fined a super-property, participant OR reg participant,
for this new relation and has participant:

regulates o has participant
. subPropertyOf participant OR reg participant
. . subPropertyOf regulates o has participant
. . subPropertyOf has participant

These new, high-level object properties are difficult to
name in a way that communicates the meanings of map-
ping queries clearly. In order to compensate for this, we
used scripting to generate human readable descriptions
for each mapping query. Compare, for example, the
mapping query for the RCV term cannabinoid with its
description:

Mapping query: participant OR reg participant
some cannabinoid.
Description: “A process in which a cannabinoid
participates, or that regulates a process in which a
cannabinoid participates.”

Ontologies used
We used a fully expressive release version of the GO [14],
release version 2015–01-30, supplemented with the bespoke
relations described above (21 relations). This resulting
ontology includes over 40,000 GO classes and over 13,000
imported classes from the Cell Ontology, ChEBI, Uberon,
the Sequence Ontology the Protein ontology and over 130
object properties imported from the OBO Relations
Ontology [15]. The DL expressiveness is SRI. For a sum-
mary of owl entity and axioms counts please see Table 2.

Pipeline
Mapping queries were run using the ELK OWL 2 rea-
soner [12] via calls to the OWL- API [16]. The query
and results processing pipeline was written in Jython
[17]. All code, mapping tables and results were main-
tained in a GitHub repository [18]. The mapping was
specified using a single tab separated values (TSV) file in
which each line maps an RCV term to an OWL-EL
mapping query that includes a term from GO, ChEBI,
CL, Uberon or NCBI taxonomy [19]. Query results were
used to generate a TSV file, allowing direct comparison
of manual and automated mappings (see Table 1 for an
example). We used the GitHub API to generate tickets
for each mapping, linked to the relevant TSV results file,
which GitHub renders as a table. This allowed easy
manual review and editing by RCV curators at Roche
who used the linked tickets to discuss mapping issues
and record the approval status of all mappings.
Mapping queries were selected, tested and the

results reviewed against manual mappings to decide
which patterns were most appropriate. Once a map-
ping query was chosen, corrections and/or additions
to the GO were made where results were wrong or
incomplete. At this point, any clear errors in the
manual mapping we blacklisted. Review of automated
mappings was then passed to Roche who approved or
blacklisted individual classes (see Table 1 for an
example). When satisfied with the results, the corre-
sponding GitHub ticket was closed, thereby indicating
the mapping as approved. Results approved by Roche

Table 1 Results table for RCV cannabinoid

GO name GO ID manual auto checked black listed is obsolete

regulation of endocannabinoid signaling pathway GO 2000124 1 1 1 0 0

cannabinoid signaling pathway GO 0038171 1 1 1 0 0

endocannabinoid signaling pathway GO 0071926 1 0 1 0 0

cannabinoid receptor activity GO 0004949 0 1 1 0 0

cannabinoid biosynthetic process GO 1901696 0 1 1 0 0

The table shows the mapping of an RCV term“cannabinoid” to a set of GO terms, comparing manual mapping (manual column) with automated mapping (auto column).
The automated mapping results from an OWL query for processes in which a cannabinoid participates, or that regulates a process in which a cannabinoid participates. The
automated mapping found three additional GO terms compared to the manual mapping. In this case, no manually mapped terms were obsolete in GO and all automated
mappings were approved
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were combined to produce a new RCV mapping table
(available from [20]).

Over-representation analysis
For each RCV term we generated a gene set consisting
of all human genes directly annotated to each mapped
GO term (retrieved from NCBI/entrez [21]). These are
referred to in the following text and figures using the
RCV term name name suffixed with ‘rcv’.
We additionally generated 155 gene sets that are

enriched in specific tissue types. These were generated
from three datasets: the Neurocrine Biosciences (NB)
CNS dataset [22], the GNF Gene Expression Atlas [23]
(both based on the Affymetrix microarray technology),
and sequencing-based RNASeq Atlas [24]). The Gini
index was used to identify tissue-enriched genes in each
dataset [25] by selecting genes with Gini coefficient > 0.7
for the specified tissue. The list of tissue specific genes
from each dataset was combined in a non-redundant
tissue signature list. These are referred to in the follow-
ing text and figures by the tissue name suffixed with ‘ts’.
Using tissue type expression data from the Genotype-

Tissue Expression project (GTEx) [26], we calculated the
average level of expression (mean reads per kilobase of
transcript per million mapped reads (RPKM) signal)
across all samples available for a given tissue type and
used this to construct a gene vector (a rank order list of
genes by expression level) for each tissue type. We used
the same approach to process a publicly available set of
immune-cell type expression data [27, 28] for enrich-
ment analysis.
For each geneset and each tissue-type or cell-type gene

vector we calculated an enrichment score, defined as the
-log10 (p-Value) of the Wilcoxon test [29] applied using
the entire geneset collection as universe. We present en-
richment by using the resulting Z-scores to generate

heat maps showing over- or under-representation of
each gene set in each tissue, using euclidean distance
clustering to cluster similar results on both the X axis
(GTEx tissue type) and Y axis (gene set). Heat maps are
a standard way to represent this type of analysis, in part
because they make clustering of similar results easily
visible as blocks of similar patterns.

Results
Mapping results
We developed successful mapping queries (owl class ex-
pressions) for 308 out of 364 RCV terms and used OWL
reasoning to find all classes equivalent to or subsumed
by the mapping query for each RCV term (only 72 RCV
classes had equivalent classes as well as subsumed clas-
ses in GO).
Over a third (104) of the mapping queries were sufficient

to recapitulate all manual mappings. A further 40% of the
mappings (148) had 10 or fewer additional manual map-
pings (Fig. 1a) and most of these (114) had fewer than 5.
Mapping queries identified many GO terms that were

not in the manual mapping (Fig. 1b). In some cases (e.g.,
leukocyte activation), over 1000 new mappings were
found. On manual review, only 8 out of several thousand
automated mappings were flagged as unsuitable by Roche,
56 terms were not mapped. Some were judged to be se-
mantically equivalent to other RCV terms. The rest were
rejected as currently not mappable due to the lack of suit-
able terms or axiomatisation within the GO. For example,
RCV has terms for aerobic and anaerobic metabolic pro-
cesses, but the GO currently has no terms for these pro-
cesses, and no axiomatization that allows them to be
queried for. Further axiomatization of the GO is likely to
improve the number of RCV terms that can be mapped.

Improvements to the GO
While the GO has extensive axiomatization linking pro-
cesses to cells, anatomical structures and chemicals, this
is not always complete. In mapping from the RCV to the
GO we found and corrected over 200 omissions in the
axiomatization including links from processes to partici-
pant cell types, anatomical structures and chemicals. Ex-
amples include linking GO process terms referring to
the aggregation of immune cell types such as lympho-
cytes and thymocytes to the relevant cell type terms in
the cell ontology.
We also found and corrected a number of errors, in-

cluding errors in axiomatization of developmental pro-
cesses that led to incorrect inferences for RCV anatomy
terms. For example, we uncovered and fixed errors in
axiomatisation of epidermis development that tangled
together classification of terms referring to animal epi-
dermal structures (e.g. skin and its parts) with those
from plants (such as stomatal guard cells).

Table 2 Ontology metrics: Counts of OWL entity and axioms
types in the ontology used for mapping

entity/axiom type Count

Logical axioms 142,894

Classes 53,799

Object properties 153

SubClassOf axioms 113,104

EquivalentClasses 29,386

DisjointClasses 148

GCI 6910

SubObjectPropertyOf 164

InverseObjectProperties 28

TransitiveObjectProperty 16

ReflexiveObjectProperty 1

SubPropertyChainOf 46
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Assessing the utility of RCV for over-representation
analysis.
We assessed the ability of gene sets derived from RCV

terms to identify tissue and cell types in enrichment
studies. The RCV contains a number of terms for immune
cell types defined using a standard pattern that groups
terms related to immune cells ina variety of ways. e.g.:

T_cells
Some part of a T cell, or some process in which: a T cell
participates or that occur in a T cell or which results in the
developmental progression of a cell that will form a Tcell.
Using immune cell-type expression profiles from [27, 28]

we calculated how over-or under-represented each RCV

immune cell type gene set was in each cell-type expression
profile. The results are displayed in Fig. 2, with cell-types
(X-axis) clustered according to similarity of enrichment
profile across gene sets. All RCV immune cell gene sets
are highly enriched in whole blood transcriptomes. The
over- representation profiles for RCV immune cell-type
gene sets matched immune cell types. NK cells rcv and B
cells rcv and monocytes rcv were all enriched only in
matching cell-type transcriptomes. CD8 is expressed in T
cells and a subset of Natural Killer cells [30, 31]. Consist-
ent with this, enrichment to the T cells rcv and NK cells
rcv gene sets is seen in CD8 expressing cells. CD4 is
expressed in subset of T-cells [30]. Consistent with this, a
low level of enrichment is seen for the RCV T-cell gene
sets. To test the ability of the RCV to match tissue types
more broadly, we used tissue-type expression profiles
from GTEx [26], a publicly available data set with expres-
sion profiles of 47 different tissues. We used this to com-
pare enrichment to RCV terms to enrichment to a set of
tissue-derived gene sets. The complete results are available
in Additional file 1 as a heat map showing over and under
representation of each gene set (Y-axis) for each GTEx
tissue-type (X-axis), with both axes clustered for similarity.
Distinct enrichment clusters generated by this analysis in-
clude clusters identifying tissues rich in immune cells
(Fig. 3), clusters indentifying brain tissue (Fig. 4 and clus-
ters identifying skin (Additional file 1).
Figure 3 shows enrichment analysis for genesets re-

lated to immune cells. RCV immune cell genesets form
a co-cluster with immune cell enriched genesets - show-
ing over-representation in tissues rich in immune cells
such as blood, lungs and gut mucosa as well as in trans-
formed lymphocytes.
Comparable ts and rcv gene sets have very little over-

lap: all comparisons between equivalent rcv and ts
genesets have a Jaccard index of less than 0.1 (Table 3).
They therefore provide complementary sets of signatures
for detecting the presence of immune cells in samples
for which transcriptomic data is available.
Also included in the cluster are immune-system

related groupings such as immune response rcv, inflam-
mation rcv and leukocyte activation rcv, showing that
the RCV provides a semantically richer picture than sim-
ply detecting cell-types.
Figure 4 shows a similar cluster of enrichment for

brain tissue samples. Gene sets derived from annotation
to processes involving glial cells (glial rcv) and more
specifically astrocytes (astrocyte rcv) are sufficient to
distinguish brain tissue types and nerves from other
tissue types in GTEx. The cluster also contains RCV
gene sets for novel grouping terms defined with re-
spect to molecules (dopamine, cAMP, neurotransmit-
ter) and cell components (synapse) with definitions
following the patterns:

Fig. 1 Summary of mapping results a. Distribution of manual
mappings not found by automated mapping X axis = number of
manual-only mappings. Y axis = Number of RCV terms. Over 80% of
mappings are completely automated or require less than 10 manual
mappings. b. Distribution of automated mappings not present in the
original manual mapping. X axis = number of auto-only mappings.
Y axis = Number of RCV terms. Many new mappings were uncovered
by automation
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Fig. 2 Use of RCV-derived gene sets to identify immune cell types. RCV-derived gene sets (Y-axis); immune cell type transcriptomes (X-axis); over-
representation is indicated in red; under-representation in blue. Cell-type transcriptomes are clustered based on similarity of enrichment profile
across gene sets

Fig. 3 Comparison of RCV derived gene sets and tissue derived gene sets for identification of immune-cell rich tissues Over-representation of
RCV-derived gene sets (Y-axis) in tissue-type transcriptomes (X-axis) is indicated in red, under-representation in blue. Tissue-type transcriptomes
are clustered based on similarity of enrichment profile across gene sets (X-axis) and gene sets are clustered by similarity of enrichment profile
across tissues (Y-axis). Only the immune-rich tissue cluster of gene sets is shown in this figure. For the fully enrichment analysis please see
Additional file 1
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Neurotransmitter
A process in which some substance with neurotransmit-
ter biological role participates, or that regulates a
process in which substance with neurotransmitter bio-
logical role participates.

Synapse
A synapse OR part of a synapse OR a process that re-
sults in organisation of a synapse OR that has a synapse
as a participant.
These enrichments make sense given what is known

about the biology of neural tissue, as do a set of RCV
terms that map to conventional GO terms: ion transport;
cell cell signaling, glutamate metabolism and nervous
system development terms.

Discussion
Mapping of RCV terms to set of GO terms is now fully
dynamic, allowing RCV to be automatically kept up to
date as the GO. Where new terms follow mapping query
patterns that are already used, they can be added simply
by specifying an additional line in the mapping file.
48% of mapped RCV terms have 10 or fewer manual

mappings. We are reviewing all of these cases to decide
whether to drop manual mappings or whether complete
automation might be achieved by a different query strat-
egy. In some cases, a more complete mapping could be
achieved by a disjunctive query. For example, all RCV
terms referring to metabolism of some specified

Fig. 4 Comparison of RCV derived gene sets and tissue derived gene sets for identification of brain derived tissues. Over-representation of
RCV-derived gene sets (Y-axis) in tissue-type transcriptomes (X-axis) is indicated in red, under-representation in blue. Tissue-type transcriptomes
are clustered based on similarity of enrichment profile across gene sets (X-axis) and gene sets are clustered by similarity of enrichment profile
across tissues (Y-axis). Only the brain tissue cluster gene sets is shown in this figure. For the full enrichment analysis please see Additional file 1

Table 3 Overlap between cell-specific gene sets derived from
RCV and cell expression data is low

Gene sets Jaccard Index

B cells rcv vs Lymphocyte B FOLL ts 0.064

NK cells rcv vs Lymphocytes NK ts 0.000

T cells rcv vs Lymphocytes T various tsa 0.025a

T helper rcv vs Lymphocytes T H ts 0.032

dendritic cell rcv vs Dendritic cells ts 0.000

granulocyte rcv vs Granulocyte INFL ts 0.082

lymphocyte rcv vs Lymphocytes NK ts 0.071

macrophage rcv vs Macrophage PB ts 0.033

mast cell rcv vs Mast cell PB ts 0.045

Column one lists the two gene sets compared. Column 2 lists the Jaccard similarity
coefficient comparing the two gene sets (0 = no overlap, 1 = full overlap.) aIn the
case of T cells the average of a range of T-cell expression datasets is shown
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chemical are mapped to GO terms referring to meta-
bolic and transport processes in which the specified
chemical is a participant. (This is consistent with some
medical use of the term metabolism.) A more complete
mapping could be achieved using a disjunctive query
with an OWL2 DL reasoner such as HermiT. This
approach was found to be prohibitively slow but new
generation reasoners such as MoRE [32] which combine
ELK with DL reasoners such as HermiT may turn out to
be useful in this approach. A simple, if potentially in-
complete alternative would be to simply run two EL
mappings using ELK and generate a union of the results.
56 terms were not mapped. Some were rejected from

the pipeline as they were judged to be too close in
meaning to other RCV terms. The rest were rejected as
currently un-mappable due to the lack of suitable terms
or axiomatisation within the GO at this time. For
example, GO currently has no formal way to group
aerobic or anaerobic metabolic processes, although it
does reflect the aerobic or anaerobic nature of many
metabolic processes in their names and textual
definitions.

Making novel groupings of GO terms generally accessible
The approach described here could be used to provide a
view of the GO that groups terms in ways defined with
reference to the complete range of cell-types, chemical
types and anatomical structures referenced by the GO
and all of their ancestor classes. This is already reflected
in some of the newer functionalities of the GO browsing
tool AMIGO, which now displays inferred annotations
to cell-types based on axioms in the GO recording
where processes occur [33]. An extended version of the
GO with extended axiomatisation and imported terms
from external ontologies includin CL, Uberon, ChEBI is
available from [34].
The system described bears some relationship to

TermGenie [35] which is already used to generate 80%
of new GO terms. One possible approach to fulfilling
the needs of external groups for types of classification
not included in the GO would be to offer a TermGenie-
like system to create bespoke terms.

Conclusions
Our work demonstrates how the logical structure of the
GO can be used to achieve biologically meaningful map-
pings between concepts in external controlled vocabu-
laries and corresponding sets of GO terms, even when
there is no concept in the GO that is directly equivalent
the term to be mapped. This is possible as long as the
concept can be mapped to an OWL class expression
referencing classes and relations in the full version of
the GO. These classes may come from the GO, or from
ontologies from which the GO imports classes such as

ChEBI, CL and Uberon. The resulting mapping is
dynamic and so can easily be kept up to date as the GO
evolves.
While OWL 2 DL profile queries could be used for

these mappings, this would make mapping software slow
to run, resource intensive, and may not be sustainable as
the GO becomes still larger and more complex [6]. The
mapping system we describe uses class expressions
restricted to the OWL 2 EL profile to ensure that map-
ping is fast and scaleable. It also demonstrates how
OWL property chains and property hierarchy can be
used to partially overcome the absence of disjunction
(OR) in OWL 2 EL.
The RCV includes many terms that group GO terms

in novel ways by their rela- tionship to some type of cell,
molecule, tissue or cell component. One possible usage
of these terms is to provide a mechanism for detecting
the signatures of particular cell or tissue types in tran-
scriptomic data. We demonstrate the effectiveness of
this by showing how gene sets derived from RCV terms
for cell types can be used to identify specific immune
cell types and how gene sets derived from RCV terms
for cell, molecular and cell component types can be used
to identify tissue types. In some cases, gene sets derived
directly from transcriptomic data may be used for the
same purpose (see Figs 3 and 4). In these cases the RCV
term sets provide an alternative method using gene sets
with very little overlap to those derived from differential
expression (Fig. 3). Unlike gene sets derived from
transcriptomic data, those derived from the GO and its
annotations are not limited by the ability to experimen-
tally isolate suitable biological samples and can include
broad groupings of cell or tissue types that are unlikely
to be isolated together (e.g. all glial cells (Fig. 4), or all
epithelia).

Additional file

Additional file 1: A complete over-representation analysis for RCV gene
sets against GTEx tissue type transcriptomes. The analysis is displayed as
a heat map with RCV on the Y-axis, GTEx on the X-axis, over-respresentation
in blue and under-respresentation in red. Both axes are clustered for similarity
(see Methods for details). (PDF 91 kb)
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