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Abstract

Background: Pathogenesis of inflammatory diseases can be tracked by studying the causality relationships among
the factors contributing to its development. We could, for instance, hypothesize on the connections of the
pathogenesis outcomes to the observed conditions. And to prove such causal hypotheses we would need to have
the full understanding of the causal relationships, and we would have to provide all the necessary evidences to
support our claims. In practice, however, we might not possess all the background knowledge on the causality
relationships, and we might be unable to collect all the evidence to prove our hypotheses.

Results: In this work we propose a methodology for the translation of biological knowledge on causality
relationships of biological processes and their effects on conditions to a computational framework for hypothesis
testing. The methodology consists of two main points: hypothesis graph construction from the formalization of the
background knowledge on causality relationships, and confidence measurement in a causality hypothesis as a
normalized weighted path computation in the hypothesis graph. In this framework, we can simulate collection of
evidences and assess confidence in a causality hypothesis by measuring it proportionally to the amount of available
knowledge and collected evidences.

Conclusions: We evaluate our methodology on a hypothesis graph that represents both contributing factors which
may cause cartilage degradation and the factors which might be caused by the cartilage degradation during
osteoarthritis. Hypothesis graph construction has proven to be robust to the addition of potentially contradictory
information on the simultaneously positive and negative effects. The obtained confidence measures for the specific
causality hypotheses have been validated by our domain experts, and, correspond closely to their subjective
assessments of confidences in investigated hypotheses. Overall, our methodology for a shared hypothesis testing
framework exhibits important properties that researchers will find useful in literature review for their experimental
studies, planning and prioritizing evidence collection acquisition procedures, and testing their hypotheses with
different depths of knowledge on causal dependencies of biological processes and their effects on the observed
conditions.
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Background
Diseases and pathologies may be evidenced across mul-
tiple biological scales (e.g., cellular, molecular, organic,
behavioural) as a set of factors, linked among each other
via causal relationships, which constitute the multi-scale
pathological cascade reactions. To study the underlying

*Correspondence: giovanna.guerrini@unige.it
5University of Genoa, Genoa, Italy
Full list of author information is available at the end of the article

causation mechanism of a certain disease, life science
researchers rely on various sources, such as (i) current
knowledge (e.g. previously published studies from the
field), (ii) their data deduced from empirical analysis
of laboratory experiments (e.g., gene analysis, immuno-
assays, cell viability assays, histology) or other tests (i.e.
mechanical tests, imaging, gait analysis), as well as on (iii)
consultations with other fields (i.e. related research areas,
hospitals). To effectively make and test (prove or reject) a
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causality hypothesis life science research studies face two
challenges: i) the information used in research processes
comes from various sources and is heterogeneous, which
makes it hard to organize, analyze, and assess their rele-
vance in the overall disease process, ii) researchers from
different fields (i.e. molecular biologist, mechanobiologist,
orthopaedists etc.) investigate the same pathological event
from different aspects (biological scales), and might not
be aware of the overlaps and the impact of their individ-
ual findings in a joint venture of understanding causality
mechanisms of pathologies and diseases.
To better convey the idea of causality hypothesis test-

ing we will focus on knee articular cartilage degeneration
during the onset of osteoarthritis (OA) to present our use-
case scenario. OA is a joint degenerative disease and can
be caused due to several factors, such as genetic predis-
position, joint overuse, previous injury to the joint. The
effect of these factors is hallmarked with a complete joint
breakdown and dysfunction, causing a lot of pain [1, 2].
Based on common knowledge, performed experiments,
and diagnosis the causality relation of certain factors to
the development of OA might have different degrees of
confidence. On the one hand, the degeneration of carti-
lage, synovial thickening, osteophyte formation and joint
space narrowing, are known to be as the most marked
features of OA [3–6]. On the other hand, for some fac-
tors we may have lower degrees of confidence in their
causality relationship to OA. For instance, while being
common in patients with OA, the exact causality rela-
tion of inflammation to OA is not completely understood
[7, 8]. To handle such scenarios of causality hypothe-
sis testing, we propose to translate what we observe in

the biology into a computational framework, which sup-
ports the researchers in their hypothesis testing. In such
a framework we systematically translate our background
knowledge on causality relationships into the represen-
tations suitable for the computation, and we quantify
confidences in our hypothesis with respect to the amount
of evidences that we can supply to the framework.

Hypothesis testing
Schematically, the causality relationships between the fac-
tors of diseases can be represented as directed causal-
ity networks H0...n, where factors fi are represented as
nodes and the causality relationships as arcs (fi, fj). For
instance, our hypothesis H0 can state that inflammation
contributes to the development of OA, where the inflam-
mation is the cause of biological processes which lead to
cartilage degradation (factor f2, Fig. 1) and finally mani-
fest in joint deformation condition (factor f3, Fig. 1). To
prove such a causality hypothesis we need to evidence the
instances of all the participating factors. For example, the
factors f2, f3 are evidenced as the results of diagnosis of
OA done by radiologists and orthopaedists using imag-
ing techniques (i.e. magnetic resonance-MRI, X-ray). By
studying the literature we can discover that the inflamma-
tion can be characterized by the detection of high levels
of pro-inflammatory factors in the synovial cavity, and in
particular tumor necrosis factor alpha (TNFα) (factor f1
in Fig. 1), was demonstrated to be present in excess dur-
ing OA [9]. A justification or evidence for the factor f1
(evidence of f1 in Fig. 1) can be obtained with molecu-
lar biological techniques screening the biomarkers of the
synovial fluid. Given our knowledge of the participating

Fig. 1 Causality hypothesis of TNF alpha overproduction leading to cartilage degeneration and provoking joint deformation
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biological processes (hypothesis H0) and the supporting
evidences (evidences for factors f1, f2, f3) we have a cer-
tain level of confidence that the synovial inflammation has
been the cause of the development of OA. However, is
our hypothesisH0 complete enough, and are the evidences
for factors (f1, f2, f3) enough to support our hypothesis?
Have we missed other factors? Have we been complete
enough in our characterization of all the participating
factors which support the hypothesis that the synovial
inflammation has been the cause of cartilage degradation?
Is the joint deformation the only consequence of such a
pathological cascaded of reactions?
Studying further the causality mechanism of OA, we

can refine our initial hypothesis H0. In particular, cel-
lular biological studies observed that TNFα facilitates
the catabolic processes of the chondrocytes, including
the production of matrix metalloproteinases (MMPs),
and the production of aggrecanases (members of the
ADAMTs family) [10, 11]. The MMPs, especially MMP-
13 and aggrecanases are proteases responsible for the
degradation of collagen macromolecules and proteogly-
cans respectively, as evidenced in literature [12]. Collagens
and proteoglycans are the main building blocks of articu-
lar cartilage. Accordingly, the excess of TNFα in the joint
space can be associated to the disruption of biochemical
balance in the cartilage. Factors: Loss of collagen and pro-
teoglycan molecules (factors f4, f5 in Fig. 2), are caused
by the action of matrix degrading proteases, and can be
attached to higher scales in the OA processes, such as the

mechanical functioning of cartilage. These factors can be
evidenced on the tissue level by histology and immuno-
histochemistry (evidences of f4, f5 in Fig. 2). Collabora-
tions with mechano-biological fields allow the detection
of the changes in cartilage mechanical properties due
to the effect of high levels of MMPs and aggrecanses
[13, 14]. It has been shown previously that once the carti-
lage suffers collagen loss, it is no longer able to withstand
the mechanical forces in the knee [15, 16]. Consequently,
the cartilage, the trabecular bone beneath it, and all sur-
rounding tissue components suffer damage, which can be
evidenced by imaging [17, 18]. Damage to the joint com-
ponents, will cause pain, joint deformation and loss of
function, which is a subject of behavioural scales and can
be evidenced by gait analysis [19].
The relationship between inflammation and OA is even

more complex, than the example brought above. Nonethe-
less, collaborations among medical doctors and bench
researchers of various fields can reveal the connections
between molecular evidence and those observed on organ
scale. Accordingly, we can refine our hypothesis by adding
new causal relationships.

Shared hypothesis testing framework
In this work we propose a methodology for the translation
of biological knowledge on causality relationships of
biological processes and their effects on conditions to a com-
putational framework for hypothesis testing. The method-
ology consists of two main points: hypothesis graph

Fig. 2 Refined causality hypothesis of pro-inflammatory factors leading to loss of building blocks of articular cartilage – collagen and proteoglycan –,
which in turn lead to cartilage degeneration and provoking joint deformation
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construction from the formalization of the background
knowledge on causality relationships, and confidence
measurement in a causality hypothesis as a normalized
weighted path computation in the hypothesis graph. In
this framework, we can simulate collection of evidences
and assess confidence in a causality hypothesis by mea-
suring it proportionally to the amount of available knowl-
edge and collected evidences. We evaluate our method
on an example causality hypothesis of factors which cause
and, in turn, may be caused by cartilage degeneration
during osteoarthritis. The results of the evaluation and
the feedback from the domain experts allow us to con-
clude that our methodology may simulate the execution
of evidence collection, and can be used as a means of
measuring the confidence in a causality hypothesis with
respect to the amount of knowledge on causality rela-
tionships among participating factors. Such simulation
supports the researchers in the planning and in the pri-
oritization of their next studies by identifying impor-
tant factors in a causality hypothesis. Our methodology
demonstrates robustness towards the addition of poten-
tially inconsistent knowledge by separately representing
opposite causality possibilities for complementary biolog-
ical scenarios.
We would like to emphasize that the contribution of

this work is the methodology to extract the causality
information from the input ontologies into a hypothesis
graph, and perform hypothesis testing on the obtained
hypothesis graph. The ontologies and the ontology map-
pings discussed and provided are created together with
the domain experts, and in the context of this work are
only meant to serve as proof of concept.

Related work
To the best of our knowledge the proposed method-
ology to test a causality hypothesis in a collaborative
setting with respect to the amount of knowledge avail-
able for the framework does not have an equivalent
methodology or an implemented system to test against,
in its entirety. However, once decomposed, our method-
ology can be compared on specific steps and modelling
choices.

Formalization of background knowledge on a causal
hypothesis as ontologies. Our methodology for causal-
ity hypothesis testing relies on the formalization of the
background knowledge on a hypothesis with ontologies.
Indeed, to facilitate knowledge sharing and increase
understanding of the method in use, it is common to
employ already existing ontologies that are well agreed
on in the biomedical community (e.g., Gene Ontology
[20]). The most widely used ontology modeling language
is the (OWL 2) [21], based on formal logic [22]. The main
advantage of using logic over alternative representation

mechanisms is that logic provides an unambiguous mean-
ing to ontologies. We assume that the input ontologies
to our framework focus on (biological) processes and
findings (i.e., laboratory tests) that are or may be linked
via a causality relationship, and other (material) entities
that (actively or passively) participate in the process or
finding. In this work we assume that the input ontologies
follow good practices and relevant ontology classes are
either subsumed by or annotated with, for example,
the concept Biological_process (key concept in
the Gene Ontology [20]) or Finding (e.g., common
semantic type in the UMLS semantic network [23]). We
expect the following (object) properties or its poten-
tial subproperties as source for causality relationships:
causes, results in, regulates, positively
regulates, negatively regulates, increases
levels of and decreases levels of. Most
of these properties are available in the Relations ontology
[24] and are extensively used in biomedical ontologies.
We reuse the domain independent categories Continuant
and Occurrent, which are commonly used in the literature
(e.g., River Flow Model of Diseases (RFM) [25]) and in
upper ontologies (e.g., DOLCE [26] and BFO [27]). For
example, processes and findings are typically classified as
occurrents, while material entities as continuants.

Graph projection of OWL ontologies. The hypothesis
graph construction heavily relies on the graph projection
of OWL ontologies. This procedure, at its core, trans-
forms an OWL ontology into its graph representation,
by studying the axiomatic structure of the ontology and
identifying nodes and edges (arcs) of its equivalent graph
representation. Implicitly, Lembo et al. [28] use graph pro-
jections of OWL QL to propose ontology classification
algorithm, which transforms OWL QL ontologies into
directed graphs, and computes subsumption relations via
transitive closure computation. Analogously, Seidenberg
et al. [29] use graph representation of ontologies to pro-
pose a segmentation algorithm based on subgraph extrac-
tion procedure. Some of the proposed methodologies for
graph projection of OWL ontologies draw their inspira-
tions from Social Network Analysis (SNA) [30] for the
representation of the encoded semantic information in an
OWL ontology. SNA is the process of investigating social
structures of connected information/knowledge entities
through the use of network and graph theories. SNA
techniques application to ontology analysis has been pio-
neered by Hoser et al. [31], where standards in SNA
community graph metrics based on: node degree, node
betweenness and on eigenanalysis of the adjacencymatrix,
were used to study properties of ontologies. The con-
nection between SNA and ontology analysis have also
been studied in a highly cited paper by Mika [32], bridg-
ing Social Networks and Semantics. Network partitioning
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algorithms have been used by Stuckenschmidt et al. [33]
to identify islands of ontology, a notion comparable to a
module of ontology (as used by the graph-based modu-
lar extraction community), with the applications to Visual
Analytics. Grontocrawler [34] transforms OWL-EL [35]
ontologies into networks by defining a rule-based edge
production procedure, which takes into account exis-
tential and values restrictions on object relations. For-
mal treatment of rule-based graph projection procedures
and their connection to the logical entailment prob-
lem for OWL 2 ontologies have been recently proposed
[36–38]. In our work we use Grontocrawler [34] for graph-
based ontology projection, enriched with the projection of
advanced OWL 2 axioms, as suggested in Soylu et al. [38].

Rule-based reasoning with incomplete knowledge in
the biomedical domain. Similarly to previous works
[39, 40], we focus on graph-based reasoning with incom-
plete knowledge, by analyzing OWL ontologies, to sup-
port researchers in the biomedical domain. In particular,
Larson et al. [39] propose a method for rule-based reason-
ing with a multi-scale neuroanatomical ontology, where
the authors conclude that OWL is an important technol-
ogy formerging disparate data and performingmulti-scale
reasoning. They demonstrate how OWL-based ontolo-
gies and rule-based reasoning help infer novel facts about
brain connectivity at large scale from the existence of
synapses at a micro scale. Oberkampf et al. [40] pro-
pose a methodology for interpreting patient clinical data
(medical images and reports), semantically annotated by
concepts from large medical ontologies. They introduce
an ontology containing lymphoma-related diseases and
symptoms as well as their relations and use it to infer likely
diseases of patients based on annotations.
In contrast to Larson et al. [39] our graph-based rea-

soning method relies on network analysis of the final
hypothesis graph, which presents an advantage of a full
overview of all possible conclusions with the quantifica-
tion of the confidence measure induced by the number
of evidences that have been collected and the final topol-
ogy of the hypothesis graph. Oberkampf et al. [40] focus
on the problem of inferring likely diseases in the presence
of patient-specific evidences, represented as symptoms,
and the similarity of the diseases is then ranked based on
their distances to the symptoms. The focus of our work
and the methodology are different. We tailor our causality
hypotheses to a single diseases and study causality rela-
tionships among the factors, the findings obtained with
our methodology may have impact not only in the clin-
ical, patient-specific setting, but can be used in general
research. Technically, our methodology for graph pro-
jections employs a rich set of OWL 2 axioms, and go
beyond the usual taxonomical relationships which can be
extracted from the ontologies.

Probabilistic methodologies for reasoning with
incomplete knowledge and causality inference, with
applications in the biomedical domain. In a more gen-
eral setting, not necessarily connected to the biomedical
domain, there are examples of general theoretical frame-
works which marry formal methods (e.g., First-Order
Logic) and probabilistic models (e.g., stochastic processes)
[41–43]. Application of those methodologies in biology is
studied in Ciocchetta et al. [44] who tune the Stochastic
Process Algebra language PEPA [43] to model biological
pathways and complex biological networks, involving
stochastic processes. This line of works bridge “uncer-
tainty” and “formal methods” for general frameworks for
reasoning with incomplete knowledge in biology, and
differently with our methodology is not compatible with
OWL ontologies, and thus cannot benefit from OWL
reasoning tasks (e.g., classification, alignment).
Our work is perhaps similar in spirit to that of Pearl

et al. [45, 46], where the authors advocate for a paradig-
matic shift that must be undertaken in moving from tradi-
tional statistical analysis to causal analysis of multivariate
data [45, 46]. Pearl et al. propose a formal treatment and
a unified methodology for the graphical representation of
joint probability distributions along with rules for infer-
ring causality directly from such graphical representa-
tions. In particular, the directed graphs are introduced as
a compact way of representing conditional independence
restrictions for complex multidimensional probability dis-
tributions. In contrast, in our work we do not stress the
existence of joint probability distributions between the
factors of a hypothesis. Rather, we rely on expert knowl-
edge of causality relationship between the factors, already
known to the community, such as knowledge graphs
which can be obtained from literature sources, and/or can
be formalized in an OWL ontology by the domain experts.

Methods
Herein we assume that there exists a universal causal-
ity hypothesis H that can be represented as a network
of factors with causality relationships, which we call
a hypothesis graph. The background knowledge on the
hypothesis graphH is formalized in an ontologyO, which,
for instance, may define factors as biological processes and
conditions, and the causality relationships may indicate
the connections between them. Moreover, we assume that
different experts formalize the background knowledge on
H in ontologiesOi=1...n, such that eachOi highlights a cer-
tain subpart of this hypothesis graph H. Consider O1 =
〈RboxO1 , TboxO1〉, O2 = 〈RboxO2 , TboxO2〉 in Fig. 3, the
examples of formalization of the the causality relation-
ships among biological processes that participate in OA
pathogenesis, from two different points of view.
The overlaps among the ontologies Oi may or may

not exist and, as the number of ontologies increases,
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Fig. 3 Formalization of knowledge on OA pathogenesis processes

we assume that it is possible to assemble (align) these
ontologies. The assembled ontology

⋃n
i Oi = O repre-

sents the iteratively gathered and formalized biological
and biomedical knowledge on the hypothesis graph H.
Finally, the causality hypothesis graph H – the network of
factors interconnected with causality relationships – can
be extracted from the assembled ontology O at any given
point in time ti (Ht0 , . . . ,Htn ). As a consequence, the shape
of the causality hypothesis Hti depends on the amount
of background knowledge formalized in O at ti. Finally,
the hypothesis graph construction from ontologies is per-
formed in a three-step process: (1) projection of OWL 2
ontologiesO1, . . . ,On into ontology graphsG1, . . . ,Gn, (2)
assembly of the ontology graph G from G1, . . . ,Gn, and
(3) normalization of the graph G to obtain the hypothesis
graph H (Fig. 4).

Graph-based ontology projections
The nodes of the ontology-graph are unary predicates and
edges are labelled with possible relations between such
elements, that is, binary predicates. The key property of
this ontology-graph is that every X-labelled edge e = (v,w)

is justified by one or more axioms entailed by the ontology
which “semantically relates” v to w via X. For exam-
ple, edges e of the form A broader−−−−→ B are justified by
the OWL 2 axiom: B SubClassOf: A . We rely on
the OWL 2 reasoner HermiT [47] to build the ontology
graph (e.g., extraction of classification) to consider both
explicit and implicit knowledge defined in the ontology
O. In the following, A,Asup,Asub,B,Bi represent classes,
while R, S, Si,R− represent object properties. Edges e of
the form A R−→ B are justified by the following OWL 2
axioms:

(i) ‘A SubClassOf: R restriction B’, where restriction
is one of the following: some (existential
restriction), only (universal restriction),min x
(minimum cardinality),max x (maximum
cardinality) and exactly x (exact cardinality).
Note that axioms with an union of classes in the
restriction (e.g. ‘A SubClassOf: R restriction
B1 or . . . or Bn’) or an intersection of classes in the
restriction (e.g. ‘A SubClassOf: R restriction
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Fig. 4 Our methodology defines a pipeline to transform background knowledge into a hypothesis graph via sequential application of processing
steps: projection of input Oi ontologies into ontology graphs Gi , assembly of an ontology graph G with input ontology mappingsmi , normalization
of the ontology graph G into a final hypothesis graph H

B1 and . . . and Bn’) also justify edges of the form
A R−→ Bi with 1 ≤ i ≤ n.

(ii) Nesting (one level) with the same object property:
‘A SubClassOf: R restriction (R restriction B)’,
being R transitive.

(iii) Nesting (one level) with different properties:
‘A SubClassOf: R restriction (S restriction B)’,
and the role chain axiom of the form:
‘R ◦ S SubPropertyOf: R’.

(iv) A combination of range and domain axioms of the
form: ‘R Domain: A’ and ‘R Range: B’.

(v) Role chain axiom of the form: ‘S0 ◦ · · · ◦ Sn
SubPropertyOf: R’ when the ontology graph
already includes the edges A S0−→ C1 . . .Cn

Sn−→ B.
(vi) ‘R InverseOf: R−’ when the ontology graph already

includes the edge B R−−→ A.
(vii) Top-down propagation of restrictions:

‘A SubClassOf: Asup’ when the ontology graph
already includes the edge Asup

R−→ B.
(viii) Entailment among restrictions:

‘Bsub SubClassOf: B’ when the ontology graph
already includes the edge A R−→ Bsub.

Assembly of ontology graphs
The ontologies formalizing the hypothesis graph may
be created by different group of experts with dif-
ferent modelling (e.g., defining relationships between
occurrents, or between ocurrents and continuants)
and naming conventions. For example, a group may
use the concept Cartilage degradation (occur-
rent) from SNOMED-CT [48] while another may pre-
fer to use the concept negative regulation of
cartilage development (occurrent) from the GO
[20]. Furthermore, other groups would rather use the con-
cept Cartilage (continuant) and push the semantics of
degradation into the ontology property.
Ontology alignment will enable the integration and

assembly of the (sub-)ontology graphs in a larger ontol-
ogy graph. An ontology alignment is composed by
a set of ontology mappings. An ontology mapping
m between two concepts C1,C2 from the vocabulary

of two different ontologies O1,O2 can be defined as
follows: m = 〈C1,C2, r〉, where r is the relation
between C1 and C2 and, using SKOS vocabulary, it
can be of one of the following types: skos:exactMatch,
skos:closeMatch, skos:relatedMatch, skos:narrowMatch or
skos:broadMatch.
Mappings to guide the assembly (i.e., link factors

from different hypothesis) can be discovered in online
resources like UMLS Metathesaurus [49] and BioPortal
[50, 51], or using state of the art ontology alignment
systems like LogMap [52] and AML [53]. Mappings
in UMLS Metathesaurus or BioPortal typically repre-
sent correspondences of the type skos:exactMatch and
skos:closeMatch,1 while the output provided by automatic
systems will typically provided mappings of diverse type
and quality.
If a mapping exists to link two factors f1 and f ′

1 from
two different (sub-)ontology graphs, then these two fac-
tors are merged into one. The weight of the merged
factor will be according to the type of the ontology map-
ping. In our setting, we assume the following weight
values w (ranging from 0 to 1) depending on the map-
ping type: (1) skos:exactMatch mappings are associated
with a weight value 1.0, (2) skos:closeMatch mappings
with 0.75, while (3) skos:relatedMatch, skos:narrowMatch
and skos:broadMatch with a weight of 0.5. The weight
associated to each (merged) factor will play a key role
in our methodology for confidence measurement in a
hypothesis.

Normalization of the assembled graph
The final step of hypothesis graph construction is the
normalization of the assembled hypothesis graph, which
pushes the rich semantics of causality relationships (e.g.,
edges of the type A R−→ B ) into, possibly newly created,
nodes. Generally speaking, the normalization procedure
leads to a simplified representation of all the available
facts on causality relationships as a directed graph with
specific constraints on the types of nodes and edges.
Specifically, we aim to build a 1-mode network where all
the nodes represent the same fundamental metaphysical
type (occurrent), and all the edges represent the simplified
causality relationship defined between two occurrents.
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This is necessary because the general graph projection
step of our pipeline might produce semantic networks of
concepts where the concepts and the edges may have dif-
ferent types. For instance, the ontology graph may contain
edges representing causality relationships involving both
an occurrent and a continuant – two fundamentally dif-
ferent metaphysical types of concepts. Additionally, the
semantics of causality relations may reflect complemen-
tary effect when we consider causal chains in the hypothe-
sis graph, for instance negative and positive regulations of
biological processes. The hypothesis graph normalization
consists in iterative rewriting of the graph, where we fil-
ter all edges and rewrite them according to the following
patterns:

(i) Occurrent R−→ Occurrent where R represent the
property results in or causes justifies the edge in the
hypothesis graph Occurrent �→ Occurrent. For
example, if the ontology contains the axiom,
‘Chondrocyte catabolism SubClassOf:
results in some Collagen degradation’
the ontology graph will include the edge
Chondrocytes catabolism

results in−−−−−→
Collagen degradation and the hypothesis
graph will contain the causality relationship
Chondrocytes catabolism �→ Collagen
degradation.

(ii) Occurrent R−→ Occurrent where R represent the
property positively regulates or
negatively regulates. In this case the
positive or negative semantics of the property are
pushed to a fresh ocurrent concept. For example, if
the ontology projection contains the edge
Chondrocytes anabolism

positively regulates−−−−−−−−−−→
Collagen production, we will add the causal
relationship Chondrocyte anabolism �→
Positive regulation of Collagen
production.

(iii) Occurrent R−→ Continuant where R represent the
property positively regulates,
negatively regulates, increases
levels of or decreases levels of. For
example if the ontology graph includes the edge TNF
alpha overproduction

decreases levels of−−−−−−−−−−→
Collagen the hypothesis graph will include the
fresh term Decreased levels of Collagen
(or Loss of Collagen) and the causal
relationship TNF alpha overproduction �→
Decreased levels of Collagen.

In Fig. 5 we illustrate the whole pipeline of construct-
ing a hypothesis graph H from the two input ontologies
O1,O2, defined in Fig. 3. The two ontology graphs G1,G2

represent the individual extent of background knowledge
of the two specialists on causality relationships of fac-
tors between synovial inflammation and cartilage degra-
dation (obtained by projecting ontologies O1,O2). The
assembly of the graphs takes as input the ontology map-
pings m1 and m2 (see Table 1), which have been manu-
ally created by the domain experts, to merge the graphs
G1,G2. Overall, the graph projection and the graph assem-
bly steps of the pipeline work in couple to entail new
causal links among the factors, which we represent in
the assembled graph G. For instance, once we align the
two graphs we entail the circular causality relationship,
which states that Synovial inflammation may be,
simultaneously, the cause and the effect of Cartilage
degradation. Notice that before the alignment the two
specialists were not aware of this circular relationship. The
normalization of the assembled graphG splits the two bio-
logical scenarios of chondrocytes’ anabolic and catabolic
activities, such that the resulting hypothesis graph H con-
tains only unambiguous causality relations among the
factors.

Measuring confidence in a hypothesis
Once we obtain the hypothesis graph H, we are ready
to form the causality hypothesis and perform evidence-
based hypothesis testing. Before we delve into this topic,
we briefly introduce the notation that we use for the
hypothesis graphs throughout this work.

Notation for hypothesis graphs. LetH = (N ,A) be a dir
ected graph, which we call hypothesis graph, with ni ∈ N
set of nodes. And A is a set of ordered pairs of (s, t) in N,
called arcs, where s denote the source of the arc, and t the
target of the arc [54]. A path π(s, t) from source node s
to the target node t is denoted as πi(s, t) = (s, ni, . . . , t).
We write �(s, t) to denote all possible simple paths in
the hypothesis graph from node s to the node t. A sim-
ple path is a path which does not have repeating nodes.
And we use I(s, t) = {ni|ni ∈ πi, ∀πi(s, t) ∈ �(s, t)} to
refer to all the interior nodes which appear in all paths
from s to t.

Causality hypothesis. A causal hypothesis asks a ques-
tion whether some factor (s) has caused another factor (t).
There might be a direct causality relationship from s to
t, or there might exist an indirect causality relationship,
such that s has caused t through some intermediate fac-
tors, which might have participated actively or passively
to the causality chain from s to t. These causal chains
from s to t represent different possibilities of how smight
have caused t. We use the notation for hypothesis graph
H to represent factors as nodes fi ∈ N , direct causality
relationships as arcs (fi, fj) ∈ E, and causality chains as
paths �(s, t).
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Fig. 5 Schematic representation of the three-step pipeline for the hypothesis graph H creation from the two input ontologies O1,O2: i) use graph
projection rules to transform each ontology Oi into its graph representation, ii) assemble the hypothesis graph H from two ontology graphs by
merging concepts for which we have ontology mappingsmi , and finally iii) normalize the hypothesis graph H by extracting only the relevant
information of causality relationships among the occurrents
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Table 1 Ontology mappings created manually by the domain experts

Mapping mi O1 : C1 O2 : C2 r c

m1 O1:Synovial
inflammation

O2:Synovial capsule
inflammation

skos:closeMatch 0.75

m2 O1:Biochemical
imbalance

O2:Disruption of biochemical
balance

skos:relatedMatch 0.5

Consider an example causality hypothesis that pos-
tulates that s = Positive regulation of TNF
alpha overproduction caused t = Synovial
inflammation in Fig. 6. In our example, we do not have
a direct causality relationship between these two factors,
however there exist 6 different causal chains, i.e., 6 dif-
ferent ways in which s might have caused t. In Fig. 6 we
present two possible chains of factors (Path 1, Path 2)
starting from s and leading to t.
We are confident in our causality hypothesis – within

the domain of the known facts – when we are able to
provide evidences to all the factors that participate in
causality chains from s to t. I(s, t) represents the set of
nodes in the hypothesis graph H, which correspond to
the factors that need to be evidenced, E is an indicator
set which denotes factors evidenced so far, and C(s, t, E)

be the confidence function. Intuitively, confidence in a
hypothesis should grow with the number of factors that
we are able to evidence, more factors we evidence, more

confident we are that s did indeed cause t. Since, we
might have several possibilities of s causing t we, first,
propose to measure confidence of each causality possibil-
ity separately, and then, we propose to measure overall
causality hypothesis as a sum of the confidences of all the
known possibilities (Eq. 1). To this end, our confidence
in a causality hypothesis depends on three parameters: i)
source of the causality (s), ii) target of the causality (t), and
iii) set of evidenced factors (E).

Cts (E) =
∑

π∈�(s,t)

∑

f∈π

F(f ), (1)

Measuring confidence in a causality hypothesis propor-
tionally to the number of evidenced factors might not be
correct, there are two sources of uncertainty that might
negatively effect our confidence in the hypothesis, even
if we collect all the evidences, and should be reflected
in the way we measure confidence in the hypothesis: i)
the quality of the evidences, i.e., we can surely state that

Fig. 6 Two possible paths from the factor Positive regulation of TNF alpha overproduction to the factor Synovial
inflammation
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the evidence is not due to errors, and ii) quality of our
modelling of the hypothesis. The first source of uncer-
tainty comes from the fact that during our experiments
or literature search for the justifications of evidences we
might face errors. And the second source of uncertainty
comes from the waywemodel our hypothesis as an assem-
bly of sub-hypotheses, which relies on ontology mappings
to merge formalizations of the background knowledge of
the hypothesis. During this process we might introduce
uncertainty for the matched concepts representing factors
of the hypothesis.
To this end, we introduce two functions defined on the

nodes of the hypothesis graph, φ : N �→[ 0 . . . 1] that
associates weights of the confidence in the ontology map-
ping to every factor, and represents our confidence in the
hypothesis modelling, and ψ : N �→[ 0 . . . 1] associates
weights of the confidence in evidence for each factor.
Equation 2 represents the contribution function for the
hypothesis factors.

F(f ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 f �∈ E
factor f not evidenced

φ(f )ψ(f ) f ∈ E
weighted contribution
if f evidenced

(2)

Properties of the confidence function. Confidence in
causality hypothesis is defined as a sum of weighted con-
tributions of factors, that participate in causality possibil-
ities. The contributions of factors is a weighted, and most
importantly a non-negative, function (Eq. 1), thus thus as
we add more evidenced factors the value of the function,
can only grow. Confidence depends on the evidenced fac-
tors, it has its minimum value (Cts = 0) when we have no
evidences (E = ∅), and it has its maximum value when
all the factors have been evidenced (argmaxCtswhen E =
I(s, t)). To this end, we can normalize our confidence
function to the maximum possible confidence value we
can obtain, when all the factors have been evidenced, such
that the confidence is always measured in the [ 0 . . . 1]
range (Eq. 3).

0 = Cts (E = ∅)

Cts (E = I)
≤ Cts (E ⊂ I)

Cts (E = I)
<

Cts (E = I)

Cts (E = I)
= 1. (3)

Results
With the help of our domain experts in biology and
biomechanical engineering (multi-disciplinary consor-
tium of the EU FP7 “MultiScaleHuman” project [55]) we
have been formalizing the background knowledge around
factors participating in the process of cartilage degrada-
tion, which can be evidenced across different biological
scales. This background knowledge has been captured, as
a proof of concept, in an OWL 2 ontology O and has been

iteratively validated with our domain experts. This ontol-
ogy has been designed to contain a significant amount
of axioms which go beyond the usual taxonomical rela-
tionships in the biomedical ontologies, and instead, model
causality relationships with rich ontology concept con-
struction operators including nested OWL restrictions
and property chains. During our interviews (t1, . . . , tn)
with the domain experts we have been updating the back-
ground knowledge formalization (Ot1 , . . . ,Otn ), either
with the help of our domain experts or by translating
discovered causality relationships from the literature our-
selves. Each snapshot of the background knowledge Oti
has been presented as the results of our methodology of
hypothesis graph constructionHti for validation and feed-
back. To report our results we fix our attention to two
specific snapshots of the causality hypothesis, and we refer
to them asHsub andHbroader .Hsub has been extracted from
the state of the ontology Oti , which corresponds to the
extent of knowledge of the molecular biologist on causal-
ity relationships between the biological processes which
lead to cartilage degradation with a focus on cellular and
molecular biological scales (Hsub is an equivalent hypothe-
sis graph to what we presented as a normalized hypothesis
graph in the “Methods” section). Hbroader was extracted
from the ontology Otj at time point tj, which corresponds
to the ontology Oti updated with more knowledge about
factors that lead to cartilage degradation, from organ and
behavior biological scales. Table 2 summarizes Oti ,Otj
with ontology metrics and descriptions, computed with
the Protégé ontology editor.
In Fig. 7 we notice that Hsub = 〈Nsub,Asub〉 is a sub-

graph of Hbroader = 〈Nbroader ,Abroader〉, such that Nsub ⊆
Nbroader and Asub ⊆ Abroader . The additional knowledge
(Hbroader/Hsub) is not present in the formalization by the
molecular biologist, meaning that he might not be aware
about alternative factors that concur during osteoarthri-
tis and might have played a significant role in the causality
hypothesis (Fig. 7). The subsequent experiments demon-
strate how our methodology supports hypothesis testing
by quantifying confidence in a causality hypothesis
with incomplete evidences, and provides means to
compare confidence measures with different depths of
knowledge.

Table 2 Oti ,Otj ontology metrics

Ontology metric Oti Otj

Axioms 66 151

Logical axiom count 39 92

Declaration axiom count 18 34

Class count 14 30

Object property count 4 4
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Fig. 7 Bold contours show the normalized hypothesis graph “known” to the molecular biologist Hsub , whereas the dotted contours delineate the
additional knowledge of which the biologist is not aware Hbroader

Robustness of the system in presence of complementary
causality relationships
Our methodology is capable of adequately tracking
two complementary biological scenarios, where one
factor might stand as a cause of two opposite effects.
We tested our methodology for hypothesis graph con-
struction with small increments in our knowledge which
might lead to big changes in the shape of the causality
hypothesis, and what we can understand from it. In
particular, at the time point ti the knowledge on the
hypothesis contained causality path from Mechanical
loading factor to the Chondrocytes catabolism
factor. Indeed, the positive regulation of chondrocytes’
catabolism by mechanical loading has been demonstrated
in the literature [56]. However, it is also known that
the mechanical loading can also have positive effect
on the chondrocytes anabolism (the opposite
biological process of catabolism), and thus facilitate
proteoglycan and collagen production [57]. Based on
the complementary causality effects of mechanical
loading on the biochemical balance in cartilage, we can
thus hypothesize that mechanical loading might result
in both beneficial and detrimental conditions of the
joint cartilage. This additional knowledge is reflected

in the way our methodology constructs the hypothesis
graph. In particular, the normalization patterns (intro-
duced in the Methodology section) split the causality
chains starting in mechanical loading, that span two
complementary causality possibilities of benign and
malign effect on articular joint (Fig. 7). Validly, all the
possibilities of mechanical loading leading cartilage
degradation pass through the factor positive
regulation of chondrocytes catabolism
and we do not have a situation where mechanical
loading leads to cartilage degradation
by passing through positive regulation of
chondrocytes anabolism. Conversely all the causality
chains which lead from mechanical loading to
collagen or proteoglycan production pass through
chondrocytes anabolism factor.

Relative confidence measurement
This experiment demonstrates how molecular objectives
can measure his confidence in the causality hypothe-
sis according to his knowledge on causality relationships
(Hsub) and can compare it to the confidencemeasure when
we add more knowledge Hbroader . We simulate the case
where the molecular biologist wants to test a hypothesis
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that s = Synovial inflammation has caused t =
Cartilage degradation. We treat Hbroader as a
coarse approximation of our universal knowledge on all
possible causalities which lead from s to t, and Hsub as a
personal view of that universal knowledge by the molecu-
lar biologist.
Table 3 summarizes network statistics of the two graphs.

In particular, in the universal hypothesis graph Hbroader
there are 24 possible causal chains which lead from s to
t, whereas in the subgraph Hsub we have only 6 possible
causal chains, which means that the molecular biologist
is missing a significant amount of knowledge about the
causalities that he is studying. Moreover, in the universal
knowledge of causality hypothesis we have 12 (|IHbroader | =
12) factors that can potentially be evidenced and would
contribute positively to the overall confidence of the
hypothesis, whereas in the restricted knowledge case we
are aware of only 9 (|IHsub | = 9) factors which need to
be evidenced to obtain the maximum confidence in the
same hypothesis that s has caused t. To study the behav-
ior of the confidence function Ct

s in these two cases we
perform the following tests: i) study the evolution of the
confidence function separately for two graphs, ii) normal-
ize the confidence function with the maximum possible
confidence for individual graphs, iii) normalize the two
confidence functions with themaximum confidence in the
universal graph. Note that, the parameter for the confi-
dence function is the set of evidenced nodes, where each
node may have different importance value, as defined by
the weighting functionF . To take into account all the pos-
sible variability of the confidence function we compute
the distributions of the confidence values for a gradually
increasing number of evidences. That is, we start with
the case where the evidence set is empty, correspond-
ing to the initial phase of hypothesis testing and where
our confidence is 0. Then, we compute the distribution
of confidences for all evidence sets of size (cardinality) 1,
corresponding to different choices of choosing one fac-
tor to evidence. For instance, for the universal hypothesis
graph Hbroader we have 12 ways to to prove hypothesis by
evidencing only one factor (out of 12 possible), whereas
for Hsub we have 9 factors to choose from. We continue
computing confidence distributions until we reach the full
evidence set.
Figure 8 represents the distribution of confidences com-

puted with Ct
s (Eq. 1) for gradually increasing sizes of

Table 3 Statistics of the graphs

Statistic Hsub Hbroader

Number of nodes |N| 15 30

Number of arcs |A| 19 57

Number of possible causal chains from s to t 6 24

Number of possible factors to evidence |I | 9 12

evidence sets, with a trivial weighting function of factors–
F = const 1 – where every factor has equal contribution
to the causality chains. The mean values of the con-
fidence distributions grow linearly as we increase the
number of evidences, as expected, the maximum confi-
dence value obtained in the universal case is bigger than
in the restricted case because we take into account more
possibilities in the universal case. We now use the individ-
ual maximum mean confidence values for each graph to
scale our distributions, such that they always stay in the
0..1 range.
Figure 9 shows the normalized version of the confidence

distributions, namely Ĉt
s = Ct

s
max(Ct

s )
for Hsub and Hbroader .

In particular, it shows that a molecular biologist, relative
to his extent of knowledge, obtains the 100% confidence
in his causality hypothesis by evidencing all the possible
factors which contribute to all the possible ways in which
s might have caused t, however, with the same amount
of evidence, but taking into account universal knowledge
about the causality possibilities, his confidence is less than
100%, which shows that he has missed some important
causality possibilities. To quantify this uncertainty, which
is proportionate to the amount of missed causality pos-
sibilities, we scale both confidence distributions by the
maximum confidence value that we may obtain in the
universal case.
Figure 10 demonstrates the relative confidence of the

molecular biologist to the universal causality hypothesis
for the same evidenced sets. The x-axis is truncated to
evidence sets of size 9, since molecular biologist is only
aware of 9 factors which need to be evidenced to prove
his hypothesis. If we collect the mean values of the con-
fidence distributions in two vectors x1, x2 then we can
quantify the error as their Euclidean distance ‖x1 − x2‖.
In Table 4 we summarize the errors which quantify the
uncertainty in obtained confidence measures with respect
to the universal case for different weighting functions Fi.
These weighting functions were chosen as follows: i) F1
trivial weighting of importance of factors, ii) F2 random
weighting of importance of each factor, iii) F3 gives more
importance to factors which molecular biologist is aware
of, whereas those that he is not aware of are given less
importance, iv) F4 opposite to F3, we give more impor-
tance to factors that molecular biologist is not aware of
and we decrease the importance of factors that he is
aware of. The error variation is intuitive, if we evidence
the most important factors, even if we miss other fac-
tors and other causality chains, but whose importance
to the overall hypothesis is significantly smaller, then we
are more confident even with a restricted knowledge of
the causality possibilities. Vice-versa, if we evidence less
important factors and we miss the important ones, then
our confidence is much more compromised.
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Fig. 8 Confidence distributions for gradually increasing sizes of evidence sets for the two graphs Hsub ,Hbroader , with a trivial weighting function
F (f ) = 1

Local importance of factors
Importance of the factors for a causality hypothesis can
be deduced from our confidence measure defined on the
hypothesis graph. The factors ranked as the most important
may help the researchers prioritize their next experi-
ments, studies, andmay help in the discovery of the poten-
tial collaborations with other scientists. Analogously, the
factors that are identified as the least important for a spe-
cific causality hypothesis hint on the lack of knowledge
about the possibly missing causality relationships, and
might represent an opportunity to focus on an underre-
searched topic. In particular, Ct

s measures our confidence
in the causality hypothesis that factor s caused t with a

given set of evidenced nodes E . This function accumu-
lates the weighted contribution of all evidenced nodes in
each causality possibility leading from s to t. When we first
start proving our hypothesis we do not have any evidence
and we have a choice of I to evidence from. However,
do we need to evidence all the factors in the interior of
the causality hypothesis I? What if we can only obtain
an incomplete set of evidences, which factors should we
choose? Intuitively, we should first focus on evidencing
factors which are most important in our causality hypoth-
esis. But how can we assess the importance of each factor
in the causality hypothesis? In this experiment, we pro-
pose a general approach to assessing the local importance

Fig. 9 Confidence distributions for gradually increasing sizes of evidence sets for the two graphs Hsub ,Hbroader , normalized by its maximum possible
confidence value
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Fig. 10 Confidence distributions for gradually increasing sizes of evidence sets for the two graphs Hsub ,Hbroader , normalized by the maximum
possible confidence value in the universal case

of factors, independently of the weighting function F . To
do so we start with a case where we do not have any evi-
dence E = ∅, we then rank each factor fi in the causality
hypothesis by its potential contribution to the confidence
in the causality hypothesis if it was evidenced |Cts (E ∪ fi)−
Cts (E = ∅)|.
Figure 11 depicts the variation of potential contribu-

tions to the overall confidence measure Ct
s for each fac-

tor fi. In particular, we can observe that in both cases:
Hsub restricted personal view of the hypothesis, and
Hbroader universal causality hypothesis themost important
factors are: Positive regulation of TNF alpha
overproduction, s =Synovial inflammation,
t =Cartilage degeneration and Biochemical
imbalance. Indeed, to prove that s has resulted in
t our best strategy is to focus on evidencing those
two factors, however, given our knowledge of causal-
ity relationships, we might choose to evidence alterna-
tive factors to obtain the same overall confidence in
the validity of our causality hypothesis. We also observe
that by extracting more knowledge on causality relation-
ships more important factors to our causality hypoth-
esis emerge, i.e., the factors which we did not know
about before. For instance, Decrease of cartilage
elasticity and Water content increase in

Table 4 Mean squared error between the confidence
distributions for different weighting functions F
Weighting function Fi Error

F1(f ) = 1 2.17

F2(f ) = random(0, 1) 2.09

F3(f ) = 1 if f ∈ IHsub , otherwise 0.1 1.95

F4(f ) = 1 if f ∈ IHbroader , otherwise 0.1 2.96

cartilage have relatively low potential confidence con-
tributions (< 0.04) and thus our unawareness of the
contribution to causality hypothesis of these factors is not
so penalizing. Yet, Diminution of load bearing
capacity of cartilage is capable of contribut-
ing more than 10% of the overall confidence measure
Ct
s . It is also interesting to observe that adding knowl-

edge (Hbroader) reduces the importance of Biochemical
imbalance factor to the point that it is no longer one of
the most important factors in the causality hypothesis.

Generalization of the hypothesis configuration
In the previous experiment we identified the most impor-
tant factors, such that evidencing them would maximize
our confidence in the causality hypothesis that s resulted
in t. We can use the local importance of factors to the
hypothesis configuration to target our evidence collec-
tion. Suppose we managed to evidence the four most
important factors for the hypothesis graphHsub, which we
summarize in Table 5.
For the same evidence set Esub we obtain the normal-

ized confidence of Ct
s = 0.66 for Hsub and Ct

s = 0.53
for Hbroader . Now, we ask ourselves a question “with the
same evidence set what other causalities can we prove
(with the same confidence)?”. If we keep the same evidence
set Esub we are able to prove causalities with a confidence
>60% as depicted in Table 6. These causalities correspond
to very similar causality chains, as our initial causality
hypothesis that Synovial inflammation has results
in Cartilage degradation.
Intuitively, Table 7 demonstrates that for the same evi-

dence set, as we add more knowledge (Hbroader) we are
able to prove more causality relationships, with a good
confidence (>50%).
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Fig. 11 Contributions of the interior factors of the hypothesis s caused t for two hypothesis graphs Hsub ,Hbroader with two different depths of
knowledge

Generalization of the hypothesis configuration leads
to the scenarios where the seemingly wrong causality
relationships, might actually be explained with plausible
interpretations. One such example scenario is when we
obtain the significant confidence (0.60) in a causality
hypothesis that Cartilage calcification might
result in Positive regulation of TNF alpha
overproduction (line 1 in Table 7). First, it is tempt-
ing to say that this is a wrong hypothesis, and is due
to the error in the formalization of the background
knowledge on causality relationships. Partly, because
calcification of cartilage entails cell apoptosis and thus
should cause the decrease of levels of TNF alpha cytokine
cells. However, we get the high confidence score in this
causality due to the presence of a path from Cartilage
calcification to Positive regulation of
TNF alpha overproduction (see Fig. 7). This path
represents our knowledge that calcified cartilage will
result in degeneration of cartilage tissue, which will

Table 5 4 Most important factors for Hsub in the two hypothesis
graphs and their relative confidence values in both Hsub and
Hbroader

Evidence set Esub Importance for Hbroader Importance for Hsub

Biochemical imbalance 0.10 0.16

Cartilage degeneration 0.14 0.16

Positive regulation of TNF
alpha overproduction

0.14 0.16

Synovial inflammation 0.14 0.16

Cts(Esub) for Hbroader Cts(Esub) for Hsub

0.53 0.66

provoke synovial inflammation, and we hypothesized that
synovial inflammation will result in positive regulation of
TNF alpha. After a discussion with our domain experts
we reached the conclusion that, although this causality
relationship between calcified cartilage and positive
regulation of TNF alpha might seem contradictory, there
actually might be a plausible explanation. Namely, while
the calcification causes tissue death in cartilage, it does so
only in a specific region of cartilage. The calcified region,
however, will induce the diminution of the load bearing
properties of the whole cartilage, and this will provoke
the synovial inflammation, which, in turn, will result in
excessive levels of TNF alpha in the neighbouring regions
of the cartilage (neighbouring to the calcified region).

Prototype
We implemented a prototype (Fig. 12) to interactively
apply and present the proposed methodology for causality
hypothesis testing on the obtained hypothesis graphs. The
demo of the prototype is available at http://hypothtest.
plumdeq.xyz/test/. Source code for the hypothesis test-
ing of the prototype and proof of concept ontologies, as
well as the Jupyter Notebooks (reproducible experiments
presented in this manuscript) are available on GitHub at
https://github.com/plumdeq/hypothtest (see “Availability
of data and materials” subsection).
The interface of the prototype is divided into 4 logical

blocks, labeled a, b, c, d in Fig. 12.

(A) Control over the hypothesis configuration. The
users can change the hypothesis configuration in two
modes - i) identifying the boundary nodes s, t, ii) selecting
the evidenced nodes E . Each mode is triggered by clicking

http://hypothtest.plumdeq.xyz/test/
http://hypothtest.plumdeq.xyz/test/
https://github.com/plumdeq/hypothtest
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Table 6 Other causalities we can prove (>60% confidence) with the same evidence set Esub
Source s Target t Cts(Esub) for Hbroader Cts(Esub) for Hsub

Cartilage Biochemical imbalance 0.66 0.66

degeneration Negative regulation of Collagen production 0.75 0.75

Positive regulation of TNF alpha overproduction 1.00 1.00

Loss of Positive regulation of TNF alpha overproduction 0.62 0.80
collagen

Loss of Positive regulation of TNF alpha overproduction 0.62 0.80
proteoglycan

Synovial Negative regulation of Chondrocytes anabolic activity 0.66 0.66
inflammation

Negative regulation of Collagen production 0.66 0.66

Negative regulation of Proteoglycan production 0.66 0.66

Positive regulation of Chondrocytes catabolic activity 0.66 0.66

Positive regulation of TNF alpha overproduction 1.00 1.00

Table 7 Causalities we can prove (>50% confidence), as we add more knowledge, and which we cannot prove with our restricted
knowledge of causality relationships

Source s Target t Cts(Esub) for Hbroader Cts(Esub) for Hsub

Cartilage calcification Positive regulation of TNF 0.60 0.0
alpha overproduction

Diminution of load bearing Biochemical imbalance 0.57 0.0

capacity of cartilage Negative regulation of 0.60 0.0
Chondrocytes anabolic activity

Negative regulation of 0.60 0.0
Collagen production

Negative regulation of 0.60 0.0
Proteoglycan production

Positive regulation of Chondrocytes 0.60 0.0
catabolic activity

Positive regulation of TNF 0.75 0.0
alpha overproduction

Synovial inflammation 0.66 0.0

Meniscal tear Biochemical imbalance 0.57 0.0

Negative regulation of 0.60 0.0
Collagen production

Negative regulation of 0.60 0.0
Proteoglycan production

Positive regulation of Chondrocytes 0.60 0.0
catabolic activity

Positive regulation of TNF 0.75 0.0
alpha overproduction

Water content increase Positive regulation of TNF 0.60 0.0
in cartilage alpha overproduction



Agibetov et al. Journal of Biomedical Semantics  (2018) 9:9 Page 18 of 22

Fig. 12 The interface of the prototype is divided into 4 logical blocks: a) control over the hypothesis configuration h, b) hypothesis summary, c) local
importance of nodes in the hypothesis and d) visualization of the hypothesis graph

on an associated button (see Fig. 12a), and then selecting
the specific nodes in the hypothesis graph (Fig. 12d).

(B) Hypothesis summary. A textual summary of a cur-
rent hypothesis configuration (see Fig. 12b).

(C) Local importance of nodes in the hypothesis. Local
importance of each node with respect to the hypothesis
configuration.

(D) Visualisation of the hypothesis graph. Interactive
network visualisation with the force directed layout [58]
of the hypothesis graph H. The users can interactively
click on the nodes and drag them for a visually better spa-
tial distribution of the network. The boundary nodes are
visually distinguished as completely opaque nodes in the
hypothesis graph (Fig. 12), while all other nodes are semi-
opaque. Evidenced nodes are visually distinguished as
green nodes. Consequently, if a node ni is both evidenced
and either a source or a target of the confidence evalua-
tion, then it will be opaque green. The backend (server)
of the prototype constructs hypothesis graphs, computes
importance measures on each node of the graph, and
evaluates confidence in the hypothesis configuration. The
frontend (client) is responsible for the interactive visu-
alisation of the hypothesis graph, and serves as a user

interface. In particular the user can interactively assign the
boundary nodes, and mark nodes as evidenced. The user
input is then transmitted to the backend via custom data
exchange protocol, based on JSON files. Each time the
user changes the configuration of the hypothesis (i.e., evi-
dences/unevidences node or assigns new source or target
nodes of the confidence evaluation the hypothesis confi-
dence is reevaluated and the results are sent back to the
client.

Discussion
We evaluated our methodology on a hypothesis graph
which covers our use-case scenario of cartilage degrada-
tion during osteoarthritis. The obtained hypothesis graph
represents both contributing factors which may cause
cartilage degradation and the factors which might be
caused by the cartilage degradation. Hypothesis graph
construction (see “Robustness of the system in presence
of complementary causality relationships” section) has
proven to be robust to the addition of potentially con-
tradictory information on the simultaneously positive and
negative effects, by adequately separating two comple-
mentary causality scenarios. By evaluating our method-
ology for relative confidence measurement (see “Relative
confidence measurement” section) we have observed the
following: i) the more evidences we are able to provide
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(as E → I) the bigger is our overall confidence function
(confidence grows Cts ↑), ii) our relative confidence to the
universal knowledge of the hypothesis (i.e., the difference
in confidences) is proportionate to how much knowledge
on causal possibilities we lack with respect to the uni-
versal causality hypothesis, the less causality possibilities
we take into account in our formalization the smaller is
our confidence in the causality hypothesis with respect
to the universal knowledge of the causality hypothesis,
iii) our confidence in the causality hypothesis increases
when we evidence more factors favored byF with respect
to the universal formalization of the causality hypothe-
sis, even if we do not have full knowledge of the causality
possibilities. The domain experts found that our compu-
tational methodology for assessing confidence in a causal-
ity hypothesis proportionally to the amount of available
knowledge, corresponds to their subjective assessments
of confidences in an investigated hypothesis. Moreover,
the obtained confidence measures for the specific causal-
ity hypotheses have been validated by our domain experts,
and, in some cases, have led to new interpretations of the
already known causality connections (see “Generalization
of the hypothesis configuration” section).

Limits, assumptions and dependencies of methodology.
Overall our framework is dependant on the validity, qual-
ity and the richness of the modelling, which will induce
the final shape and topology of the hypothesis graph
and the way the confidence is assessed by using our
methodology for confidence assessment. Of course, our
methodology has its limits and has its assumptions and
dependencies. Main assumptions and dependencies of the
methodology for hypothesis testing rely on: i) ontologi-
cal commitment of the input ontologies Oi that formalize
background biological knowledge on causality relation-
ships, ii) biological validity and logical consistency of
the formalized knowledge - input to the framework, iii)
weighting scheme of factors of the hypothesis that mea-
sure the quality of the ontology matching of concepts used
to assemble the final ontology, and the confidence of the
obtained evidence for a specific factor fi. Ontological com-
mitment of the modelled realities representing causality
relationships among the factors should follow the good
design patterns for modelling causalities, for both con-
cepts and relationships that interrelate those concepts. In
particular, we consider the processual perspective of a dis-
ease as a causal chain structure as in River Flow Model of
Diseases [25] as opposed to an object-like perspective of
a whole constituting a disease as in Ontology of General
Medical Sciences (OGMS) [59]. As has been argued by
Rovetto and Mizgouchi [25], the causality in OGMS is
unstated, implicit or stated indirectly. The general account
of disease in OGMS draws ideas from Scheuermann
et al. [60], and distinguishes diseases from disease courses.

Diseases in OGMS are treated as dispositions potentially
realizable via pathological processes, and have some dis-
orders as their physical basis. In our work, we focus on
causality relationships which constitute a disease course,
and reason on these relationships by relying on graph
analysis techniques. Due to this modelling choice we
expect the input ontologies to follow the RFM account
of disease as a causal chain structure. Specifically, our
methodology for hypothesis graph construction extracts
causality relationships from the assembled ontology such
that the final hypothesis graph contains nodes as occur-
rents, either biological processes, as exemplary modelled
in the Gene Ontology [20], or as conditions (abnormal
states), according to the guidelines of the RFM. The
causality relationships should be compliant with the Rela-
tion Ontology [24], which, among other types, covers con-
current and overlapping causality relationships between
the occurrent entities, relying on Allen interval algebra
calculus for temporal logic [61]. Strategies toward harmo-
nization between disease accounts in OGMS and RFM are
brought up in Rovetto and Mizgouchi [25]. Hypothesis
graph creation with input ontologies following the OGMS
modelling of disease could represent a promising future
direction for the community.
Weighting scheme for the factors of the hypothesis

graph will largely depend on the context (e.g., studied
disease), the quality of the ontology mappings, and the
confidence of the obtained evidence. Mappings to guide
the assembly (i.e., link factors from different hypothe-
sis) can be discovered in online resources like UMLS
Metathesaurus [49] or BioPortal [50, 51], or using state
of the art ontology alignment systems like LogMap [52]
or AML [53]. Confidence in the obtained evidence will
depend on the methodology of the experiment and should
be assessed by the executioner of the experiment, which
might entail subjective importance weight of the factor
and might have subjective consequences on the computa-
tion of the overall confidence in the causality hypothesis
with our framework.

Conclusions
We have presented a promising and nascent method-
ology for the translation of biological knowledge on
causality relationships of biological processes and their
effects on conditions to a computational framework for
shared hypothesis testing. Furthermore, we have defined
a knowledge-driven, and evidenced-based way of mea-
suring confidence in a causality hypothesis proportionally
to the amount of available knowledge and collected evi-
dences. The methodology resumes in two points: hypoth-
esis graph construction from the formalizations of the
background knowledge on causality relationships, and
confidence measurement in a causality hypothesis as a
normalized weighted path computation in the hypothesis
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graph. Lastly, we have made the source code and mate-
rials available to the community on GitHub at https://
github.com/plumdeq/hypothtest (see “Availability of data
and materials” subsection).
Herein we took advantage of our domain experts to

build a simplified and a tractable version of a causal-
ity hypothesis graph of cartilage degradation during to
osteoarthritis, and to validate our methodology for confi-
dence assessment of causality hypothesis. The evaluation
results, the feedback from our experts, and the lessons
learnt from this overall experience allow us to conclude
that a methodology for shared hypothesis testing could
be incorporated as an invaluable asset to the online bio-
logical knowledge graph mining services. In particular,
our hypothesis graph construction methodology could
be used routinely to enrich biological knowledge graphs
(e.g., Knowledge Bio [62]) and online databases (e.g.,
Gene Wiki [63]) by extracting the causality relation-
ships information from OWL 2 ontologies. Of course,
the proposed set of patterns for the normalization of
the hypothesis graph will have to be augmented and
tuned for a specific studied context. We, for instance,
defined graph rewriting normalization patterns to deal
with complementary biological scenarios of simultane-
ously positive and negative regulations of biological pro-
cesses (see “Robustness of the system in presence of
complementary causality relationships” section). In fact,
the graph rewriting patterns is a general paradigm for
the transformation of formalized knowledge on a spe-
cific biological pattern into its equivalent graph rep-
resentation and might open an opportunity for more
research and practical contributions from the biomedical
community.
Shared hypothesis testing services built on top of

the confidence measurement (see “Relative confidence
measurement” section), and the inference procedures
it induces (see “Generalization of the hypothesis con-
figuration” section), will enhance the biological knowl-
edge graphs with advanced simulation functionalities
for continuous research. These services could support
researchers in literature review for their experimental
studies, planning and prioritizing evidence collection
acquisition procedures, and testing their hypotheses with
different depths of knowledge on causal dependencies
of biological processes and their effects on the observed
conditions. Measuring confidence in a causality hypothe-
sis relatively to the already discovered causality relation-
ships might serve in the assessment of the fairness of the
obtained results, and its significance to the already known
results. We believe that the shared hypothesis testing
could serve as an important asset for the costless re-
enactment of the experiments, and might eventually con-
tribute to the future, purely computational benchmarks
for the validation of the experiments.

Endnote
1 See https://www.bioontology.org/wiki/index.php/Bio-

Portal_Mappings
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