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Abstract

Background: The goal of ontology matching is to identify correspondences between entities from different yet
overlapping ontologies so as to facilitate semantic integration, reuse and interoperability. As a well developed
mathematical model for analyzing individuals and structuring concepts, Formal Concept Analysis (FCA) has been
applied to ontology matching (OM) tasks since the beginning of OM research, whereas ontological knowledge
exploited in FCA-based methods is limited. This motivates the study in this paper, i.e., to empower FCA with as much
as ontological knowledge as possible for identifying mappings across ontologies.

Methods: We propose a method based on Formal Concept Analysis to identify and validate mappings across
ontologies, including one-to-one mappings, complex mappings and correspondences between object properties.
Our method, called FCA-Map, incrementally generates a total of five types of formal contexts and extracts mappings
from the lattices derived. First, the token-based formal context describes how class names, labels and synonyms share
lexical tokens, leading to lexical mappings (anchors) across ontologies. Second, the relation-based formal context
describes how classes are in taxonomic, partonomic and disjoint relationships with the anchors, leading to positive
and negative structural evidence for validating the lexical matching. Third, the positive relation-based context can be
used to discover structural mappings. Afterwards, the property-based formal context describes how object properties
are used in axioms to connect anchor classes across ontologies, leading to property mappings. Last, the
restriction-based formal context describes co-occurrence of classes across ontologies in anonymous ancestors of
anchors, from which extended structural mappings and complex mappings can be identified.

Results: Evaluation on the Anatomy, the Large Biomedical Ontologies, and the Disease and Phenotype track of the
2016 Ontology Alignment Evaluation Initiative campaign demonstrates the effectiveness of FCA-Map and its
competitiveness with the top-ranked systems. FCA-Map can achieve a better balance between precision and recall for
large-scale domain ontologies through constructing multiple FCA structures, whereas it performs unsatisfactorily for
smaller-sized ontologies with less lexical and semantic expressions.

Conclusions: Compared with other FCA-based OM systems, the study in this paper is more comprehensive as an
attempt to push the envelope of the Formal Concept Analysis formalism in ontology matching tasks. Five types of
formal contexts are constructed incrementally, and their derived concept lattices are used to cluster the
commonalities among classes at lexical and structural level, respectively. Experiments on large, real-world domain
ontologies show promising results and reveal the power of FCA.
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Background
Ontologies aim to model domain conceptualizations so
that applications built upon them can interoperate with
each other by sharing the same meanings. Such knowl-
edge sharing and reuse can be severely hindered by the
fact that ontologies for the same domain are often devel-
oped for various purposes, differing in coverage, granular-
ity, naming, structure and many other aspects. Ontology
matching (OM) techniques aim to alleviate the hetero-
geneity by identifying correspondences across ontologies.
Ontology matching can be performed at the element level
and the structure level [1]. The former considers ontology
classes and their instances independently, such as string-
based and language-based techniques, whereas the latter
exploits relations among entities, including graph-based
and taxonomy-based techniques. Most ontology match-
ing systems [2–8] adopt both element and structure level
techniques to achieve better performance.
Life sciences is one of the most successful applica-

tion areas of the Semantic Web technology, and many
biomedical ontologies have been developed and utilized
in real-world applications. These ontologies cover dif-
ferent yet overlapping domains and are often of large
scale, including, for example, the Foundational Model of
Anatomy (FMA) [9] and Adult Mouse Anatomy (MA)
[10] for anatomy, National Cancer Institute Thesaurus
(NCI) [11] for disease, and Systematized Nomenclature of
Medicine-Clinical Terms (SNOMED-CT) [12] for clinical
medicine. Moreover, efforts such as the Unified Medical
Language System (UMLS) [13] integrate various biomed-
ical systems so as to enhance their reuse and interoper-
ability. For such biomedical domain ontologies, the annual
Ontology Evaluation Alignment Initiative (OAEI) [14] sets
three competition tracks, the Anatomy, the Large Biomed-
ical Ontologies, and the Disease and Phenotype, which
have attracted many state-of-the-art ontology matching
systems [2–4, 7, 8] to challenge.
Among the first batch of OM algorithms and tools pro-

posed in the early 2000s, FCA-Merge [15] distinguished
in using the Formal Concept Analysis (FCA) formalism
to derive mappings from classes sharing textual docu-
ments as their individuals. Proposed by Rudolf Wille [16],
FCA is a well developed mathematical model for ana-
lyzing individuals and structuring concepts. FCA starts
with a formal context consisting of a set of objects, a
set of attributes, and their binary relations. Concept lat-
tice, or Galois lattice, can be computed based on formal
context, where each node represents a formal concept
composed of a subset of objects (extent) with their com-
mon attributes (intent). The extent and the intent of a
formal concept uniquely determine each other in the lat-
tice. Moreover, the lattice represents a concept hierarchy
where one formal concept becomes sub-concept of the
other if its objects are contained in the latter.

Both ontologies and FCA aim at modeling “concepts”
in hierarchical structures. The purpose of an ontology is
to represent “a shared understanding of the domain of
interest” [17] that can be queried and reasoned upon in an
automated way. On the other hand, FCA is a conceptual
clustering technique with solidmathematical foundations,
allowing to derive concept hierarchies from datasets.
Ontologies and FCA can complement each other, as ana-
lyzed in [18] from an application point of view. FCA can
naturally be applied to constructing ontologies in ontol-
ogy engineering [19–21], and is also widely used in data
analysis, information retrieval, and knowledge discovery.
Following the steps of FCA-Merge, several OM sys-

tems continued to use FCA as well as its alternative for-
malisms, exploiting different entities as the sets of objects
and attributes for constructing formal contexts [22–26].
FCA-OntMerge [23], for example, utilizes the classes of
ontologies and their attributes to form its formal con-
text, whereas in [22] the formal context is composed of
ontology classes as objects and terms of a domain-specific
thesaurus as attributes. Different types of formal contexts
decide the information used for ontology matching, and
we observed that some intrinsic and essential knowledge
of ontology has not been involved yet, including both tex-
tual information within classes (e.g., class labels and syn-
onyms) and relationships among classes (e.g., ISA, sibling,
disjointedness relations, and properties and axioms).
This motivated the study in this paper, i.e., empow-

ering FCA with as much as ontological information as
possible for identifying and validating mappings across
ontologies. Our method, called FCA-Map, incrementally
generates a total of five types of formal contexts and
extracts mappings from the lattices derived. First, the
token-based formal context describes how class names,
labels and synonyms share lexical tokens, leading to lex-
ical mappings (anchors) across ontologies. Second, the
relation-based formal context describes how classes are
in taxonomic, partonomic and disjoint relationships with
the anchors, leading to positive and negative structural
evidence for validating the lexical matching. Third, after
conflict repairing, the positive relation-based context can
be used to discover structural mappings. Afterwards,
the property-based formal context describes how object
properties are used in axioms to connect anchor classes
across ontologies, leading to property mappings. Last, the
restriction-based formal context describes co-occurrence
of classes across ontologies in anonymous ancestors
of anchors, from which extended structural one-to-one
mappings and complex mappings can be identified.
We participated in the three OAEI 2016 tracks related

to the biomedical domain, and the results demonstrate
the effectiveness of FCA-Map and its competitiveness
with the OAEI top-ranked OM systems. FCA-Map is
one of the three winners of the Disease and Phenotype
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track of the OAEI 2016 campaign. Our method is suit-
able for aligning large-scale domain ontologies with rich
lexical and structural knowledge, due to a comprehen-
sive construction of multiple FCA structures using names,
hierarchies, properties, and axioms. This requires that
ontologies provide meaningful lexical symbols and terms
for classes, deep taxonomic hierarchies, and a large num-
ber of classes and expressive logical axioms specifying
restrictions on properties linking classes. Such conditions
can be satisfied by many ontologies in the biomedi-
cal domain, for which FCA-Map is effective and suc-
ceeds in discovering mappings that are missed by other
OM systems.
The rest of the paper is organized as follows. We first

introduce the basic definitions and characteristics of FCA.
An overview of the FCA-Map method is presented, fol-
lowed by five sections describing the five types of formal
contexts and the derivation of mappings in detail. The
evaluation section presents a comprehensive group of
experiments, including the respective empirical results of
the five steps as well as step-wise comparisons with coun-
terparts. The evaluation also includes comparisons with
OAEI 2016 top-ranked systems and previous FCA-based
OM systems. Finally, we analyze in-depth the advantages
and limitations of FCA-Map in contrast with other OM
systems and FCA-based systems, and discuss the future
work, followed by a conclusion.

Preliminaries
Formal Concept Analysis (FCA) is a mathematical theory
of data analysis based on applied lattice and order the-
ory. FCA constructs formal contexts for objects and their
attributes, and then derives concept hierarchical struc-
tures which constitute lattices. Formal context is defined
as a triple K := (G,M, I), where G is a set of objects, M
a set of attributes, and I a binary relation between G and
M in which gIm holds, i.e., (g,m) ∈ I, reads: object g has
attribute m [27]. Formal contexts are often illustrated in
binary tables, as exemplified by Table 1, where rows cor-
respond to objects, columns to attributes, and a cell is
marked with “×” if the object in its row has the attribute
in its column. In Table 1, the marked cell represents that
the animal listed in the row possesses the corresponding
feature in the column.

Table 1 An example formal contextKe

Vertebrate Mammal Flying Aquatic Carnivorous

Elephant × ×
Dolphin × × × ×
Porpoise × × × ×
Hawk × × ×
Octopus × ×

Definition 1 [27] For subsets of objects and attributes
A ⊆ G and B ⊆ M, derivation operators are defined as
follows:

A′ = {m ∈ M | gIm for all g ∈ A}
B′ = {g ∈ G | gIm for all m ∈ B}

A′ denotes the set of attributes common to the objects
in A; B′ denotes the set of objects which have all the
attributes in B.
A formal concept of contextK is a pair (A,B) consisting

of extent A ⊆ G and intent B ⊆ M such that A = B′ and
B = A′. B(K) denotes the set of all formal concepts of
contextK. The partial order relation, namely subconcept-
superconcept-relation, is defined as:

(A1,B1) ≤ (A2,B2) :⇔ A1 ⊆ A2(⇔ B1 ⊇ B2)

Relation ≤ is called a hierarchical order of formal con-
cepts. B(K) ordered in this way is exactly a complete
lattice, called the concept lattice and denoted byB(K).
For an object g ∈ G, its object concept γ g := ({g}′′, {g}′)

is the smallest concept in B(K) whose extent contains
g. In other words, object g can generate formal concept
γ g. Symmetrically, for an attribute m ∈ M, its attribute
concept μm := ({m}′, {m}′′) is the greatest concept in
B(K) whose intent contains m. In other words, attribute
m can generate formal concept μm. For a formal concept
(A,B), its simplified extent (simplified intent), denoted by
Kex (Kin), is a minimal description of the concept. Each
object (attribute) in Kex (Kin) can generate the formal con-
cept (A,B). As a matter of fact, Kex dose not occur in any
descendant of (A,B) in B(K) and Kin dose not occur in
any ancestor of (A,B) inB(K). Figure 1 shows the concept
lattice of context Ke in Table 1. In the concept lattice dia-
grams in this paper, each node represents a formal concept
labeled by its simplified intent and simplified extent, the
latter being given in italics. A line connecting two nodes
represents that the lower formal concept is a subconcept
of the upper concept. The node at the top represents
suprema whose extent is the set of all objects, whereas the
node at the bottom is infima whose intent is the set of all
attributes.

Methods
Given two ontologies, FCA-Map builds formal contexts
and uses the derived concept lattices to cluster the com-
monalities among ontology entities including classes and
object properties, at lexical level and structural level,
respectively. Concretely, FCA-Map performs step-by-step
as follows, where a total of five types of contexts are
constructed.

Step 1 Acquiring anchors lexically. Based on class
names, labels and synonyms, the token-based
formal context is constructed, and from its
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Fig. 1 Concept latticeB(Ke) with simplified labeling for the example formal context in Table 1

derived concept lattice, a group of lexical
mappings between classes across ontologies can
be extracted, called lexical anchorsA0

class.
Step 2 Validating anchors structurally. Based on

A0
class, ISA and PART-OF hierarchies and

disjointness axioms, the relation-based formal
context is constructed, and from its derived
concept lattice, positive and negative structural
evidence of anchors can be extracted. Moreover,
an enhanced alignmentA1

class without any
conflicts among anchors is obtained.

Step 3 Discovering structural matches. Based onA1
class

and ISA and PART-OF hierarchies, the positive
relation-based formal context is constructed, and
from its derived concept lattice, structural
matches among classes across ontologies can be
identified, augmentingA1

class to alignmentA2
class.

Step 4 Acquiring property mappings. Based onA2
class

and axioms specifying that object properties hold
between instances of class mappings, the
property-based formal context is constructed, and
from its derived concept lattice, a group of
mappings among properties across ontologies
Aproperty can be extracted.

Step 5 Identifying extended and complex mappings.
Based onAproperty,A2

class and axioms specifying
restrictions on how to use properties with respect
to classes, the restriction-based formal context is
constructed, and from its derived concept lattice,
extended structural mappings among classes
across ontologiesA3

class can be extracted,
including one-to-one mappings and complex
mappings where a class is identified to correspond
to a semantic expression composed of classes and
properties in another ontology.

To illustrate every step of FCA-Map, we use parts of
fourmatching tasks from the Anatomy track and the Large
Biomedical Ontologies track of OAEI 2016, shown in

Table 2, as running examples in the subsequent sections.
MA, NCI, FMA, and SNOMED-CT are all real-world,
biomedical ontologies and the versions used are the OWL
files provided by OAEI. These matching tasks use small
fragments of the corresponding ontologies, whose pro-
portions are listed in Table 2.

Constructing the token-based formal context to
acquire lexical anchors
Most OM systems rely on lexical matching as initiation
due to the fact that classes sharing names across ontolo-
gies quite likely represent the same entity in the domain of
interest. FCA-Map, rather than using lexical and linguis-
tic analyzing techniques, generates a formal context at the
lexical level and obtains mappings from the lattice derived
from the context. Concretely, names of ontology classes
as well as their labels and synonyms, when available,
are exploited after normalization that includes inflection,
tokenization, stop word elimination1, and punctuation
elimination. The token-based formal context for ontology
matching is defined as follows.

Definition 2 The token-based formal context for ontol-
ogy matching is a triple Klex := (Glex,Mlex, Ilex), where
objects Glex is the set of strings each corresponding to a
name, label, or synonym of classes in two source ontolo-
gies, attributes Mlex is the set of tokens in these strings, and
binary relation (g,m) ∈ Ilex holds when string g contains
token m, or a synonym or lexical variation of m.

Table 2 Matching tasks of fragment ontologies of the OAEI 2016
Anatomy track and the Large Biomedical Ontologies track

Matching task Number of classes in O1 Number of classes in O2

MA-NCI 2744 (100% of MA) 3304 (5% of NCI)

FMA-NCI 3696 (5% of FMA) 6488 (10% of NCI)

FMA-SNOMED 10157 (13% of FMA) 13412 (5% of SNOMED)

SNOMED-NCI 51128 (17% of SNOMED) 23958 (36% of NCI)
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We use the UMLS Sub-Term Mapping Tools [28] to
access synonyms and the UMLS SPECIALIST Lexicon
[29] to access lexical variations of biomedical terms.
Table 3 shows Klex of a small part of MA and NCI,
and its derived concept lattice is displayed in Fig. 2. For
each formal concept derived, in addition to the strings
in its extent, we are also interested in the classes that
these strings come from, and we call them class-origin
extent. For example, in Fig. 2, the class-origin extent
of formal concept by node 8 is {MA:mammary gland
fluid/secretion, NCI:Breast Fluid or Secretion} since in
NCI, “Mammary Gland Fluids and Secretions” is a syn-
onym of class NCI:Breast Fluid or Secretion.
An essential feature of FCA is the duality between a

set of objects and their attributes. The more attributes
demanded, the fewer objects can meet the requirements.
In the case of the token-based formal concept, the more
common tokens occurring in its intent, the fewer strings
the extent contains, and the more possibly for the classes
in class-origin extent to bematched. This is to say that car-
dinality of the extent can reflect how similar the strings
are, thus classes from different source ontologies in a
smaller-sized class-origin extent can be considered as a
mapping with higher confidence. Practically, we restrict
our attention to formal concepts whose simplified extent
or class-origin extent contains exactly two strings or
classes across ontologies, and extract two types of lexi-
cal anchors, namely Type I anchor for the exact match,
and Type II anchor for the partial match, respectively. On
the other hand, note that cardinality of the intent cannot
be used to measure the similarity of strings. For example,
MA:nerve and NCI:Nerve, which is a match, share only
one token, whereas MA:left lung respiratory bronchiole
and NCI:Right Lung Respiratory Bronchiole, not a match,
share three tokens.
Type I anchor. Simplified extent Kex of the for-

mal concept contains exactly two strings from classes
across ontologies. This indicates that the two strings
are composed of the same or synonymous tokens, thus
the corresponding classes are extracted to be a match,

as exemplified by 〈MA:mammary gland fluid/secretion,
NCI:Breast Fluid or Secretion〉 through formal concept of
node 8 in Fig. 2 whose Kex has two strings, one from MA
and the other NCI.
Type II anchor. The class-origin extent of the formal

concept contains exactly two classes across ontologies
and simplified extent Kex contains strings from at most
one source ontology. Here the strings share tokens in
the intent rather than composed of the same or syn-
onymous tokens. For example, 〈MA:adrenal gland zona
fasciculata, NCI:Fasciculata Zone〉 is extracted from node
3 in Fig. 2, due to the common token “fasciculata” which
exists solely in these two classes. And 〈MA:palatine gland,
NCI:Palatine Salivary Gland〉 is identified as an anchor
from node 7, due to the common tokens “palatine” and
“gland” which co-exist solely in these two classes.

Constructing the relation-based formal context to
validate lexical anchors
Structural relationships of ontologies are exploited to val-
idate the matches obtained at the lexical level. One of our
previous studies [30] proposed using positive and nega-
tive structural evidence among anchors for the purpose
of validation. More precisely, classes of one anchor shar-
ing relationships to classes in another anchor can be seen
as their respective positive evidence. On the other hand,
negative structural evidence refers to the conflict based on
the disjointedness relationships between classes. In FCA-
Map, we build the relation-based formal context, defined
as follows, to obtain both positive and negative structural
evidence for lexical anchors. Specifically, we exploit the
taxonomic, partonomic and disjoint relationships which
are common in biomedical ontologies. Both explicitly rep-
resented and inferred semantic relations are used in our
method.

Definition 3 The relation-based formal context for
ontology matching is a tripleKrel := (Grel,Mrel, Irel), where
objects Grel is the set of all classes in two source ontologies,
and attributes Mlex is the lexical anchors prefixed with

Table 3 Token-based formal contextKlex of a small part of MA and NCI

Gland Adrenal Zona Zone Fasciculata Reticularis Salivary Palatine Mammary Secretion Fluid

MA:palatine gland × ×
MA:adrenal gland zona fasciculata × × × ×
MA:adrenal gland zona reticularis × × × ×
MA:mammary gland fluid/secretion × × × ×
NCI:Palatine Salivary Gland × × ×
NCI:Fasciculata Zone × ×
NCI:Reticularis Zone × ×
NCI:Mammary Gland Fluids and Secretions × × × ×
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Fig. 2 Concept lattice with simplified labeling derived fromKlex in Table 3

four kinds of relationships, i.e., ISA, SIBLING-WITH,
PART-OF, and DISJOINT-WITH, labeled by “(ISA)”,
“(SIB)”, “(PAT)”, and “(I-D)” (or “(D-I)”), respectively.
Binary relation (g,m) ∈ Irel holds if g in its ontology
has the relationship ISA, SIBLING-WITH, PART-OF, or
DISJOINT-WITH (as in the prefix of m) with the class in
anchor m.

The relation-based formal context Krel of a small part
of MA and NCI is displayed in Table 4. For instance,
MA:periodontal ligament and NCI:Periodontium are sub-
classes of MA:ligament and NCI:Ligament, respectively,

thus (MA:periodontal ligament, (ISA)〈MA:ligament,
NCI:Ligament〉) ∈ Irel and (NCI:Periodontium, (ISA)
〈MA: ligament, NCI:Ligament〉) ∈ Irel hold. Moreover,
MA:adipose tissue is a subclass of MA:organ system
whereas NCI:Adipose Tissue is disjoint with NCI:Organ
System, thus (MA:adipose tissue, (I-D)〈MA:organ system,
NCI:Organ system〉) ∈ Irel and (NCI:Adipose Tissue,
(I-D)〈MA:organ system, NCI:Organ system〉) ∈ Irel hold.
The derived concept lattice Krel of a small part of MA

and NCI is illustrated in Fig. 3. Formal concepts whose
extents include both classes in an anchor indicate struc-
tural evidence, defined as follows.

Table 4 Relation-based formal contextKrel of a small part of MA and NCI

(ISA)
〈MA:ligament,
NCI:Ligament〉

(I-D)
〈MA:organ system,
NCI:Organ System〉

(SIB)
〈MA:adipose tissue,
NCI:Adipose Tissue〉

(SIB)
〈MA:larynx ligament,
NCI:Laryngeal Ligament〉

(PAT)
〈MA:larynx,NCI:Larynx〉

MA:ligament × ×
MA:periodontal ligament × × ×
MA:auricular ligament × × ×
MA:adipose tissue ×
MA:larynx ligament × × ×
NCI:Ligament ×
NCI:Periodontium × × ×
NCI:Broad Ligament × × ×
NCI:Adipose Tissue ×
NCI:Laryngeal Ligament × × ×
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Fig. 3 Concept lattice ofKrel with simplified labeling

Definition 4 In the derived concept lattice of the
relation-based formal context Krel, if a formal concept
(A,B) satisfies that its extent A includes both classes in the
same anchor a, then for anchors in its intent B with label
“(ISA)”, “(SIB)” or “(PAT)” , a is a positive evidence; and for
anchors in its intent B with label “(I-D)” or “(D-I)”, a is a
negative evidence.

For example, in the extent of node 3 in Fig. 3,
〈MA:periodontal ligament, NCI:Periodontium〉 and
〈MA:larynx ligament, NCI:Laryngeal Ligament〉, two
anchors acquired lexically, are positive evidences to
anchor 〈MA:ligament, NCI:Ligament〉 with label “(ISA)”
in the intent, and negative evidences to anchor 〈MA:organ
system, NCI:Organ System〉 with label “(I-D)”. We use
P(a) and N(a) to denote the sets of positive and negative
structural evidence of anchor a, respectively, whose cardi-
nalities are called the support degree and conflict degree of
anchor a. FCA-Map utilizes all the positive evidence sets
P and negative evidence sets N to eliminate incorrect
lexical anchors and retain the correct ones, as follows.
Conflict repairing. The negative evidence leads to con-

flicts among anchors, for which FCA-Map repairs in a
greedy way, i.e., eliminating the conflict-causing anchors
iteratively until N becomes empty. At each iteration,
anchor a having the least negative evidence set, i.e., the
smallest conflict degree, is selected. For every anchor b in
N(a), if conflict degree of b is greater than a, eliminate
b; otherwise, compare the support degree of a and b, and
eliminate the one with smaller support degree.
Anchor screening. Anchors having no positive structural

evidence according to the updated P are either caused by
the structural isolation of classes, or simply mismatches.
FCA-Map screens anchors based on both lexical and

structural evidence, and Type II anchors without positive
evidence are eliminated.

Constructing the positive relation-based formal
context to discover structural matches
After conflict repairing and screening, anchors retained
are those supported both lexically and structurally. Based
on the enhanced alignment, FCA-Map goes further to
build the positive relation-based formal context aim-
ing to identify new, structural mappings. The way posi-
tive relation-based formal context KposRel constructed is
similar to Krel, i,e., using classes in two source ontolo-
gies as object set and anchors prefixed with relationship
labels as attribute set. Concretely, five kinds of relation-
ships are considered, ISA, SUPERCLASS-OF, SIBLING-
WITH, PART-OF, and HAS-PART, where disjointedness
relationship is no longer necessary. For the derived for-
mal concepts, we restrict our attention to those with
classes across ontologies in the simplified extent, and
both one-to-one mappings and complex mappings can
be identified.
One-to-one structural mappings are extracted from

the formal concepts whose simplified extent exactly con-
tains two classes across ontologies. Although most of the
mappings extracted this way have already been identi-
fied at the lexical level, new additional matches emerge,
as exemplified by 〈MA:hindlimb bone, NCI:Bone of the
Lower Extremity〉.
Complex mappings are traced from the formal con-

cepts whose simplified extents contain more than two
classes from different source ontologies. It means that
these classes share the same structural relationships to
anchors in the intent. Such classes may compose a com-
plex mapping, as elaborated in the following.
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1 One-to-group mappings. The simplified extent
contains only one class from one source ontology
and multiple classes from the other source ontology.
For example, MA:inferior suprarenal vein can be
mapped to the group of concepts {NCI:Left
Suprarenal Vein, NCI:Right Suprarenal Vein} as the
three concepts are contained within one simplified
extent that has no more classes. This one-to-group
mapping comes from the difference in granularity
between MA and NCI.

2 Group-to-group mappings. The simplified extent
contains multiple classes from different source
ontologies, respectively. For example, two groups of
concepts {MA: sacral vertebra 1, MA:sacral vertebra
2, MA:sacral vertebra 3, MA:sacral vertebra 4} and
{NCI:S1 Vertebra, NCI:S2 Vertebra, NCI:S3 Vertebra,
NCI:S4 Vertebra, NCI:S5 Vertebra} can be mapped as
these classes are contained in one simplified extent
that has no more classes. This group-to-group
mapping represents the difference between mouse
and human anatomy.

In all the four matching tasks of Table 2, such complex
mappings can be identified, as shown in Table 5, where
the classes within one mapping are of the same type, thus
the logical constructor used in the semantic expressions is
disjunction. Note that no extra operations are needed in
FCA-Map for identifying such complex mappings as they
and the one-to-one mappings are implied similarly in the

formal concepts derived from the positive relation-based
formal context.

Constructing the property-based formal context to
acquire property mappings
Properties across ontologies tend to differ greatly in
names, even for ontologies of the same domain [30].
Thus, we utilize the structural rather than lexical infor-
mation to obtain property mappings. Axioms specifying
what properties are used to link the individuals of anchors
in respective ontologies are the core for identifying the
commonalities among properties.

Definition 5 The property-based formal context for
ontology matching is a triple Kpro := (Gpro,Mpro, Ipro),
where objects Gpro is the set of all object properties in two
source ontologies, and attributes Mpro is the pairs of one-
to-one class mappings. Binary relation (g,m) ∈ Ipro holds
where m =< (CAi,CBi), (CAj,CBj) >, i 
= j, if axiom
CAi � ∃g.CAj or CAi � ∀g.CAj (CBi � ∃g.CBj or CBi �
∀g.CBj) is asserted or can be inferred within one source
ontology.

The property-based formal context Kpro of a small part
of SNOMED and NCI is displayed in Table 6. Take the
second column of Table 6 for example. The two cells
are marked because axioms Benign neoplasm of buccal
mucosa � ∃Finding site.Buccal mucosa and Benign Buc-
cal Mucosa Neoplasm � ∀Disease Has Primary Anatomic

Table 5 Some one-to-group and group-to-group mappings discovered by the positive relation-based formal contexts

Classes Semantic expressions

MA Inferior suprarenal vein Inferior suprarenal vein

NCI Left Suprarenal Vein, Right Suprarenal Vein (Left Suprarenal Vein � Right Suprarenal Vein)

FMA T helper cell type 1, T helper cell type 2 (T helper cell type 1 � T helper cell type 2)

SNOMED T helper subset 1 cell, T helper subset 2 cell (T helper subset 1 cell � T helper subset 2 cell)

FMA First sacral spinal ganglion, (First sacral spinal ganglion

Second sacral spinal ganglion, � Second sacral spinal ganglion

Third sacral spinal ganglion � Third sacral spinal ganglion)

SNOMED S1 spinal ganglion, (S1 spinal ganglion

S2 spinal ganglion, � S2 spinal ganglion

S3 spinal ganglion � S3 spinal ganglion)

SNOMED Simian foamy virus, (Simian foamy virus

Chimpanzee foamy virus, � Chimpanzee foamy virus

Chimpanzee foamy virus human isolate � Chimpanzee foamy virus human isolate)

NCI Foamy Retrovirus Foamy Retrovirus

SNOMED Malignant teratoma of undescended testis Malignant teratoma of undescended testis

NCI Stage I Immature Testicular Te ratoma, (Stage I Immature Testicular Te ratoma

Stage II Immature Testicular Teratoma � Stage II Immature Testicular Teratoma

Stage III Immature Testicular Teratoma, � Stage III Immature Testicular Teratoma)
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Site.BuccalMucosa can be inferred in SNOMED andNCI,
respectively.
The derived concept lattice of Kpro of a small part of

SNOMED and NCI is illustrated in Fig. 4. We can extract
property mappings from the formal concepts whose
extents contain exactly two properties across ontologies.
This means that they are used to connect the same
pairs of mappings. For example, 〈SNOMED:Finding site,
NCI:Disease Has Primary Anatomic Site〉 is extracted from
node 4 in Fig. 4.

Constructing the restriction-based formal context
to acquire extended and complexmappings
With the availability of property mappings, we can start
exploiting anonymous classes in ontologies, i.e., restric-
tions on how to use properties with respect to classes.
An axiom with a named class at the left-hand side and
a restriction at the right-hand actually defines a neces-
sary condition for the class, and the condition becomes
necessary and sufficient in equivalent axioms. When two
classes in an anchor have necessary conditions (restric-
tions) described by the same property, the two classes
specified in the restrictions, i.e., fillers of the property,
could possibly be a match across ontologies. We illus-
trate this by a validated anchor 〈SNOMED:Hemangioma
of liver, NCI:Hepatic Hemangioma〉. All the anonymous
ancestors of these two classes in SNOMED and NCI,
respectively, are listed in Table 7. They are either asserted
or inferred, as shown in Fig. 5. Since 〈SNOMED:Finding
site, NCI:Disease Has Associated Anatomic Site〉 is a
property mapping, one can see that the fillers of the prop-
erties imply some correspondences across two ontolo-
gies. We pair fillers in anonymous ancestors of the
two classes in anchor, denoted as FP . In the case of
anchor 〈SNOMED:Hemangioma of liver, NCI:Hepatic
Hemangioma〉, 16 such pairs can be generated. We utilize
these potential matches to construct a FCA formal context
so as to confirm the correct mappings.

Definition 6 The restriction-based formal context for
ontology matching is a triple Kres := (Gres,Mres, Ires),
where objects Gres is the set of all classes in one source
ontology, and attributes Mres is the set of all classes in the
other source ontology. Binary relation (g,m) ∈ Ires holds
if (g,m) ∈ FP , where FP denotes the set of pairs (D,E)

from axiom CA � ∃g.D (or CA � ∀g.D) in one ontology
and axiom CB � ∃h.E (or CA � ∀h.E) in the other ontol-
ogy where 〈CA,CB〉 is a class mapping and 〈g, h〉 a property
mapping.

Table 8 showsKres of a small part of SNOMED andNCI,
where the gray area corresponds to Table 7. The derived
concept lattice of Kres of a small part of SNOMED and
NCI is illustrated in Fig. 6. Mappings can be extracted
from the formal concepts according to the simplified
extent Kex and simplified intent Kin.
For a formal concept (A,B) with non-empty simpli-

fied intent and simplified extent, Kin represents the
attributes uniquely introduced by (A,B) compared with
all its ancestors in the lattice. Similarly, Kex is the set of
objects uniquely introduced by (A,B) compared with all
its descendants. Hence, Kin and Kex are introduced by
formal concept (A,B) at the same time, in other words,
the objects in Kex specifically embody the attributes in
Kin; and the attributes in Kin describe the most particular
characteristics of the objects in Kex. In the case of the
restriction-based concept lattice, if both Kex and Kin
of a formal concept contain exactly one class, then it
means that these two classes always occur at the same
time as fillers of the same properties in anonymous
ancestors of anchors. They are more likely a match than
other filler pairs in FP that are also present across
the intent and extent of the same formal concept. For
example, node 7 in Fig. 6 represents a formal concept
with intent {NCI:Cardiovascular System, NCI:Heart,
NCI:Epicardium} and extent {SNOMED:Structure
of visceral pericardium, SNOMED:Heart structure,

Fig. 4 Concept lattice ofKpro with simplified labeling
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Table 7 Anonymous ancestors of SNOMED:Hemangioma of liver
and NCI:Hepatic Hemangioma

Classes in an anchor Anonymous ancestors

SNOMED:Hemangioma of liver ∃ Finding site.Structure of cardiovascular
system

∃ Finding site.Blood vessel structure

∃ Finding site.Vascular structure of liver

∃ Finding site.Liver structure

NCI:Hepatic Hemangioma ∀ Disease has associated anatomic
site.Cardiovascular system

∀ Disease has associated anatomic
site.Vascular system

∀ Disease has associated anatomic
Site.Blood vessel

∀ Disease has associated anatomic
Site.Liver

SNOMED:Structure of cardiovascular system}. Its simpli-
fied intent is {NCI:Epicardium} and its simplified extent
{SNOMED:Structure of visceral pericardium}, indicating
that these two classes are always used as fillers at the same
time, i.e., in the restrictions about the same properties for
the same anchor classes across ontologies. For other pairs
of classes across the intent and extent of node 7 in Fig. 6,
their two classes may occur as fillers at the same time but
not always. Thus 〈SNOMED:Structure of visceral peri-
cardiumis,NCI:Epicardium〉 is extracted to be a match.
Similarly, node 6 in Fig. 6 yields match 〈SNOMED:Atrial
structure,NCI:Cardiac Atrium〉.

There are formal concepts in the restriction-based lat-
tice that have an empty simplified intent (extent) and a
non-empty simplified extent (intent), indicating the dif-
ference in class hierarchies and expressions of axioms
across two ontologies. Rather than one-to-one mappings,
complex mappings might be implied in such cases. For
example, node 8 in Fig. 6 has an empty Kin whereas its
Kex is {SNOMED:Vascular structure of liver}. Instead of
one class, there may be a complex combination of NCI
classes in the complete intent of node 8 that corresponds
to {SNOMED:Vascular structure of liver}. Under a manual
review, a complex mapping is determined, as illustrated
in Fig. 7.

Results
To evaluate the effectiveness of FCA-Map, we conduct
experiments on three OAEI 2016 biomedical tracks,
the Anatomy, the Large Biomedical Ontologies, and the
Disease and Phenotype. Additionally, we run FCA-Map
on the Conference track to test its performance on a rel-
atively general-purpose domain. The versions used are
the OWL files of the ontologies provided by OAEI 2016,
and the precision, recall and F-measure values listed in
the subsequent subsections are computed based on the
reference alignments provided by OAEI. In the Large
Biomedical Ontologies track, the references are extracted
from the UMLS Metathesaurus mappings, which, despite
of being created by domain experts under comprehensive
auditing protocols, lead to unsatisfiability when integrated
with source ontologies [31]. Those incoherence-causing

Fig. 5 Inferring anonymous ancestors of SNOMED:Hemangioma of liver and NCI:Hepatic Hemangioma
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Table 8 Restriction-based formal contextKres of a small part of SNOMED and NCI

mappings are identified by OAEI and denoted as the
“Unknown” category, i.e., neither correct nor incorrect
when evaluating the alignment, thus ignored.
The evaluation consists of a total of ten experiments.

In the following, we first present the results of Step 1 of
FCA-Map, the token-bases lexical matching, followed by
an empirical comparison with another token-based lexi-
cal method TFIDF. We then present the results of Step 2
of FCA-Map, structural validation, followed by an empir-
ical comparison with the work on incoherence detection
and repairing of ontology mappings. Third, we present
the results of Step 3 of FCA-Map, followed by an empiri-
cal comparison with another structural matching method.
Afterwards, the results of Step 4 of property matching
and then Step 5 of extended structural matching in FCA-
Map are presented. These experiments are conducted
on matching tasks in Table 2. Furthermore, FCA-Map is

compared with the OAEI 2016 top-ranked systems on all
matching tasks in the three biomedical tracks and the
Conference track, where the runtimes are also analyzed.
Last, we compare with the innovative FCA-Merge, the
first OM system that proposes to use the FCA formalism.
Even for the ontologies in Table 2 that only take a small

portion of their original, complete systems, the formal
contexts constructed are of large size, resulting in complex
structures of the concept lattices derived. In order to avoid
generating redundant information, Galois Sub-hierarchy
(GSH) [32], a polynomial-sized representation of con-
cept lattice that preserves the most pertinent information,
is utilized in FCA-Map. Concretely, we use FCAlib [33]
to derive concept lattices (GSH) from formal contexts.
FCAlib is an open-source, extensible library for FCA tool
developers, and FCA-Map is implemented in Java. All
the experiments were performed on a desktop computer

SNOMED:Heart structure

NCI:Heart

NCI:Cardiovascular System

SNOMED:Structure of cardiovascular system

NCI:Epicardium

SNOMED:Structure 
of visceral pericardium

NCI:Cardiac Atrium

SNOMED:Atrial structure

2

SNOMED:Blood vessel structure

1

76

10 11

12

SNOMED:Vascular 
structure of penis

SNOMED:Vascular 
structure of liver

3
SNOMED:Liver structure

NCI:Liver

4

NCI:Blood Vessel
NCI:Vascular System NCI:Penis

5
SNOMED:Penile structure

8 9

Fig. 6 Concept lattice ofKres with simplified labeling
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Fig. 7 Complex mappings discovered from the lattice in Fig. 6

with Intel� CoreTM i7-2600 (3.4GHz) and 32GB RAM in
Java 1.8.

The results of the token-based lexical matching
FCA-Map starts with building the token-based formal
context so as to identify the lexical correspondence among
classes in two source ontologies. The results of such lexical
anchors are summarized in Table 9. One can see that most
of the lexical anchors are of Type I, i.e., the name, syn-
onym or label of one class is the same as another class. For
example, MA:cortical layer II and NCI:External Granular
Layer are extracted as an anchor because in MA, “exter-
nal granular layer” is a synonym of MA:cortical layer II.
On the other hand, there are incorrect Type I anchors
and they mainly come from three cases. (1) Although
having the same name, classes in anchor do not rep-
resent equivalent entity. For example, MA:organ system
and NCI:Organ System, although sharing matched sub-
classes, have respective additional different subclasses. (2)
Mismatched classes may be considered to be a mapping
based on their synonyms or labels. For example, anchor
〈MA:cerebellum lobule I, NCI:Lingula〉 (through synonym
“lingula” in MA) is a mismatch because the former is
a part of cerebellar vermis and the latter a part of left
lung. (3) Using external resources may introduce incorrect
anchors. For example, MA:back matches NCI:Dorsum
because “back” and “dorsum” are synonymous according
to the UMLS SPECIALIST Lexicon used in FCA-Map.

This is a mismatch because in MA back is a part of
trunk, while in NCI dorsum refers to outer surface of
scapula.
Type II lexical anchors have lower precisions, reflecting

the unstable performance of relying on names sharing
tokens to derive commonalities of classes. Nevertheless,
many correct Type II anchors can be identified by the
token-based context whereas are missed by other lexi-
cal matching methods, as exemplified by 〈MA:adrenal
gland zona reticularis, NCI:Reticularis Zone〉 and
〈MA:ileocaecal junction, NCI:Ileocecal Valve〉. The tokens
shared by two classes in such mappings are unique to
their names.

A comparison with TFIDF
Among many lexical matching methods such as string
equality, substring test, and edit distance, TFIDF-based
methods [1] are of particular interest because similarly
to FCA-Map they are based on tokens. Adopted in OM
systems YAM++ [5] and GMap [34], TFIDF measures
simultaneously how often the tokens occur in one class
name and how much information the tokens bring across
names of classes from different ontologies. We compare
the performance of lexical matching of FCA-Map with
TFIDF, solely using the class names of MA and NCI with-
out any external resources. The result is shown in Fig. 8,
where F-measure of FCA-Map is higher than TFIDF for
any threshold.
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Table 9 Results of lexical anchors

Matching task Type I Type II Total

MA-NCI Correct 1, 164 114 1, 278

Incorrect 60 59 119

Total 1,224 173 1, 397

Precision 0.951 0.659 0.915

Recall 0.843

F-Measure 0.877

FMA-NCI Correct 2, 416 63 2, 479

Unknown 248 4 252

Incorrect 95 67 162

Total 2,759 134 2, 893

Precision 0.962 0.485 0.939

Recall 0.923

F-Measure 0.931

FMA-SNOMED Correct 4, 563 281 4, 844

Unknown 2, 379 98 2, 477

Incorrect 177 186 363

Total 7,119 565 7, 684

Precision 0.963 0.601 0.930

Recall 0.804

F-Measure 0.862

SNOMED-NCI Correct 10, 618 1, 076 11, 694

Unknown 725 43 768

Incorrect 734 565 1, 299

Total 12,077 1,684 13, 761

Precision 0.935 0.656 0.900

Recall 0.679

F-Measure 0.774

Compared with the TFIDF-based methods, FCA-Map
emphasizes on the particular commonality of two strings,
and there is no need for setting thresholds which is
required in TFIDF for selecting matches. This can be
illustrated by MA: tectum and NCI: tectum mesencephali.
They are not matched according to TFIDF because token
“mesencephali” has a high inverse-document-frequency
(it solely occurs in this string) and token “tectum” is
ignored (it solely occurs in the two strings). On the other
hand, this correspondence can be derived in our method
since there is a formal concept with intent {“tectum”} and
extent exactly containing these two strings. Moreover, our
method can avoid the mistake of locally measuring fre-
quency of tokens. For instance, MA: common iliac artery
and NCI: Right Common Iliac Artery have a relatively high
similarity (0.86) according to TFIDF, while this pair is not
extracted by FCA-Map. There are many other class names
sharing tokens “common”, “iliac”, and “artery”, such as MA:
Left Common Iliac Artery and NCI: Right Common Iliac
Artery Branch, therefore what the two strings in compar-
ison share are not unique enough for them to be chosen
as a match. Indeed, our method features in detecting the
particular commonality solely belongs to the names com-
pared while ignoring the commonality shared by many
other names.
In addition to classical TFIDF, there are many other lex-

ical measures, for instance the q-gram based measures
[35] and the semantic similarity measures [36]. The for-
mer often heavily rely on the threshold used, including
variations of TFIDF such as the ti-idf cosine measure.
The latter are based on the lexical specificity of a class
in a large corpus and its category in a semantic hier-
archy like WordNet, including the Resnik measure. The
experimental comparison with these measures will be for
our future work, where biomedical terminologies shall be
introduced.

Fig. 8 Comparing with TFIDF
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The results of the relation-based structural validation
Step 2 in FCA-Map constructs the relation-based for-
mal context so as to identify the structural evidence for
the lexical anchors, where anchors with negative evidence
are eliminated. The results of validated lexical anchors
are summarized at the left part of Table 10. One can
see that many incorrect Type II anchors can be elim-
inated in the validation process, causing the precision
to increase in all matching tasks, for instance from 0.659 to
0.778 for Type II anchors in MA-NCI, and from 0.485 to
0.608 in FMA-NCI. Take Type II anchor 〈MA:retina gan-
glion cell layer, NCI: Retinal Ganglion Cell〉 for example.
It is eliminated by conflict repairing because of its con-
flict with 〈MA:retina layer, NCI: Retina Layer〉, of which
the support degree is 0 and 8, respectively. The structural
validation based on the relation-based concept lattice in
FCA-Map can ensure to improve the precision of lexical
mappings. This comes with a price though, as shown by

the slight decrease of recall when comparing Table 10 with
Table 9.

A comparison with the incoherence detection and
repairing
The incoherence of mappings refers to the existence of
unsatisfiable concepts in the two source ontologies when
mappings are introduced, as defined in the ontology val-
idation studies [37]. In these studies, DL reasoners are
often used for incoherence detection, i.e., to identify the
unsatisfiability, followed by incoherence repairing where
mappings are removed so as to regain the satisfiability of
the two source ontologies. Conversely in our study, we
focus on the conflicts between mappings across ontolo-
gies, e.g., in MA, adipose tissue is a subclass of organ sys-
tem whereas in NCI, Adipose Tissue is disjoint withOrgan
System. Such conflicts may not always cause unsatifiabil-
ity, though, for instance, when the relation between two

Table 10 Results of validated lexical anchors and structural one-to-one mappings

Matching task Type I Type II Total Structural matches Total

MA-NCI Correct 1, 161 98 1, 259 10 1, 269

Incorrect 59 28 87 5 92

Total 1, 220 126 1, 346 15 1, 361

Precision 0.952 0.778 0.935 0.667 0.932

Recall 0.83 0.837

F-Measure 0.88 0.882

FMA-NCI Correct 2, 414 48 2, 462 2 2, 464

Unknown 208 42 250 0 250

Incorrect 81 31 112 8 120

Total 2, 703 121 2, 824 10 2, 834

Precision 0.968 0.608 0.956 0.20 0.954

Recall 0.917 0.917

F-Measure 0.936 0.935

FMA-SNOMED Correct 4, 563 273 4, 836 3 4, 839

Unknown 2, 379 98 2, 477 4 2, 481

Incorrect 177 147 324 5 329

Total 7, 119 518 7, 637 12 7, 649

Precision 0.963 0.65 0.937 0.375 0.936

Recall 0.803 0.803

F-Measure 0.865 0.865

SNOMED-NCI Correct 10, 618 825 11, 443 25 11, 468

Unknown 725 25 750 0 750

Incorrect 734 304 1, 038 39 1, 077

Total 12, 077 1, 154 13, 231 64 13,295

Precision 0.935 0.731 0.917 0.391 0.914

Recall 0.665 0.666

F-Measure 0.771 0.771
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mappings is PART-OF in one system whereas DISJOINT-
WITH in the other system.
Despite the distinction, it is worthwhile to conduct

an empirical comparison, and we select LogMap [2], a
top-ranked OM system that features incoherence diag-
nosis. Concretely, the repair component of LogMap uses
a reasoner, the Dowling-Gallier algorithm [38], to model
propositional Horn satisfiability, and employs a greedy
strategy to remove mappings with lower weights until sat-
isfiability is recovered. The reasoner, although incomplete
for description logics-based ontologies, is highly scalable
so that LogMap can process large-scale ontologies in an
efficient way. We feed LogMap with the lexical anchors
generated from Step 1 of FCA-Map, and the results of
the structural validation of FCA-Map (i.e., Step 2) and
LogMap are shown in the upper two parts of Table 11.
Overall, FCA-Map outperforms LogMap in both recall
and F-measure in all of the four matching tasks. The state-
of-the-art incoherence repair systems like LogMap tend
to heavily rely on the weights of mappings when making
choices to remove mappings. FCA-Map, however, does
not assign any weights to its mappings, leading LogMap to
perform a random removal that may jeopardize the repair
quality. On the other hand, as shown by the last rows of
the two upper parts of Table 11, for the four matching
tasks, the alignment becomes consistent with their source
ontologies by LogMap, whereas with FCA-Map the inco-
herence remains, although the number of unsatisfiable
classes is decreased. LogMap pursues coherence of map-
pings thus favor precision. We further apply LogMap to
repair the validated anchors by FCA-Map, and the result is

listed in the lower part of Table 11. This combination is of
the strictest scrutiny, thus yields the best precision and at
the same time the lowest recall in all four tasks in Table 11.

The results of the positive relation-based structural
matching
Based on the validated lexical anchors, Step 3 of FCA-Map
constructs the positive relation-based formal context so as
to identify structural mappings. The right part of Table 10
shows the results of additional one-to-one mappings and
the overall results of the first three steps of FCA-Map.
One can see that the quality of such structural one-to-one
mappings is limited with low precisions. Nevertheless, as
listed in Table 122 , the correct ones are prominent since
normally they cannot be identified by lexical methods. As
shown by comparing the left and right part of Table 10,
these structural mappings, although of small numbers,
lead to a slight increase or keep the same in recall in all
matching tasks.

Comparing with another structural matchingmethod
In order to evaluate the structural matching of FCA-Map
(i.e., Step 3), again we select to compare with LogMap,
because its lexical matching and structural matching are
separable. Other OM systems are either mainly of lexical
analyzing. e.g. AML, or it is impossible or not available
to single out a structural matcher. LogMap adopts an on-
the-fly unsatisfiability detection and repair mechanism
so that the alignment obtained in every iteration of its
repair-and-discovery structural matching is always con-
sistent with the two source ontologies. To discover new

Table 11 Comparing the structural validation of FCA-Map with the incoherence repairing of LogMap

Matching task MA-NCI FMA-NCI FMA-SNOMED SNOMED-NCI

Input mappings 1397 2893 7684 13761

Validated anchors by FCA-Map N 1346 2824 7637 13231

P 0.935 0.956 0.937 0.917

R 0.830 0.917 0.803 0.665

F 0.880 0.936 0.865 0.771

Unsat. 14↓11 272↓218 1848↓1836 1352↓947
Repaired anchors by LogMap N 1385 2709 6415 13129

P 0.918 0.959 0.952 0.932

R 0.838 0.859 0.678 0.627

F 0.876 0.907 0.792 0.750

Unsat. 14↓0 272↓0 1848↓0 1352↓0
Validated anchors by FCA-Map and then repaired by LogMap N 1336 2662 6377 12435

P 0.938 0.967 0.957 0.938

R 0.827 0.851 0.678 0.619

F 0.879 0.905 0.793 0.746

Unsat. 14↓11↓0 272↓218↓0 1848↓1836↓0 1352↓947↓0
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Table 12 Some one-to-one mappings discovered by the
positive relation-based formal contexts

Mappings

Correct 〈MA:cerebellar layer, NCI:Cortical Cell Layer of the Cerebellum〉
〈MA:hindlimb bone, NCI:Bone of the Lower Extremity〉
〈MA:arrector pili smoothmuscle, NCI:Erector Muscle of the Hair〉
〈FMA:Cardiacmuscle tissue, NCI:Myocardium〉
〈FMA:Wall of smooth endoplasmic reticulum,
SNOMED:Agranular endoplasmic reticulummembrane〉
〈SNOMED:Forodesine, NCI:Immucillin-H〉
〈SNOMED:Pediculus humanus, NCI:Body Lice〉
〈SNOMED:Structure of metathalamus, NCI:Geniculate Body〉
〈SNOMED:Juvenile neuronal ceroid lipofuscinosis, NCI:Batten
Disease〉
. . .

Incorrect 〈MA:left atrium auricular region, NCI:Opening of the Pulmonary
Vein〉
〈MA:septal coronary artery, NCI:Left Coronary Artery Branch〉
〈MA:transverse sinus, NCI:Inferior Sagittal Sinus〉
〈FMA:Amygdala, NCI:Cerebral Gray Matter〉
〈SNOMED:Parakeratosis, NCI:Dermatitis〉
〈SNOMED:Extra embryonic structure, NCI:Other Embryologic
Structure〉
. . .

Unknown 〈FMA:Greater vestibular gland, SNOMED:Bartholin s gland
structure〉
〈FMA:Intracranial branch of vertebral artery, SNOMED:Cranial
branch of vertebral artery〉
. . .

mappings, LogMap extracts the neighbors of the lexical
mappings in the class hierarchy, and computes string sim-
ilarities of these neighbors across ontologies in order to
decide potential matches.
We feed the structural matching of LogMap with the

validated lexical anchors generated from Step 2 of FCA-
Map, and the results are shown in Table 13. In all of
the four matching tasks, LogMap achieves a higher preci-
sion due to its rationale of pursuing consistent mappings
during the process of structural matching. Neverthe-
less, FCA-Map is better at recall and finally outperforms
LogMap in F-measure for all the four tasks. This is partly

due to that FCA-Map exploits more comprehensive struc-
tural knowledge in ontology including taxonomy and
partonomy whereas LogMap solely uses taxonomical rela-
tions. In terms of the pure, structural matches identified
and their correctness, as shown by the rightmost columns
in the two parts of Table 13, FCA-Map and Log-Map have
their respective superiority and inferiority among the four
matching tasks.

The results of the property matching
The property matching of Step 4 in FCA-Merge is
applied to SNOMED-NCI since object properties other
than PART-OF relationships are solely declared in this
matching task, 51 in SNOMED and 82 in NCI. More-
over, there are 29,616 and 6851 equivalent class axioms
stated respectively in SNOMED and NCI, providing rich
knowledge that enables the corresponding formal con-
texts to yield mappings across ontologies. Table 14 lists
all the property mappings identified between SNOMED
and NCI. Both 〈SNOMED:Finding site, NCI:Disease Has
Associated Anatomic Site〉 and 〈SNOMED:Finding site,
NCI:Disease Has Primary Anatomic Site〉 are valid map-
pings, all describing the sites of diseases while those in
NCI are finer-grained than SNOMED. In the next section
we will show that such property mappings can facili-
tate identifying extended and complex correspondences
among classes.
FromTable 14, one can see that the number of mappings

discovered by the property-based concept lattice is lim-
ited. This is partly due to the small proportion of anchors
identified and a deficiency of knowledge representation
in ontologies. Among the 82 object properties in NCI,
21 describe genes and proteins, such as NCI:Gene Asso-
ciated With Disease and NCI:Gene Product Encoded By
Gene, whereas in SNOMED, there are no properties about
genes or proteins. Among the correct anchors, 322 are of
genes and proteins, including 〈SNOMED:Structural gene,
NCI:Structural Gene〉 and 〈SNOMED:Structural protein,
NCI:Structural Protein〉. 238 of these anchor classes in
NCI are linked with one another through relevant prop-
erties, as in Structural Protein � ∃Gene Product Encoded
By Gene.Structural Gene. In SNOMED, such axioms do
not exist, therefore no mappings can be found for the 21
properties of genes and proteins in NCI.

Table 13 Comparing the structural matching of FCA-Map and LogMap

Matching Input Structural matching in FCA-Map Structural matching in LogMap

Task mappings N P R F Corr./New N P R F Corr./New

MA-NCI 1346 1361 0.932 0.837 0.882 10/15 1349 0.934 0.831 0.880 2/8

FMA-NCI 2824 2834 0.954 0.917 0.935 2/10 2696 0.862 0.912 0.907 7/11

FMA-SNOMED 7637 7649 0.936 0.803 0.865 3/12 6596 0.955 0.700 0.808 2/17

SNOMED-NCI 13231 13295 0.914 0.666 0.771 25/64 12248 0.937 0.609 0.738 52/124
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Table 14 The property mappings identified by the
property-based formal context of SNOMED-NCI

SNOMED NCI

Finding site Disease has associated anatomic site

Finding site Disease has primary anatomic site

Due to Disease has associated disease

Associated morphology Disease has abnormal cell

Associated morphology Disease has associated disease

Causative agent Biological process has result biological
process

Has definitional manifestation Disease has finding

Moreover, some property mappings can be problematic
as exemplified by 〈SNOMED:Due to, NCI:Disease May
Have Associated Disease〉, as extracted from node 3 in
Fig. 4. The fillers of object property SNOMED:Due to
can be a disease, reaction, event or others, as shown by
Falling injury � ∃Due to.Fall, whereas the range of prop-
erty NCI:Disease May Have Associated Disease is defined
to be NCI:Findings and Disorders Kind. This calls for a
manual review by domain experts to decide whether such
mappings are valid. Moreover, wrong mappings among
classes can induce mismatches of properties. For exam-
ple, 〈SNOMED:Hypertensive episode, NCI:Hypertensive
Episode〉 and 〈SNOMED:Finding of increased blood pres-
sure, NCI:Hypertension〉 are two anchors used in the
property-based formal context for SNOMED-NCI, the
former being correct and the latter not. Axioms Hyper-
tensive episode � ∃Has definitional manifestation.Finding
of increased blood pressure in SNOMED and Hyperten-
sive Episode � ∀Disease Has Finding.Hypertension in
NCI result in the mismatch between SNOMED:Has def-
initional manifestation and NCI:Disease Has Finding in
Table 14.

The results of the restriction-based structural matching
Applying Step 5 of FCA-Map to constructing the
restriction-based formal context is only available for
SNOMED-NCI, due to the detection of property map-
pings. As a result, 394 one-to-one mappings are acquired,
103 of which are correct, causing the recall to increase
from 0.666 to 0.672, whereas decreasing the precision
from 0.914 to 0.894. Note that the 394 mappings are solely
discovered by the restriction-based formal context, some
of which are listed in Table 15. Take the correct map-
ping 〈SNOMED:Labyrinth structure, NCI:Internal Ear〉
for example. The two classes share less lexical information
so the mapping cannot be obtained from the token-based
formal context. Structurally, although the two classes are
a subclass of Ear part in both SNOMED and NCI, Ear
part has many other subclasses in the two ontologies
so that 〈SNOMED:Labyrinth structure, NCI:Internal Ear〉

Table 15 Some one-to-one mappings discovered by the
restriction-based formal context of SNOMED-NCI

Mappings

Correct 〈SNOMED:Labyrinth structure, NCI:Internal Ear〉
〈SNOMED:Structure of lens of eye, NCI:Crystalline Lens〉
〈SNOMED:Structure of gum ofmaxilla, NCI:Upper Gingiva〉
〈SNOMED:Appendix structure, NCI:Vermiform Appendix〉
〈SNOMED:Structure of cerebral cortex, NCI:Cortex〉
. . .

Incorrect 〈SNOMED:Tendon sheath structure, NCI:Tendon〉
〈SNOMED:Muscle structure of orbit, NCI:Orbit〉
〈SNOMED:Cheek structure, NCI:Buccal Mucosa〉
〈SNOMED:Cerebellar structure, NCI:Vermis〉
〈SNOMED:Structure of sole of foot, NCI:Foot〉
. . .

Unknown 〈SNOMED:Parathyroid structure, NCI:Parathyroid Gland〉
〈SNOMED:Upper limb structure, NCI:Arm〉
〈SNOMED:Femalemammary gland structure, NCI:Female Breast〉
〈SNOMED:Malemammary gland structure, NCI:Male Breast〉
〈SNOMED:Jaw region structure, NCI:Jaw〉

can not be distinguished. This disables the match to be
extracted from the positive relation-based formal context.
Finally, the match is detected by the restriction-based for-
mal context built based on the mappings between prop-
erties, i.e., from axioms Sensory hearing loss � ∃Finding
site.Labyrinth structure in SNOMED and Sensory Hearing
Loss � ∀Disease Has Associated Anatomic Site.Internal
Ear in NCI.
On the other hand, the incorrect mappings account

for a large proportion, as shown in Table 15, revealing
the unstable performance of relying on the restriction-
based formal context to derive one-to-one mappings. This
is partly due to the granularity difference in knowledge
representation between ontologies. About the site of the
disease in anchor 〈SNOMED:Fibroma of tendon sheath,
NCI:Tendon Sheath Fibroma〉, SNOMED is more spe-
cific by stating Fibroma of tendon sheath � ∃Finding
Site.Tendon sheath structure than Tendon Sheath Fibroma
� ∀Disease Has Primary Anatomic Site.Tendon in NCI.
This leads to wrong mapping 〈SNOMED:Tendon sheath
structure, NCI:Tendon〉. Again, manual reviews from
domain experts are necessary to discard the incorrect
mappings and retain the correct ones.
All the complex mappings identified from the

restriction-based formal context of SNOMED-NCI are
listed in Table 16. Note that unlike the one-to-group and
group-to-group mappings from the positive relation-
based formal context, classes within a complex mapping
in Table 16 are of different types, e.g., SNOMED:Vascular
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Table 16 The complex mappings discovered by the
restriction-based formal context of SNOMED-NCI

Classes Semantic expression

SNOMED Vascular structure of liver Vascular structure of liver

NCI Liver, Blood Vessel Blood Vessel � ∃PartOf.Liver
SNOMED Vascular structure of penis Vascular structure of penis

NCI Penis, Blood Vessel Blood Vessel � ∃PartOf.Penis
SNOMED Blood vessel structure of

skin
Blood vessel structure of skin

NCI Skin, Blood Vessel Blood Vessel � ∃PartOf.Skin
SNOMED Abdominal vascular struc-

ture
Abdominal vascular structure

NCI Abdominal Cavity, Blood
Vessel

Blood Vessel
� ∃PartOf.Abdominal Cavity

SNOMED Structure of soft tissues of
head and neck

Structure of soft tissues of head
and neck

NCI Head and Neck, Connective
and Soft Tissue

Connective and Soft Tissue
� ∃PartOf.Head and Neck

SNOMED Structure of soft tissues of
head

Structure of soft tissues of head

NCI Head, Connective and Soft
Tissue

Connective and Soft Tissue
� ∃PartOf.Head

SNOMED Structure of soft tissues of
neck

Structure of soft tissues of neck

NCI Neck, Connective and Soft
Tissue

Connective and Soft Tissue
� ∃PartOf.Neck

SNOMED Structure of submandibular
lymph node

Structure of submandibular
lymph node

NCI Submandibular Gland,
Lymph Node

Lymph
Node� ∃PartOf.Submandibular
Gland

SNOMED Structure of lymph node of
mesentery

Structure of lymph node of
mesentery

NCI Mesentery, Lymph Node Lymph Node
� ∃PartOf.Mesentery

SNOMED Skin structure of scrotum Skin structure of scrotum

NCI Scrotum, Skin Skin � ∃PartOf.Scrotum
SNOMED Skin structure of breast Skin structure of breast

NCI Breast, Skin Skin � ∃PartOf.Breast
SNOMED Skin structure of ear Skin structure of ear

NCI Ear, Skin Skin � ∃PartOf.Ear

structure of liver and NCI:Blood Vessel are of the same
type whereas they and NCI:Liver represent different
things. Thus the semantic expressions in Table 16 are no
longer mere disjunctions of classes, and manual reviews
decide what properties and logical constructors shall be
used to impose restrictions on classes.
In order to evaluate the correctness of the complexmap-

pings, we feed them into the repair component of LogMap
which calls a reasoner to check the satisfiability of the

alignment integrated with two source ontologies. Con-
cretely, the semantic expressions as shown in Tables 16
and 5 are transformed into equivalent class axioms, which
are 43 for MA-NCI, 7 for FMA-NCI, 30 for FMA-
SNOMED, and 75 for SNOMED-NCI, 12 being in the
form of restrictions from Table 16 and the others all dis-
junctions of classes as in Table 5. For example, based on
the first line in Table 16, we generate an equivalent axiom
in NCI, CNCI ≡ BloodVessel � ∃PartOf.Liver where CNCI
is an artificial class, and we pair CNCI and SNOMEDT
class Vascular structure of liver as a mapping. LogMap
reports coherence for three alignments, FMA-NCI, FMA-
SNOMED and SNOMED-NCI, whereas for MA-NCI,
LogMap detects two unsatisfiable classes in NCI. Com-
plex mappings lead NCI classes like Bronchial Secretion
and Cardiovascular System to become equivalent, and the
former is a subclass of Body Fluid or Substance while the
latter of Organ System, which are declared to be disjoint
in NCI.

A comparison with the OAEI 2016 top-ranked systems
We compare the performance of the first three steps of
FCA-Map with the OAEI 2016 top-ranked systems, XMap
[3], AML [4], LogMap [2], and LogMapBio [39], on all
matching tasks in the OAEI 2016 three biomedical tracks
and the Conference track. In addition to small fragments
as in Table 2, the Large Biomedical Ontologies track con-
tains matching tasks for the whole FMA and NCI, and
a larger proportion of SNOMED with up to 120 thou-
sand classes, as listed in the upper part of Table 17. The
Disease and Phenotype track [31] is organized by Pistoia
Alliance Ontologies Mapping project team based on a real
use case for finding alignments between disease and phe-
notype ontologies. Specifically, the selected ontologies are
the Human Phenotype Ontology (HP), the Mammalian
Phenotype Ontology (MP), the Human Disease Ontology
(DOID), and the Orphanet and Rare Diseases Ontology
(ORDO), for which four matching tasks are designed,
shown by the lower part of Table 17. Moreover, the Con-
ference track [31] consists of 16 ontologies about different

Table 17 Matching tasks of whole ontologies in the OAEI 2016
Large Biomedical Ontologies track and the Disease and
Phenotype track

Matching task Number of classes
in O1

Number of classes
in O2

FMA-NCI Whole 78,989 66,724

FMA-SNOMED Whole 78,989 122,464 (40% of
SNOMED)

SNOMED-NCI Whole 122,464 (40% of
SNOMED)

66,724

HP-MP vote 2, vote 3 11,828 11,752

DOID-ORDO vote 2, vote 3 9,301 12,974
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conference organizations. These ontologies are of small
scale, with classes from 14 to 140 and object properties
from 13 to 61.
The results are shown in Table 18, as officially reported

by OAEI [31]. In the Anatomy track, the precision, recall
and F-measure of FCA-Map for MA-NCI ranks sec-
ond, fifth, and forth, respectively. Results on the Large
Biomedical Ontology track are more encouraging, where

FCA-Map ranks second for both F-measures of FMA-
NCI and FMA-SNOMED, and ties for third for F-measure
of SNOMED-NCI. More strikingly, for SNOMED-NCI
Whole, the largest ontology matching task in OAEI, FCA-
Map ranks first for recall and second for F-measure. For
other two tasks of the whole ontologies, the recall of
FCA-Map ranks for second, whereas its performance on
precision is unsatisfactory.

Table 18 Comparing FCA-Map with the OAEI 2016 top-ranked systems

Matching task XMap AML LogMap LogMapBio FCA-Map

Conference Precision 0.85 0.84 0.82 0.77 0.75

Recall 0.57 0.66 0.59 0.56 0.52

F-Measure 0.68 0.74 0.69 0.65 0.61

MA-NCI Precision 0.929 0.95 0.918 0.888 0.932

Recall 0.865 0.936 0.846 0.896 0.837

F-Measure 0.896 0.943 0.88 0.892 0.882

FMA-NCI Precision 0.977 0.936 0.949 0.935 0.954

Recall 0.901 0.902 0.901 0.910 0.917

F-Measure 0.937 0.931 0.924 0.923 0.935

FMA-SNOMED Precision 0.989 0.953 0.948 0.944 0.936

Recall 0.846 0.727 0.690 0.696 0.803

F-Measure 0.912 0.825 0.799 0.801 0.865

SNOMED-NCI Precision 0.911 0.904 0.922 0.896 0.914

Recall 0.564 0.713 0.663 0.675 0.666

F-Measure 0.697 0.797 0.771 0.770 0.771

FMA-NCI Whole Precision 0.902 0.838 0.854 0.818 0.409

Recall 0.847 0.872 0.802 0.835 0.872

F-Measure 0.874 0.855 0.827 0.826 0.557

FMA-SNOMED Whole Precision 0.965 0.882 0.839 0.808 0.452

Recall 0.843 0.687 0.634 0.640 0.773

F-Measure 0.900 0.773 0.722 0.714 0.571

SNOMED-NCI Whole Precision − 0.904 0.870 0.842 0.786

Recall − 0.668 0.596 0.637 0.686

F-Measure − 0.768 0.708 0.725 0.732

HP-MP vote 2 Precision 1.000 0.931 0.935 0.918 0.984

Recall 0.333 0.800 0.913 0.932 0.754

F-Measure 0.500 0.860 0.924 0.925 0.854

HP-MP vote 3 Precision 1.000 0.854 0.773 0.755 0.942

Recall 0.435 0.945 0.973 0.982 0.924

F-Measure 0.606 0.897 0.862 0.854 0.933

DOID-ORDO vote 2 Precision 0.985 0.853 0.952 0.920 0.966

Recall 0.569 0.971 0.878 0.898 0.959

F-Measure 0.721 0.908 0.913 0.909 0.962

DOID-ORDO vote 3 Precision 0.977 0.778 0.905 0.864 0.888

Recall 0.632 0.998 0.938 0.949 0.993

F-Measure 0.767 0.878 0.921 0.905 0.937
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In the Disease and Phenotype track [40], note that there
are none reference mappings; instead, consensus align-
ments representing the agreements of the participating
OM systems are used for evaluation. Out of the four tasks,
FCA-Map produces the closest results to the consensus
alignments in terms of F-measure in three tasks, and the
second close results in terms of precision in three tasks.
Compared with the large biomedical ontologies, in all
the ontologies of the track, HP, MP, DOID and ORDO,
there are none disjoint axioms declared. This may to some
extent affect the satisfiability checking-based mapping
diagnosis in OM systems like LogMap and LogMapBio. In
FCA-Map, on the other hand, the structural validation of
Step 2 largely increases the precision by eliminating sev-
eral hundreds of lexical anchors in all four matching tasks.
The benefit comes from its anchor screening operation
which identifies the Type II lexical anchors without any
structural evidence as mismatches. Such structural iso-
lations may be partly due to the absence of partonomic
relations, as neither HP nor MP declares any PART-OF
property, and in DOID there are only six uses of the
PART-OF relationship.
All these results indicates that FCA-Map can achieve a

better balance between precision and recall for biomed-
ical ontologies, through incrementally constructing mul-
tiple FCA structures to detect and validate various
kinds of mappings. In contrast, in the Conference track,
as shown by the average values in the first row of
Table 18, FCA-Map comes last in all three measures.
The Conference ontologies are of smaller sizes, leading to
smaller-sized formal contexts in FCA-Map, from which
the derivation of commonalities among classes becomes
ineffective.
In terms of the runtime, OAEI regulates that OM sys-

tems fail to finish a matching task within two hours are
not considered in the evaluations. Among the tasks listed
in Table 18, FCA-Map is thus not reported by OAEI on
SNOMED-NCI and all three whole ontology tasks in the
Large Biomedical Ontologies track. Every step of FCA-
Map is composed of three subsequent parts, constructing
a formal context, deriving a concept lattice, and extract-
ing mappings. Among them, the derivation of a formal
concept lattice of FCA is of high complexity as a PSPACE-
complete problem, and the number of formal concepts
in a lattice can be exponential with the size of the for-
mal context. This means that every step of FCA-Map
is computationally complex, and Step 1 generally takes
a longer time than other steps since the token-based
formal context tends to be larger. Moreover, the richer
lexical and structural knowledge described in the ontolo-
gies, the larger the formal contexts constructed, leading
the lattices to grow significantly. To optimize, we mul-
tithread the code for lattice computation which results
in a great deal of saving of time. Table 19 shows the

Table 19 Runtimes of the steps in FCA-Map

Matching task
Running time (seconds)

Step 1 Step 2 Step 3 Total

MA-NCI 15 9 7 33

FMA-NCI 69 35 23 130

FMA-SNOMED 251 538 431 1226 (0.34 h)

SNOMED-NCI 2262 2590 1890 6759 (1.88 h)

FMA-NCI Whole 23764 739 362 24877 (6.9 h)

FMA-SNOMED Whole 21225 5261 3728 30240 (8.4 h)

SNOMED-NCI Whole 36212 6747 4605 47599 (13.2 h)

HP-MP vote 2, vote 3 1262 2 2 1270 (0.35 h)

DOID-ORDO vote 2, vote 3 825 2 2 837 (0.23 h)

runtimes of FCA-Map on the OAEI biomedical ontologies
in our own running setup. Completing the SNOMED-
NCI task becomes available within two hours now (was
3.5 h), and the time for three whole ontology matching
tasks has dropped from 20, 25, and 30 h to 7, 8 and 13 h,
respectively.

A comparison with FCA-Merge
The previous FCA-based OM systems have not partici-
pated in OAEI, whereas it is worth conducting an empir-
ical comparison with them. Particularly, we select FCA-
Merge [15], the renowed ontology matching system that
innovatively exploited FCA. In the formal context, FCA-
Merge uses textual documents crawled from the Web as
objects, and classes in two source ontologies as attributes.
The domain that FCA-Merge demonstrates is tourism,
and the cell in the formal context is marked if the corre-
sponding class’s name occurs in the touring article. The
code of FCA-Merge is not available, so we follow its way to
construct formal contexts in the domain of biomedicine.
Concretely, the PubMed articles [41] are used as objects
and classes in two source biomedical ontologies from
Table 2 as attributes. The binary relation holds if the class
in the column has its name, label, or synonym occur in the
abstract of the PubMed article in the row. The PubMed
is the largest repository of biomedical literature, and we
focus on articles about clinical medicine and translational
medicine. As a result, 24907 articles are retrieved. Both
their abstracts and the names/labels/synonyms of ontol-
ogy classes are normalized by the UMLS SPECIALIST
Lexicon [29] where ordering and stop words removal are
not applied.
Based on the heuristics that FCA-Merge employs to

merge classes, in the lattice derived, if the simplified intent
of a formal concept contains one class from one ontology
and n classes from another ontology, n one-to-one map-
pings are extracted. The results are shown in Table 20,
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Table 20 Comparing FCA-Map with FCA-Merge

Matching task
FCA-Map FCA-Merge

N P R F N P R F Additional mappings vs FCA-Map

MA-NCI 1361 0.932 0.837 0.882 425 0.939 0.263 0.411 16 (0 correct)

FMA-NCI 2834 0.954 0.917 0.935 834 0.946 0.294 0.488 42 (6 correct)

FMA-SNOMED 7649 0.936 0.803 0.865 373 0.909 0.056 0.106 32 (3 correct)

SNOMED-NCI 13295 0.914 0.666 0.771 3051 0.878 0.156 0.265 328 (38 correct)

where one can see that FCA-Merge favors precision
significantly over recall, the former all being higher than
0.9 whereas the latter lower than 0.3. Compared with the
first three steps of FCA-Map, FCA-Merge performs bet-
ter in precision only for MA-NCI, and all its recalls and
F-measures are uncompetitive. Nevertheless, as shown by
the right column of Table 20, FCA-Merge has successfully
identified a few correct mappings that are missed by
FCA-Map, for instance, 〈FMA:Stroma, NCI:Stroma
Connective Tissue〉 which occur in the simplified intent of
a formal concept with 403 articles as extent. Moreover,
the effectiveness of FCA-Merge obviously depends on
the collection of textual documents used, and expanding
the PubMed articles in the formal context may improve
the recall.

Discussion
FCA-Map distinguishes in comprehensively exploiting
the FCA formalism in matching real-world biomedical
ontologies. In this section, by introducing some of
the OAEI top-ranked systems, the previous FCA-based
systems and the systems capable of identifying complex
mappings, we analyze what FCA-Map has in com-
mon with them and its distinctive features. The lim-
itations and thus our future work are also discussed
in detail.

Comparing with the OAEI 2016 top-ranked systems
Among the OAEI 2016 top-ranked participants, LogMap
[2] is a scalable OM system that uses lexical and seman-
tic indexing techniques, and when dealing with map-
ping incoherence, it runs a reasoning-based diagnosis and
inconsistency repairing. AgreementMakerLight (AML)
[4] is an automated OM system that primarily uses the
element-level techniques. XMap [3] is an automated OM
system that composes various kinds of basic ontology
matchers. Both AML and XMap uses external resources
as background knowledge.
FCA-Map shares with these OM systems in exploit-

ing lexical and structural knowledge in ontology to
detect correspondences among classes across ontolo-
gies. Moreover, external domain resources like UMLS
are used to facilitate the alignment. Compared with
these systems, FCA-Map is distinctive in relying on a

mathematical model to compute commonalities among
classes and properties. As a result, FCA-Map is capa-
ble of obtaining mappings that cannot be identified by
other systems, as exemplified by anchors 〈MA:adrenal
gland zona reticularis, NCI:Reticularis Zone〉 and
〈MA:ileocaecal junction, NCI:Ileocecal Valve〉. These
mappings are identified in the token-based concept
lattice and then validated in the relation-based con-
cept lattice. The tokens shared by two classes in these
mappings are unique to their names. The lexical matching
method of FCA-Map is suitable for domain ontologies
having class names, labels, or synonyms from domain-
specific vocabularies. Other concept lattices derived
in FCA-Map can also detect mappings that are absent
in other OM systems, e.g., 〈SNOMED:Deoxyribonucleic
acid virus, NCI:DNA Virus〉 and 〈SNOMED:Jobs syn-
drome, NCI:Hyperimmunoglobulin E Syndrome〉 from
the positive relation-based lattice, and 〈SNOMED:
Structure of gum of maxilla, NCI:Upper Gingiva〉
and 〈SNOMED:Intrahepatic biliary tract structure,
NCI:Intrahepatic Bile Duct〉 from the restriction-based
lattice.
Table 21 lists the mappings that are uniquely identified

by FCA-Map compared with all OAEI 2016 participants.
For all the seven matching tasks in the Anatomy and
Large Biomedical Ontologies track, FCA-Map managed
to discover correct mappings for which the correspond-
ing OAEI systems failed. Take SNOMED and NCI for
example. For their fragment matching task, 2286 map-
pings identified by FCA-Map are absent from all the
five participants of the task, 1175 of which are correct;
and for their whole matching task, 2743 FCA-Map map-
pings are missed by all the four participants, where 503
are correct.
Nevertheless, in terms of the evaluationmeasures, FCA-

Map, although competitive on some tasks, does not out-
perform the OAEI top-ranked systems. These systems
often integrate various, distinctive matchers, including
combingmany lexical metrics (e.g., in the case of AML), as
well as statistical and machine-learning algorithms. Better
performances can be achieved through the complementa-
tion of diverse matchers. As shown in [42], optimal string
similarity metrics alone can produce competitive results
with the state-of-the-art OM systems. Conversely, the
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Table 21 Unique mappings identified by FCA-Map compared with all OAEI 2016 participants

Matching task Reference alignment
FCA-Map

OAEI 2016 Participants
N P R Uniquely identified mappings

MA-NCI 1516 1361 0.932 0.837 34 (6 correct) 12 (Alin, AML, CroMatcher,
DKP_AOM_Lite, DKP_AOM, Lily,
LogMap, LogMapBio, LogMapLite,
LPHOM LYAM, XMap)

FMA-NCI 3024 2834 0.954 0.917 75 (8 correct) 10 (Alin, AML, DKP_AOM_Lite,
DKP_AOM, Lily, LogMap, LogMapBio,
LogMapLite LYAM, XMap)

FMA-NCI Whole 3024 6449 0.386 0.892 3038 (28 correct) 5 (AML, LogMap, LogMapBio,
LogMapLite, XMap)

FMA-SNOMED 9008 7649 0.936 0.803 669 (115 correct) 5 (AML, LogMap, LogMapBio,
LogMapLite, XMap)

FMA-SNOMED Whole 9008 15391 0.352 0.759 8542 (104 correct) 5 (AML, LogMap, LogMapBio,
LogMapLite, XMap)

SNOMED-NCI 18844 13295 0.914 0.666 2286 (1175 correct) 5 (AML, LogMap, LogMapBio,
LogMapLite, XMap)

SNOMED-NCI Whole 18844 16452 0.775 0.705 2743 (503 correct) 4 (AML, LogMap, LogMapBio,
LogMapLite)

goal of our study, rather than optimally selecting a group
of different algorithms, is to investigate how one, sin-
gle mathematical formalism can be empowered to facili-
tate ontology matching based on its feature of clustering
attribute commonalities among objects. To improve FCA-
Map for practical applications, other matching techniques
can be incorporated and the integration strategies shall be
studied.

Comparing with previous FCA-based OM systems
Among the previous FCA-based OM systems, FCA-
Merge [15] proposed by Stumme and Maedche extracts
instances for classes from domain documents based on
the natural language processing technology and con-
structs two formal contexts for the ontologies to be
merged, respectively. A common context is computed, and
a concept lattice derived from which the final merged
ontology can be generated. FCA-OntMerge [23] uses the
classes of ontologies as objects in its formal context, and
applies strict mathematical principles of the concept lat-
tice derived to guiding the merge of two ontologies. In
[22], again ontology classes are used as objects in the for-
mal context, whereas the attributes come from the terms
of a domain-specific thesaurus, so that similarity mea-
sures can be computed for identifying class mappings.
Further, alternative FCA structures are adopted in ontol-
ogy mapping including the fuzzy formal concept analysis
(FFCA) formalism. Take FFCA-Merge [24] for example,
which extends FCA-Merge to generate fuzzy ontologies
by combining WordNet and FFCA. The work of [22] is
also extended by FFCA in [26] and by the rough set the-
ory in [25], respectively, in order to handle the uncertain
information among different ontologies.

Compared with these previous FCA-basedOM systems,
FCA-Map is more comprehensive in utilizing as much
knowledge represented in ontologies as possible. Table 22
lists the components used as objects and attributes when
building formal contexts in the FCA-based OM systems.
The lexical information used in FCA-Map includes names
of classes as well as their labels and synonyms when avail-
able, augmented by domain-specific terminologies and
lexical tools. The structural knowledge used in FCA-Map
includes ISA and PART-OF hierarchies, disjointed and
sibling relations among classes, axioms between named
classes, and axioms between a named class and restric-
tions about object properties. More importantly, both
asserted and inferred axioms are exploited. With these
knowledge, five types of FCA formal contexts are con-
structed in an incremental way, and from the concept
lattices derived mappings can be extracted and validated
automatically. As demonstrated by the evaluation on large,
complex biomedical ontologies, FCA-Map can achieve a
better balance between precision and recall through mul-
tiple, incremental FCA structures and a combination of
detection and validation operations. Specifically, the lexi-
cal matching of Step 1 in FCA-Map is devised to pursue
both precision and recall; the validation of Step 2 elim-
inates mappings with negative structural evidence and
ensures the improvement of precision; and the struc-
tural matching in Step 3, 4 and 5 discover new, structural
matches to favor recall. As a result, for SNOMED-NCI
Whole, the largest ontology matching task in OAEI, FCA-
Map ranks first for recall and second for F-measure;
ranks second for both F-measures of FMA-NCI and FMA-
SNOMED, and obtains the best F-measures for most
Disease and Phenotype tasks.
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Table 22 FCA-based ontology merging and matching systems

FCA-based systems for ontology
merging or matching

Object in the formal
context

Attribute in the formal
context

Binary relation in the
formal context

FCA-Merge, FFCA-Merge (merging) Textual document Class from two ontologies Name of class occurs in
document

[22, 25, 26] (matching) Ontology class Thesaurus term Term occurs in class

FCA-OntMerge (merging) Class from two ontologies Attribute from two
ontologies

Class has attribute

FCA-Map (matching) Step 1: lexical matching Name, label, or synonym
of classes from two
ontologies

Token String contains token

Step 2: structural validation Class from two ontologies Lexical anchor prefixed
with a relation

Class has relation with
anchor

Step 3: structural matching Class from two ontologies Validated anchor prefixed
with a relation

Class has relation with
validated anchor

Step 4: property matching Property from two
ontologies

A pair of anchors Property links the
individuals of two anchors

Step 5: extended structural
matching

Class from one ontology Class from another
ontology

Two classes across
ontologies occur in the
anonymous ancestors of
the same anchor with the
same property

The FCA-Map method is suitable for aligning large-
scale domain ontologies with rich lexical and structural
knowledge. As shown by the SNOMED-NCI matching
task in the evaluation, both ontologies declare object
properties and specify equivalent class axioms using the
properties. This provides semantic linkage rich enough for
the property-based and restriction-based formal contexts
to yield mappings across ontologies. Moreover, the large
number of classes and their semantic relations enable the
derivation of commonalities among classes. On the other
hand, the performance of FCA-Map can be relatively poor
for smaller-sized and general-purpose ontologies whose
terminologies are more varied and ambiguous, like those
in the Conference track of OAEI.

Identifying complex mappings
In addition to one-to-one class matches, FCA-Map can
identify meaningful complex mappings and property
mappings. Complex mappings are those in contrast with
one-to-one mappings across ontologies, and there have
been many OM systems that are capable of identify-
ing varying kinds of complex correspondences, e.g., as
listed in [1], iMAP, DCM, HSM, AOAS, PORSCHE, AML,
and Optima. These works mostly use predefined map-
ping structures as a guidance to identify complex map-
pings, e.g., manually created complex structures in AOAS
and logical definitions of the ontologies per se in AML.
FCA-Map, on the other hand, benefits from the formal
concept formalism of FCA, which clusters commonali-
ties among a group of entities rather than solely two, a
natural way to revealing complex correspondences across
ontologies. This means that no extra runtimes are needed

for identifying complex mappings in FCA-Map. Note that
FCA-Map is not the only system independent of pre-
defined complex structures. DCM, for example, takes
co-occurrence patterns as suggestive complex matches,
where a large-sized data is required for mining such pat-
terns. Additionally, complex mappings combing multiple
classes and properties across ontologies may indicate the
absence of a class representing that complex semantic
meaning within ontology, thus can be used for quality
assurance of large, real-world biomedical ontologies [43].
In contrast with classes, property aligning among onto-

logies is less studied. As shown by [42], string similarity
metrics perform significantly poor on properties, indi-
cating the unreliability of lexical-based property match-
ing. FCA-Map, independent of the names of properties,
particularly devises a formal context to describe how
properties have commonalities in connecting the same
classes across ontologies. In our evaluation, although of a
small number, the property mappings identified between
SNOMED and NCI facilitate detecting extended one-to-
one and complex classmappings. Lastly, for complexmap-
pings and object mappings, manual reviews are required,
not only for detecting the mismatches, but also for clari-
fying different semantic relations and logical connections
among classes in the mapping.

Limitations and future work
From the experimental results, one can see that as the
step-by-step process of FCA-Map goes more relying on
the structures of ontologies, the mapping results become
more unreliable. This is understandable, as ontologies
for the same domain tend to differ structurally while
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agree more on names. Practically, manual validation from
domain experts is necessary at each step so that the
mismatches do not propagate further. Technically, the
structural validation of Step 2 in FCA-Map should be
performed whenever new matches are added, i.e., after
Step 3, 4, and 5, so that the conflicting semantic rela-
tions among mappings can be eliminated. This would for
sure increase the correctness of structural matching.More
importantly, FCA-Map lacks the incoherence detection
and repairing, an indispensable part of ontology match-
ing, resulting in many unsatisfiable classes as reported by
OAEI 2016. Without them the correctness of structural
matching could be further improved. Note that incoher-
ence repairing methods relying on the weights to decide
the mappings to be removed are not suitable for FCA-
Map as its mappings are not weighted. Whether it is
possible to equip FCA per se to accomplish incoherence
repairing will be for our future work. Conversely, alter-
natives to improve the recall are also worth exploring.
Starting with a more relaxed first step in FCA-Map could
lead the lexical anchors to have much higher recall and
lower precision. For instance, when the class-origin extent
of the token-based formal concept contains three classes
across ontologies, we can extract three one-to-one map-
pings from them. Such extractions will be noisier than
the current Step 1 of FCA-Map, for which both the struc-
tural validation and incoherence repairing are required
to ensure the quality of the final alignment. Moreover,
property mappings identified in Step 4 can enable a new
round of structural matching so that in addition to tax-
onomic and partonomic relations, equivalent properties
across ontologies can be used to augment the positive
relation-based formal context.
Another limitation that FCA-Map suffers is the long

running time. As a PSPACE-complete problem, comput-
ing a concept lattice of FCA can be space- and time-
consuming. By taking advantage of the existing FCA
tool FCAlib that computes the polynomial-sized Galois
Sub-hierarchy (GSH) representation of concept lattice,
and applying the multithreading technique, we managed
to finish the Anatomy, the Disease and Phenotype, and
the fragment tasks of the Large Biomedical Ontologies
track of OAEI 2016 within two hours as required. How-
ever, when it comes to the whole versions of the Large
Biomedical Ontologies track, FCA-Map took an average
of nearly 10 h. For OM tasks of such size and complex-
ity, Spark-MCA [44], a newly developed technology for
tackling the computational challenge of large biomedical
ontologies based on distributed cloud computing frame-
works, can be considered as a solution.
Additionally, an interesting direction for our future

work would be to exploit the formal concept analysis
formalism to align multiple ontologies at the same time.
Preliminarily, we applied FCA-Map to constructing a

token-based formal context for three ontologies, FMA,
NCI and SNOMED in Table 2. The names, labels and syn-
onyms of classes in the three ontologies are listed as the
objects of the context, and the tokens in these strings as
the attributes. After the lattice derivation, one-to-one lex-
ical mappings are extracted from the formal concepts by
Step 1 of FCA-Map. Indirect mappings can then be gen-
erated from two mappings sharing a class. Take matching
task SNOMED-NCI for example. Using FMA as an inter-
mediate yielded 779 mappings where 246 are solely of
indirect matching. Among these unique mappings, 165
are correct, increasing both the recall and F-measure
whereas the precision is lowered. In-depth analyses on
adapting FCA-Map to aligning multiple ontologies are
needed.

Conclusion
To conclude, the study in this paper attempts to push the
envelope of the Formal Concept Analysis formalism in
ontology matching tasks. In our system FCA-Map, five
types of formal contexts are constructed in an incremental
way, and their derived concept lattices are used to cluster
the commonalities among classes and properties at vari-
ous lexical and structural levels, respectively. Experiments
on large, real-world biomedical ontologies show promis-
ing results and reveal the power of FCA. Relying on one,
single formalism, the performance of FCA-Map is com-
petitive with the OAEI top-ranked participants, and it can
uniquely identify mappings that are missed by other OM
systems. Additionally, complex mappings are obtained at
the same time as one-to-one mappings in FCA-Map, indi-
cating that one class corresponds to a semantic expres-
sion in the other ontology. Compared with previous
FCA-based OM systems that normally constructs one
formal context, our method features a comprehensive
incorporation of various kinds of knowledge in ontol-
ogy into multiple FCA contexts, including class names,
labels, and synonyms, and taxonomy, partonomy, and
axioms restricting properties among classes. FCA-Map
can thus be applied to aligning domain ontologies with
such knowledge richly represented. To further our study,
extensions with incoherence repairing and optimization
techniques are definitely worth exploring so as to improve
the quality and efficiency of ontology matching with
FCA-Map.

Endnotes
1Although eliminating the stop words carrying logical

meanings may affect the precision, its benefit in recall is
more advantageous according to our experiments.

2Again, “Unknown” mappings, although from the
UMLSmetathesaurus, are categorized by OAEI as neither
correct nor incorrect.
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