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Abstract

Background: Vaccine has been one of the most successful public health interventions to date. However, vaccines
are pharmaceutical products that carry risks so that many adverse events (AEs) are reported after receiving vaccines.
Traditional adverse event reporting systems suffer from several crucial challenges including poor timeliness. This
motivates increasing social media-based detection systems, which demonstrate successful capability to capture
timely and prevalent disease information. Despite these advantages, social media-based AE detection suffers from
serious challenges such as labor-intensive labeling and class imbalance of the training data.

Results: To tackle both challenges from traditional reporting systems and social media, we exploit their complementary
strength and develop a combinatorial classification approach by integrating Twitter data and the Vaccine Adverse
Event Reporting System (VAERS) information aiming to identify potential AEs after influenza vaccine. Specifically, we
combine formal reports which have accurately predefined labels with social media data to reduce the cost of manual
labeling; in order to combat the class imbalance problem, a max-rule based multi-instance learning method is
proposed to bias positive users. Various experiments were conducted to validate our model compared with other
baselines. We observed that (1) multi-instance learning methods outperformed baselines when only Twitter data
were used; (2) formal reports helped improve the performance metrics of our multi-instance learning methods
consistently while affecting the performance of other baselines negatively; (3) the effect of formal reports was more
obvious when the training size was smaller. Case studies show that our model labeled users and tweets accurately.

Conclusions: We have developed a framework to detect vaccine AEs by combining formal reports with social media
data. We demonstrate the power of formal reports on the performance improvement of AE detection when the
amount of social media data was small. Various experiments and case studies show the effectiveness of our model.
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Background
Vaccine has been one of the most successful public health
interventions to date. Most vaccine-preventable diseases
have declined in the United States by at least 95–99%
[1, 2]. However, vaccines are pharmaceutical products
that carry risks. They interact with the human immune
systems and can permanently alter gene molecular struc-
tures. For instance, 7538 adverse event reports were
received between November 2009 and March 2010 in
the Netherlands with respect to two pandemic vaccines,
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Focetria and Pandemrix [3]. Serious adverse reactions
may even lead to death. For example, a woman died of
multi-organ failure and respiratory distress, which was
then verified to be caused by a yellow fever vaccina-
tion in Spain on October 24, 2004 [4]. Aiming to build
a nationwide spontaneous post-marketing safety surveil-
lance mechanism, the US Centers for Disease Control and
Prevention (CDC) and the Food and Drug Administration
(FDA) co-sponsored the Vaccine Adverse Event Report-
ing System (VAERS) since 1990, which currently contains
more than 500,000 reports in total. However, such report-
ing systems bear several analytical challenges, such as
underreporting, false-causability issues, and various qual-
ity of information. In addition, formal reports are records
of symptom descriptions caused by vaccine adverse events
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(AEs) and need time-consuming administrative process-
ing. As a result, the release of formal reports lags behind
disease trends. For example, the VARES usually releases
newly-collected report data every three months. A real-
time monitoring system to identify potential AEs after
vaccination can serve as complementary surveillance pur-
pose aside from VAERS.
In recent decades, information extraction from social

media data such as Twitter data has demonstrated suc-
cessful capability to capture timely and prevalent dis-
ease information. These advantages effectively address the
drawbacks of existing reporting systems such as VAERS.
However, very little work has been done on the detec-
tion of AEs after vaccinations using social media data.
There are mainly two challenges of the detection of AEs
on social media. (1) The costly labeling process: in prin-
ciple, it is compulsory to check message by message in
order to label user accurately. Labeling millions of users
is labor-intensive. For instance, if a user has about 100
tweets each month, labeling 1,000,000 such users will
need labeling 100,000,000 tweets, which cannot be com-
pleted manually. (2) The class imbalance: in practice, the
proportion of positive users, whose messages indicated
symptom descriptions of AEs, is much lower than that of
negative users. As a result, a classifier biases toward the
negative user class due to its sample majority, causing a
high false negative rate.
To tackle both challenges, we propose to develop a com-

binatorial classification approach by integrating Twitter
data and VAERS information aiming to identify Twit-
ter users suffering from side effects after receiving flu
vaccination. Specifically, in order to reduce the cost of
manual labeling, we combined formal reports which are
accurately labeled with social media data to form a
training set. A max rule based multi-instance learning
approach was developed to address the class imbalance
problem. Various experiments were conducted to vali-
date our model: we first collected and processed data
from Twitter users who received flu shots through Twit-
ter APIs and AE formal reports from VAERS. Then, we
applied a series of baselines and multi-instance learn-
ing methods including our model to investigate whether
formal reports can help improve the classification per-
formance in the Twitter setting. We investigated how the
change of the formal report size influenced the classifica-
tion performance of our multi-instance learning methods
as well as other baselines. We observed that (1) multi-
instance learning methods outperformed baselines when
only Twitter data were used because baselines need to
sum multiple tweets up, most of which are irrelevant to
vaccine adverse events; (2) formal reports helped improve
the performance metrics of our multi-instance learning
methods consistently while affecting the performance of
other baselines negatively; (3) the effect of formal reports

was more obvious when the training size was smaller.
The reason behind the findings (2) and (3) is related to
the proportion changes of positive users against negative
users.

Related work
In this section, several research fields related to our paper
are summarized as follows.
AE detection in social media. Recently, social media

have been considered as popular platforms for health-
care applications because they can capture timely and
rich information from ubiquitous users. Sarker et al. con-
ducted a systematic overview of AE detection in social
media [5]. Some literatures are related to adverse drug
event detection. For example, Yates et al. collected con-
sumer reviews on various social media site to iden-
tify unreported adverse drug reactions [6]; Segura et al.
applied a multi-linguistic text analysis engine to detect
drug AEs from Spanish posts [7]; Liu et al. combined dif-
ferent classifiers based on feature selection for adverse
drug events extraction [8]; O’Connor et al. studied the
value of Twitter data for pharmacovigilance by assessing
the value of 74 drugs [9]; Bian et al. analyzed the con-
tent of drug users to build the Support Vector Machine
(SVM) classifiers [10]. Others dwell on flu surveillance.
For instance, Lee et al. built a real-time system to mon-
itor flu and cancer [11]; Chen et al. proposed temporal
topic models to capture hidden states of a user based on
his tweets and aggregated states in geographical dimen-
sion [12]; Polgreen et al. kept track of public concerns with
regard to h1n1 or flu [13]. However, to the best of our
knowledge, there exists no work which has attempted to
detect AEs on vaccines.
Multi-instance learning. In the past twenty years,

multi-instance learning models have attracted the atten-
tion of researchers due to a wide range of applications.
In the multi-instance learning problem, a data point, or a
bag, is composed of many instances. For example, in the
vaccine AE detection problem on Twitter data, a user and
tweets posted by this user are considered as a bag and
instances, respectively. Generally, multi-instance learning
models are classified as either instance-level or bag-level.
Instance-level multi-instance learning classifiers predict
instance label rather than bag label. For example, Kumar
et al. conducted audio event detection task from a col-
lection of audio recordings [14]. Bag-level multi-instance
learning algorithms are more common than instance-
level. For instance, Dietterich et al. evaluated binding
strength of a drug by the shape of drug molecules [15].
Andrews et al. applied Support VectorMachines (SVM) to
both instance-level and bag-level formulations [16]. Zhou
et al. treated instances as independently and identi-
cally distributed and predicted bag labels based on
graph theories [17]. Mandel et al. utilized multi-instance
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learning approaches to label music tags using many 10-
second song clips [18].

Methods
In this section, we first describe the data resources and
preprocessing processes in this work. Then we introduce
our multi-instance learning method and present all steps
of the MILR, as shown in Fig. 1. All experiments were
analyzed in compliance with Twitter policies1. They were
conducted on a 64-bit machine with Intel(R) core(TM)
quad-core processor (i3-3217U CPU@ 1.80GHZ) and
4.0GB memory.

Feature set and dataset
Feature set: The feature set consists of 234 common key-
words related to AEs which were prepared by domain
experts. These keywords forming different tenses were
common words to describe adverse events and side effects
in both formal reports and social media messages. The
choice of keywords is very important because the ter-
minology used in formal reports and tweets are differ-
ent. Table 1 illustrates the terminology usage difference
between formal reports and tweets. Keywords are high-
lighted in bold types. Specifically, formal reports tend
to use professional terms for symptom descriptions like
“BENADRYL” and “hydrocortisone”, while simple words
are more likely used in social media messages. One exam-
ple of “flu” and “shot” is presented in Table 1. Fortunately,
there are keyword overlaps between formal reports and
social media messages such as “swollen” shown in Table 1.
Twitter dataset: Twitter data used in this paper were

obtained from the Twitter API in the following process:
firstly, we queried the Twitter API to obtain the tweets
that were related to flu shots by 113 keywords including
“flu”,“h1n1” and “vaccine”. Totally, 11,993,211,616 tweets
between Jan 1, 2011 and Apr 15, 2015 in the United States

Table 1 A formal report and tweet example, respectively

Formal report Tweet

T-dap 2 days ago arm As soon as I walk
developed itchy and swollen. in my apartment,
BENADRYL and 2.5% my swollen arm
hydrocortisone should be seen decides to remind me
by allergist referral sent. I got a flu shot today.

Keywords are shown in bold types

were obtained. Second, among these tweets, the users
who had been received flu shots were identified by their
tweets using the LibShortText classifier that was trained
on 10,000 positive tweets and 10,000 negative tweets
[19, 20]. The accuracy of the LibShortText classifier was
92% by 3-fold cross-validation. The full text representa-
tions were used as features for the LibShortText classi-
fier. Then, we collected all tweets within 60 days after
users had been received flu shots identified by the sec-
ond step. The collected tweets formed our dataset in this
paper, which consisted of a total of 41,537 tweets from
1572 users. The labels of users were manually curated
by domain experts. among them 506 were positive users
which were indicative of AEs by their tweets and the other
1066 were negative users.
VAERS dataset: We downloaded all raw data from

VAERS for the year 2016 in the comma-separated value
(CSV) format. The data consisted of 29 columns includ-
ing VAERS ID, report date, sex, age and symptom text.
We extracted 2500 observations of symptom texts, each
of which was considered as a formal report indicative of
an AE.

Multi-instance logistic regression
The scheme of the proposed framework is illustrated in
Fig. 1. As an auxiliary data source, formal reports are
combined with social media data to enhance the classi-
fication generalization. The training dataset consists of

Fig. 1 Overview of the proposed framework. VAERS: Vaccine Adverse Event Reporting System. MILR: Multi-instance Logistic Regression
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Twitter training data and formal reports from VAERS,
which provide a comprehensive positive labeled dataset
to tackle limited sample challenge of social media. The
scheme of the proposed framework is illustrated in Figure
As an auxiliary data source, formal reports are combined
with Twitter data to enhance the classification general-
ization. The training dataset consists of Twitter training
data and formal reports from VAERS, which provides an
abundance of positive labeled data to reduce the cost of
manual labeling. The test data are Twitter test data only.
They are converted into vectors where each element is
the count of a keyword. Then the Multi-instance Logistic
Regression (MILR) is applied to train the model. The idea
of MILR is to build a mapping from users to tweets. The
relation between users and tweets is summarized by the
max rule: if at least a tweet from a user indicates an AE,
this user is labeled as positive; otherwise, this user is neg-
ative. The max rule for classification is asymmetric from
users to tweets: as for positive users, we only need a tweet
that indicates an AE; but for negative users, none of their
tweets indicates an AE. In reality, a minority of users are
affected by AEs, whereas the remaining users are labeled
as negative. The asymmetric property of the max rule
biases toward positive users and diminishes the influence
of the major negative user class. Therefore, the classifier
treats the positive and negative user class equally. Besides,
the max rule is resistant to feature noise because tweets
selected by the max rule are determined by all candidate
tweets rather than a certain tweet. In this experiment, the
logistic regression with �1 regularization is applied to train
the classifier.

Comparison methods
Two types of classifiers which were applied to this work,
namely baselines and multi-instance learning methods,
are introduced in this subsection.

Baselines
For baselines, the vector was summed by column for each
user, with each column representing a count of keyword
for this user.
1. Support Vector Machines (SVM). The idea of SVM

is to maximize the margin between two classes [21]. The
solver was set to be Sequential Minimal Optimization
(SMO) [22]. We chose three different kernels for compari-
son: the linear kernel (linear), the polynomial kernel (poly)
and the radial basis kernel (rbf ).
2. Logistic Regression with �1-regularization (LR).

Logistic regression is amethodwhichmodels the outcome
as a probability. We implemented this approach by the
LIBLINEAR library [23].
3. Neural Network (NN). The idea of the Neural Net-

work is to simulate a biological brain based on many
neural units [24]. The Neural Network consists of the

input layer, 10 hidden layers and the output layer. Each
layer has 3 nodes. The sigmoid function is used for the
output. The layers are fully connected layers, where each
node in one layer connects the nodes in neighboring
layers.

Multi-instance learningmethods
4. Multi-instance Learning based on the Vector of

Locally Aggregated Descriptors representation(miVLAD)
[25]. In the multi-instance learning problem, a “bag” is
used to represent a set consisting of many “instances”. To
make the learning process efficient, all the instances for
each bag were mapped into a high-dimensional vector
by the Vector of Locally Aggregated Descriptors (VLAD)
representation. In other words, VLAD representation
compressed each bag into a vector and hence improved
the computational efficiency. Then a SVM was applied on
these vectors to train the model.
5. Multi-instance Learning based on the Fisher Vec-

tor representation (miFV) [25]. The miFV was similar to
miVLAD except that each bag was represented instead by
a Fisher Vector (FV) representation.

Metrics
In this experiment, our task was to detect flu shot AEs
based on Twitter data and VAERS information. The
evaluation was based on 5-fold cross-validation. Several
metrics were utilized to measure classifier performance.
Suppose TP, FP, TN and FN denote true positive, false pos-
itive, true negative and false negative, respectively, these
metrics are calculated as:
Accuracy (ACC) = (TP+TN)/(TP+FP+TN+FN)
Precision (PR) = TN/(TN+FP)
Recall (RE) = TN/(TN+FN)
F-score (FS) = 2*PR*RE/(PR+RE).
The Receiver Operating Characteristic (ROC) curve

measures the classification ability of a model as discrimi-
nation thresholds vary. The Area Under ROC (AUC) is an
important measurement of the ROC curve.

Results
In this section, experimental results are presented in
detail. We found that (1) multi-instance learning meth-
ods outperformed baselines when only Twitter data were
used; (2) formal reports improved the performance met-
rics of multi-instance learning methods consistently while
affected the performance of baselines negatively; (3) the
effect of formal reports was more obvious when the train-
ing size was smaller.

Performance comparison between baselines and
multi-instance learning methods
We compared model performance between multi-
instance learning methods and baselines, which is shown
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in Table 2. The results demonstrated that the MILR per-
formed better than any other comparison method when
no formal report was available. The MILR exceeded 0.86
in the AUC, while none of other classifiers attained more
than 0.84. The ACC of the MILR was 0.8034, 0.15 higher
than the SVM with the polynomial kernel. When it came
to the FS, theMILR achieved the result that was 0.6 higher
than the SVM with the radial basis kernel. It surpassed
0.78 in the PR metric, whereas the PR of the LR was only
0.6765. As for the RE, the performance of the MILR was
0.57 better than the SVM with the radial basis kernel.
The ACCs of the miFV and miVLAD were around 0.77
and their AUCs reached over 0.83, which were superior
to any other baseline. The AUCs of the NN and LR were
competitive among baselines, reaching 0.8196 and 0.7524,
respectively. As for the SVM, the kernel choice made a big
difference. The linear kernel and the radial basis kernel
were superior to the polynomial kernel in almost every
metric: the ACCs and the AUCs of these two kernels were
over 0.65 and 0.79, respectively, whereas these of the poly-
nomial kernel were only 0.6412 and 0.5697, respectively.
The PR, RE and FS of the linear kernel were 0.01, 0.25 and
0.36 better than the polynomial kernel, respectively.
Figure 2 illustrates ROC curves for adding different

number of formal reports. X axis and Y axis denote False
Positive Rate (FPR) and True Positive Rate (TPR), respec-
tively. Overall, multi-instance learning methods outper-
formed baselines, which was consistent with the Table 2.

The MILR performed the best however many formal
reports were added in the training set, with ROC curves
covering the largest area above the X axis. The miVLAD
also performed well in Fig. 2a and c while inferior to the
MILR in four other figures. The miFV was inferior to the
miVLAD and the MILR, when the FPR was greater than
0.2. When it came to baseline classifiers, the performance
of the SVM with the polynomial kernel was a random
guess in Fig. 2a, b and c. As more formal reports were
added, its performance was improved, as shown in Fig. 2d,
e and f. The NN and LR were the worst among all meth-
ods when no less than 1500 formal reports were added.
The SVMwith the linear kernel and the radial basis kernel
achieved a competitive performance among all baselines.
The reason behind the superiority of multi-instance

learning methods over baselines is that vector compres-
sion by summation for each user which serve as the input
of baselines lose important information. In reality, only
a few tweets are related to vaccines, and the summation
includes many AE-irrelevant tweets, which usually results
in a noisy data input.

Performance comparison for different formal report
numbers
To examine the effect of formal reports on classification
performance, we made a comparison between no formal
report and 2500 formal reports. It indicated from Table 2
that most multi-instance learningmethods were benefited

Table 2 Model performance between no formal report and 2500 formal report based on five metrics (the highest value for each
metric is highlighted in bold type): multi-instance learning methods outperformed baselines

Method Formal ACC PR RE FS AUC
#Report

SVM(linear) 0 0.7793 0.7309 0.6100 0.6644 0.7916

2500 0.7296 0.6241 0.6370 0.6294 0.7234

SVM(poly) 0 0.6412 0.7231 0.3611 0.3069 0.5697

2500 0.5478 0.5311 0.5497 0.4443 0.6416

SVM(rbf) 0 0.6507 0.6948 0.0572 0.1035 0.8069

2500 0.5897 0.4652 0.9344 0.6210 0.7754

LR 0 0.7665 0.6765 0.6641 0.6700 0.7524

2500 0.7322 0.6209 0.6576 0.6384 0.7303

NN 0 0.7924 0.7408 0.6273 0.6790 0.8196

2500 0.7411 0.6414 0.6396 0.6394 0.7366

miFV 0 0.7818 0.7269 0.6352 0.6775 0.8348

2500 0.7856 0.7331 0.6403 0.6833 0.8361

miVLAD 0 0.7691 0.7261 0.5832 0.6461 0.8390

2500 0.7863 0.7055 0.6999 0.7018 0.8201

MILR 0 0.8034 0.7858 0.6231 0.6947 0.8676

2500 0.8054 0.7871 0.6291 0.6984 0.8902
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Fig. 2 Receiver operating characteristic (ROC) curves adding different formal reports: multi-instance learning methods outperformed baselines no
matter how many formal reports were added. a No formal report, b 500 formal reports, c 1000 formal reports, d 1500 formal reports, e 2000 formal
reports, f 2500 formal reports

from 2500 formal reports. The AUCs of the MILR and the
miFV were improved by 0.025 and 0.002, respectively. The
miVLAD was only an exception because its AUC declined
by 0.02. However, most baselines were affected nega-
tively by formal reports in the AUC, while other metrics
remained stable. For example, after 2500 formal reports
were added into the training set, the AUCs of the NN and
the SVM with the linear kernel were dropped drastically
by 0.07 and 0.08, respectively. Compared with these con-
siderable tumbles, the AUCs of the LR and the SVM with
the radial basis kernel dropped slightly, which was about
0.02, whereas the AUC of the SVM with the polynomial
kernel increased by 0.07.

Figure 3 shows tendencies of five metrics on differ-
ent number of formal reports. Overall, formal reports
improved the performance of multi-instance learning
methods whereas leading to decline of baselines. All
methods were categorized as three classes. The perfor-
mance of the SVM with the linear kernel, LR and NN
was deteriorated by adding more formal reports: their
AUCs dropped from 0.79, 0.75 and 0.82 to 0.73, 0.73 and
0.75, respectively. Trends of their ACCs, PRs and FSes
were similar while their REs improved significantly with
more formal reports. The SVM with the radial basis ker-
nel and miFV were independent of the change of formal
reports. The remaining classifiers, namely, the SVM with

Fig. 3Metric trends of all classifiers adding different formal reports: formal reports improved the performance metrics of multi-instance learning
methods consistently while affected the performance of baselines negatively. a SVM(linear), b SVM(poly), c SVM(rbf), d LR, e NN, fmiFV, gmiVLAD,
hMILR
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the polynomial kernel, miFVLAD and the MILR, bene-
fited from the introduction of formal reports: the AUC of
the SVM with the polynomial kernel was below 0.6 while
this result increased to 0.65 with 1500 formal reports; the
RE of the miVLAD first elevated from 0.58 to 0.75, then
declined smoothly to 0.7; there was a slight increase from
0.87 to 0.89 in the AUC of the MILR.
The huge performance discrepancy between baselines

and multi-instance learning methods after the inclusion
of formal reports came from the proportion of positive
users against negative users. For instance, for baselines,
the proportion of positive users was 32% (i.e., 506/1572)
in the Twitter data only. However, the ratio increased dra-
matically to 73.82% (i.e., 3006/4072) after we added 2500
formal reports. In other words, since formal reports (i.e.,
positive users) were introduced into the dataset, the pro-
portion of positive users surpassed that of negative users,
and baselines predicted most users as positive. However,
negative users greatly outnumber positive users in our

dataset. Different from baselines, multi-instance learning
methods focused on the mappings from tweet labels to
user labels. Since tweet labels were unavailable, assum-
ing the predictions of the MILR were accurate, the pro-
portion of tweets related to positive users was 4% (i.e.,
1545/39037), while this ratio changed slightly to 9.73%
(i.e., 4045/41537) after we added 2500 formal reports.
Therefore, the introduction of formal reports benefited
multi-instance learning methods by providing enough
positive user samples and avoiding the label proportion
change problem.

MILR performance with small training sizes
Table 3 shows the effect of the size of the Twitter train-
ing data on model performance using MILR. Overall,
formal reports have a more obvious effect on model per-
formance when the training size of the Twitter data was
small.When the training size was 314, 786, 1048 and 1179,
the corresponding AUC improvement by adding formal

Table 3 Model performance using MILR with smaller training sizes (the highest value for each metric is highlighted in bold type): the
effect of formal reports was more obvious when the training size was smaller

Twitter data Formal ACC PR RE FS AUC
#Training #Report

314 (20%) 0 0.7731 0.7278 0.5923 0.6525 0.8446

500 0.7812 0.7323 0.6212 0.6713 0.8539

1000 0.8112 0.7993 0.6356 0.7076 0.8888

1500 0.8136 0.7935 0.6524 0.7151 0.8923

2000 0.8114 0.7812 0.6612 0.7156 0.8916

2500 0.8112 0.7824 0.6590 0.7147 0.8904

786 (50%) 0 0.7939 0.7689 0.6141 0.6816 0.8646

500 0.7920 0.7651 0.6125 0.6790 0.8684

1000 0.8041 0.7682 0.6567 0.7064 0.8834

1500 0.8034 0.7720 0.6482 0.7031 0.8834

2000 0.8092 0.7968 0.6312 0.7044 0.8897

2500 0.8066 0.7711 0.6615 0.7108 0.8866

1048 (67%) 0 0.7952 0.7841 0.5953 0.6767 0.8646

500 0.7850 0.7615 0.5915 0.6645 0.8653

1000 0.7983 0.7948 0.5937 0.6795 0.8843

1500 0.7996 0.7944 0.5992 0.6830 0.8880

2000 0.8034 0.7984 0.6080 0.6903 0.8899

2500 0.8060 0.8016 0.6133 0.6949 0.8910

1179 (75%) 0 0.7952 0.7845 0.5927 0.6752 0.8664

500 0.7933 0.7695 0.6010 0.6743 0.8846

1000 0.8034 0.7881 0.6172 0.6915 0.8948

1500 0.8041 0.7913 0.6154 0.6915 0.8963

2000 0.8041 0.7940 0.6119 0.6901 0.8983

2500 0.8041 0.7940 0.6119 0.6901 0.8985
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reports was 0.0477, 0.0251, 0.0264 and 0.015, respectively.
The same trend was applied to the PR, RE and FS. For
example, the FS improvement with 314 training samples
was 0.0622, while that with 1179 training samples was only
0.0149. Different from other metrics, the ACCwas around
0.8 no matter how the size of the Twitter training data
and formal reports changed. The label proportion changes
mentioned in the previous section can account for why
the effect of formal reports is more obvious with smaller
Twitter training data.

Keyword frequencies
In this section, to illustrate the effect of formal reports on
the keyword set, we compare the semantic patterns of AE
tweets between no formal report and 2500 formal reports
implemented by MILR, as shown by Fig. 4. In each word
cloud, the frequencies of keywords in each set of tweets
were in proportion to their sizes. Keywords “headache”,
“sore”, “sick”, “arm” and “pain” were the largest keywords
in Fig. 4a and b. The keyword cheeks became more fre-
quent while the keyword vaccines was much smaller after
adding 2500 formal reports. To conclude, most frequent
keywords remained stable after the introduction of 2500
formal reports.

Case studies
We found that most users were accurately labeled by our
proposed approach. For example, Table 4 gives two exam-
ple users and their corresponding tweets. Keywords are
displayed in bold types. For the first user labeled as pos-
itive, the first tweet showed that he/she received a flu
shot. Then a headache happened indicated by the sec-
ond tweet. The third tweet was irrelevant to AEs. When it
came to the second positive user, none of three tweets was
AE-irrelevant. Our approach correctly labeled both users
and selected the tweet accurately by the max rule. There-
fore, the effectiveness of our model was validated by these
two users.

Discussions
Traditional AE reporting systems bear several analytic
challenges, which lead to the rise of information extrac-
tion from social media. However, the costly labeling pro-
cess and class imbalance problem put barriers to the
application of social media on the AE detection. To tackle
these challenges, we developed a combinatorial classifica-
tion approach to identify AEs by integrating Twitter data
and VAERS information. Note that the difference of data
collection timeframe between Twitter data and VAERS
data was not considered in our approach. Our findings
indicated that multi-instance learning methods benefited
from the introduction of formal reports and outperformed
baselines. In addition, the performance improvement of
multi-instance on the formal reports was more obvious
with smaller training sizes. The integration of social media
data and formal reports is a promising approach to iden-
tify AEs in the near future.

Conclusion
In this paper, we propose a combinatorial classification
approach by integrating Twitter data and VAERS informa-
tion to identify potential AEs after influenza vaccines. Our
results indicated that (1) multi-instance learning meth-
ods outperformed baselines when only Twitter data were
used; (2) formal reports improved the performance met-
rics of our multi-instance learning methods consistently
while affected the performance of other baselines neg-
atively; (3) the effect of formal report was more obvi-
ous when the training size was smaller. To the best of
our knowledge, this is the first time that formal reports
are integrated into social media data to detect AEs.
Formal reports provide abundant positive user samples
and improve classification performance of multi-instance
learning methods.
In this work, we omitted the differences between social

media and formal reports, which introduced may extra
bias to the dataset. In the future, a domain adaptation

Fig. 4 Keyword frequencies of tweets which indicated AEs between no formal report and 2500 formal reports: frequent keywords remained stable.
a No formal report, b 2500 formal reports
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Table 4 Two users and their corresponding tweets

User Id Corresponding tweets Indicative or not

246090881 Got my annual employer-paid flu shot
today.

Not

Now I have a headache. ARGH. Indicative

Starting to yawn. Might be sleepy. GOOD! I
need sleep!

Not

206180021 Getting a flu shot, I realized how amazing
the CDC is even though most people are
completely unaware of all theways they help
us.

Not

Or Gamera! Gamera flies through the air like
a spinning firework. Anyone who hates
Gamera is dead to me.

Not

Personally, I don’t like something about the
sound of “The Tower Heist” movie. Yup,
something about that makes me nervous.

Not

Keywords are displayed in bold types

method can be considered to address this issue. We also
need to deal with other limitations of social media. For
example, it is difficult to differentiate a new AE from pre-
vious AEs for the same Twitter user. Moreover, identifying
serious AEs is very challenging because scarce serious
AE cases lead to severe class imbalance problem, i.e.,
the proportion of serious AEs is far lower than that of
general AEs.

Endnote
1 https://dev.twitter.com/overview/terms/agreement-

and-policy
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