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Abstract

Background: Adverse drug reactions (ADRs), also called as drug adverse events (AEs), are reported in the FDA drug
labels; however, it is a big challenge to properly retrieve and analyze the ADRs and their potential relationships
from textual data. Previously, we identified and ontologically modeled over 240 drugs that can induce peripheral
neuropathy through mining public drug-related databases and drug labels. However, the ADR mechanisms of these
drugs are still unclear. In this study, we aimed to develop an ontology-based literature mining system to identify
ADRs from drug labels and to elucidate potential mechanisms of the neuropathy-inducing drugs (NIDs).

Results: We developed and applied an ontology-based SciMiner literature mining strategy to mine ADRs from the
drug labels provided in the Text Analysis Conference (TAC) 2017, which included drug labels for 53 neuropathy-
inducing drugs (NIDs). We identified an average of 243 ADRs per NID and constructed an ADR-ADR network, which
consists of 29 ADR nodes and 149 edges, including only those ADR-ADR pairs found in at least 50% of NIDs.
Comparison to the ADR-ADR network of non-NIDs revealed that the ADRs such as pruritus, pyrexia,
thrombocytopenia, nervousness, asthenia, acute lymphocytic leukaemia were highly enriched in the NID network.
Our ChEBI-based ontology analysis identified three benzimidazole NIDs (i.e., lansoprazole, omeprazole, and
pantoprazole), which were associated with 43 ADRs. Based on ontology-based drug class effect definition, the
benzimidazole drug group has a drug class effect on all of these 43 ADRs. Many of these 43 ADRs also exist in the
enriched NID ADR network. Our Ontology of Adverse Events (OAE) classification further found that these 43
benzimidazole-related ADRs were distributed in many systems, primarily in behavioral and neurological, digestive,
skin, and immune systems.

Conclusions: Our study demonstrates that ontology-based literature mining and network analysis can efficiently
identify and study specific group of drugs and their associated ADRs. Furthermore, our analysis of drug class effects
identified 3 benzimidazole drugs sharing 43 ADRs, leading to new hypothesis generation and possible mechanism
understanding of drug-induced peripheral neuropathy.

Background
While drugs have been widely and successfully used to
treat various diseases, most drugs cause different adverse
events (AEs), commonly called adverse drug reactions
(ADRs). These ADRs are sometimes severe and signifi-
cantly affect public health. Indeed, ADRs are listed as

the fourth killer after heart disease, cancer, and stroke
[1]. Therefore, it is critical to carefully study the ADRs
and underlying mechanisms.
Multiple studies have been conducted to automatically

identify ADRs in text using Natural Language Processing
(NLP) techniques. Different types of data sources such
as electronic health records [2], scientific publications,
and social media data have been used to extract ADRs.
A lexicon of ADR-related terms and concepts was com-
piled from different sources such as the Unified Medical
Language System (UMLS) [3] and the side effect re-
source (SIDER) [4] and was used to match the ADR
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mentions in user comments retrieved from Daily-
Strength (http://www.dailystrength.org) by Leaman et al.
[5]. Nikfarjam and Gonzalez used the same user com-
ment data set and developed an association rule mining
approach to tag ADR mentions [6]. Similarly to Leaman
et al., Gurulingappa et al. [7] also developed a
lexicon-based matching approach to identify ADRs in
text using the lexicon created based on the Medical
Dictionary for Regulatory Activities (MedDRA) [8] and
DrugBank [9]. However, rather than using user com-
ments from social media, Gurulingappa et al. used the
abstracts of case reports as their data source. Product la-
bels have also been used as data sources to extract ADRs
and create knowledge bases of known ADRs [10, 11]. A
review of recent techniques on ADR extraction from
text from various data sources is available in [12].
An important group of ADRs is neuropathy. Using

FDA reported package insert documents and drug safety
records, our previous studies identified 242
neuropathy-inducing drugs (NIDs) through mining vari-
ous public resources and drug labels [13, 14]. We have
previously developed an Ontology of Drug Neuropathy
Adverse Events (ODNAE) that ontologically represents
214 NIDs, corresponding chemicals of these drugs,
chemical function, adverse events associated with these
drugs, and various other chemical characteristics [14].
Our study also showed that ODNAE provides an ideal
platform to systematically represent and analyze AEs
associated with neuropathy-inducing drugs and generate
new scientific insights and hypotheses [14]. One weak-
ness of the ODNAE study is that ODNAE only collects
neuropathy-related ADRs commonly found in drug
package insert documents and misses the collection of
non-neuropathy ADRs from different sources.
In addition to enhanced literature mining, ontology

can also be used for advanced class effect analysis.
Specifically, an AE-specific drug class effect is defined to
exist when all the drugs in a specific drug class (or drug
group) are associated with an AE. In a recent study on
cardiovascular drug-associated AEs, a proportional
class-level ratio (PCR) value was defined and used to
identify drug class effect on different AEs [15]. Specific-
ally, when the PCR value equals to 1, it means that a
class effect of a group of drugs on a specific AE exists.
Previous PCR-based heatmap analyses identified many
important drug class effects on different AEs [15].
In addition to the official FDA drug package insert

documents, FDA also collects large amounts of spontan-
eous ADR case reports. To better understand these case
report data, it is critical to use standardized termin-
ologies or ontologies to identify drugs, ADRs, and
associated data from the text reports. Therefore,
ontology-based literature mining becomes critical. Previ-
ously, we applied the Vaccine Ontology (VO) [16] to

enhance our literature mining of interferon-gamma re-
lated [17], Brucella-related [18], and fever-related [19]
gene interaction networks in the context of vaccines and
vaccinations. In these studies, we used and expanded Sci-
Miner [20], a literature mining program with a focus on
scientific article mining. SciMiner uses both dictionary-
and rule-based strategies for literature mining [20].
To better study biological interaction networks, we

have also developed a literature mining strategy
CONDL, or Centrality and Ontology-based Network
Discovery using Literature data [19]. The centrality ana-
lysis here refers to the application of different centrality
measures to calculate the most important genes (i.e.,
hub genes) of the resulting gene-gene interaction net-
work out of biomedical literature mining. Centrality
measures, including degree, eigenvector, closeness, and
betweenness, have been studied [19, 21]. The CONDL
strategy was applied to extract and analyze IFN-γ and
vaccine-related gene interaction network [21] and
vaccine and fever-related gene interaction network [19],
and our results showed that centrality analyses could
identify important genes and raise novel hypotheses
based on literature mined gene interaction networks.
The main purpose of this study was to develop a

CONDL method for literature mining of all ADRs asso-
ciated with neuropathy inducing drugs (NIDs) and used
the mined results for systematic network and class effect
analyses. Using MedDRA [8], ODNAE [14], Chemical
Entities of Biological Interest (ChEBI) [22], and Ontol-
ogy of Adverse Events (OAE) [23], we developed an
ontology-based ADR-SciMiner tool for identifying ADRs
from drug labels and applied it to NIDs to ontologically
model their ADR-associated characteristics. The litera-
ture mined results were then used for ontology-based
class effect analysis, leading to new scientific discoveries.

Methods
The overall workflow of our ontology-based literature
mining approach for the study of neuropathy-inducing
drugs (NIDs) is illustrated in Fig. 1. Briefly, our approach
included development of ADR-SciMiner platform that
identifies ADRs from drug labels using the terms in
MedDRA and OAE. Various term expansion, name
matching, and filtering rules have been implemented.
The mining performance was evaluated using manually
curated drug labels. The final version of ADR-SciMiner
was applied to the NID labels and the results were
examined using the ADR-ADR interaction network and
the OAE hierarchical structure.

NID drug labels
In the present study, we used a collection of
XML-structured drug labels that are applied for the Text
Analysis Conference (TAC) Adverse Drug Reaction
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Extraction from Drug Labels track (https://tac.nist.gov/
2017/). This data set includes the adverse event sections
from a total of 2308 US FDA drug labels, which were
split into two sets: Training set and Unannotated set,
each containing 101 and 2207 drug labels. The Training
set contained manually curated ADRs provided by the
TAC organizing committee. Among 2207 drug labels in
the Unannotated set, TAC provided 99 labels with manu-
ally curated ADRs, which were used for performance evalu-
ation of ADR-SciMiner. Figure 2 illustrates an example of
XML-formatted drug-label from the Training set.
NIDs were collected from our previous two studies:

one examining the systems pharmacological aspects of
NIDs [13] and another focusing on ontology-based col-
lection, representation and analysis of drug-associated
neuropathy adverse events [14].

SciMiner tagging of ADR and drug terms
SciMiner was originally developed as a web-based litera-
ture mining platform, designed for identification of
human genes and proteins in a context-specific corpus
[20]. Later, SciMiner was updated to identify bacterial
genes and various biomedical ontologies such as Vaccine
Ontology (VO) and Interaction Network Ontology
(INO), developed by our groups, resulting in specific
variations of SciMiner: INO-SciMiner [24], VO-SciMiner
[18], and E-coli-SciMiner [25]. In this study, we devel-
oped another version of SciMiner, specializing in the
identification and analysis of ADRs from the US FDA
drug labels.

MedDRA, or Medical Dictionary for Regulatory
Activities, is a clinically validated standardized medical
terminology dictionary (and thesaurus), consisting of five
levels of hierarchy. MedDRA has been widely used for
supporting ADR reporting in clinical trials [8, 26].
MedDRA release version 20 (https://www.meddra.org/)
and the OAE ontology were used as the source of the
ADR terms, which have been incorporated into SciMiner
dictionary for ADR term identification. Perl package
Lingua::EN was used to expand the ADR dictionary
allowing the inclusion of additional plural or singular
forms where only one form is included in the dictionary.
For example, ‘peripheral neuropathy’ has been expanded
to include ‘peripheral neuropathies’. Besides, various
term variation and filtering rules were implemented to
improve the accuracy of ADR term tagging. For ex-
ample, MedDRA terms ID 10003481 has preferred name
of ‘Aspartate aminotransferase increased’. ADR-SciMiner
was designed to properly identify variations of this pre-
ferred name such as ‘increased AST’, ‘AST elevated’, and
‘high AST’. To reduce false positives, any matching ADR
terms from section or table headers of drug labels were
excluded.

Performance evaluation of ADR-SciMiner
The TAC dataset included 200 manually curated labels
(101 in the Training and 99 in the Unannotated sets)
and the details have been recently published [27]. Briefly,
four annotators, including two medical doctors, one
medical librarian and one biomedical informatics

Fig. 1 Project workflow. This figure illustrates our overall workflow in the present study. US FDA drug labels were analyzed to identify ADRs and
normalized them through MedDRA v20 and OAE using ADR-SciMiner. A network of ADR-ADR based on the ADRs reported to have been caused
by NIDs was constructed. The most central ADRs in the network were analyzed. The characteristics of NID-associated ADRs were further explored
using the ontological structures in OAE
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researcher, participated in the manual annotation process
of these 200 drug labels. These annotators were all trained
biomedical annotation and the drug labels were annotated
independently by these annotators. Any disagreements
were reconciled in pairs or collectively resolved by all four
annotators. The mining performance of ADR-SciMiner
was evaluated using the 99 drug labels in the Unannotated
set. The evaluation was done at the level of normalized
MedDRA Preferred Terms (PTs) for each drug. Recall,
Precision, and F-Score were calculated.

Generation of ADR-ADR network and its analysis
NID and non-NID associated ADR-ADR networks were
constructed in our study. ADRs were represented as the
nodes of the network. Two nodes were connected by an
edge if they are associated with the same drug. In order
to obtain highly prevalent NID and non-NID specific
ADRs, an edge weight threshold of 50% was set. In other
words, two ADRs were connected by an edge if they
co-occur together as ADRs of at least 50% of the NID or
non-NID drugs. Centrality analysis was performed on

Fig. 2 XML-formatted drug label. This figure illustrates an example of XML-formatted drug labels (adcetris) from the training set. The content has
been reduced and simplified to fit into a figure for demonstration purpose. Typical XML-formatted labels from the training set include three main
sections: “Text” containing the texts from ADR-relevant sections from drug labels; “Mentions” containing the manually curated ADRs; and
“Reactions” containing normalized ADRs in terms of MedDRA terms

Hur et al. Journal of Biomedical Semantics  (2018) 9:17 Page 4 of 10



the ADR-ADR networks using the Cytoscape plug-in
CentiScaPe [28] to identify the most salient NID and
non-NID associated ADRs. Degree centrality and eigen-
vector centrality were computed. Degree centrality cor-
responds to the number of neighbors a node has. Each
neighbor contributes equally to the centrality of the
node. On the other hand, in eigenvector centrality the
contribution of each neighbor is proportional to its own
centrality.

ChEBI and OAE-based ontological analyses of three
neuropathy-inducing drugs and associated ADRs
The drugs were mapped to ChEBI [22] terms, which are
also imported and used in the ODNAE. The identified
ADRs were mapped to OAE terms, and the OAE struc-
ture was used to classify and analyze the ADR structure.
To extract the associated drugs, AEs, and their related
terms, the Ontofox tool [29] was used. The Protégé
OWL editor [30] was used to visualize the hierarchical
structure of these extracted terms.

Ontology-based analysis of drug class effects on AEs
ChEBI was used to classify NIDs into different
higher-level classes or groups. For each high or inter-
mediate level class, we calculated the drug class effect
on AEs. Specifically, all the identified 53 NIDs were clas-
sified into different categories using ChEBI. The AEs as-
sociated with each NID were identified in the previous
studies. Based on these results, we were able to identify
the common AEs associated with all NIDs under a spe-
cific class (e.g., benzimidazole drugs). Based on the class
effect definition, these results indicate that there exists a
class effect of the specific class on the common AEs (i.e.,
the PCR value =1) [15]. All the common AEs were then
classified based on OAE using the Ontofox tool [29].

Results
NID drug labels
From our two published studies on neuropathy-inducing
drugs [13, 14], we collected a total of 242 NIDs. We also
obtained a collection of XML-structured drug labels that
are used for the 2017 Text Analysis Conference (TAC)
Adverse Drug Reaction Extraction from Drug Labels
track. This data set contains the adverse event sections
of a total of 2308 US FDA drug labels in two subsets:
Training set with 101 labels and Unannotated set with
2207 labels, which corresponded to a total of 1883
unique drugs. There were 299 unique drug names, each
of which included two or more labels, because a drug in
our study refers to a generic drug name or an active
drug ingredient which can have multiple brands with
different labels. Among the 2308 labels, there were 69
labels corresponding to 53 NIDs, which served as the
dataset in the present study.

SciMiner tagging of ADR and drug terms and
performance evaluation
ADR-SciMiner has been developed to include the
dictionary of ADRs based on MedDRA release 20 and
the current version of OAE. The ADR term diction-
ary is expanded to include variations such as plural
vs singular nouns to increase the coverage. The per-
formance of current version of ADR-SciMiner was
evaluated based on the ADRs from 99 labels. These
labels included 5158 MedDRA PT terms, while
ADR-SciMiner reported 5360 PT terms collectively.
ADR-SciMiner correctly identified 4198 of these 5158
PTs in the TAC data: a recall of 0.81, a precision of
0.75, and an F-Score of 0.77 was obtained.

MedDRA representation of ADRs
Table 1 summarizes the numbers of identified ADRs
from the 53 NIDs. These NIDs are a subset of the total
NIDs identified in our previous studies [13, 14]. We did
not use all the over 200 NIDs because only these 53
NIDs have corresponding ADR text data in the FDA
TAC 2017 dataset. Briefly, ADR-SciMiner identified
approximately an average of 243 ADRs per drug (114
unique ADRs per drug). Antidepressant medicine Venla-
faxine had the most ADRs of 433, while glucocorticoid
triamcinolone has the least ADRs of 9 (Table 1).

Literature mining statistics and ADR-ADR network
Figure 3 is a NID-associated ADR network based on the
cutoff of co-occurrence of two ADRs connected in at
least 50% (i.e., 27 out of 53) of the NIDs. The NID spe-
cific ADR-ADR network shown in Fig. 3 contains 29
nodes and 149 edges. The common ADRs are located at
the center of the network, including terms like headache,
vomiting, pyrexia, nausea, dizziness, etc. More specific
analysis of the network is reported below.

Centrality analysis of ADR-ADR network
The eigenvector and degree centrality scores of the 29
ADRs found using NIDs are shown in Table 2. The same
approach was used to construct a non-NID specific
ADR-ADR network, where two ADRs are connected by
an edge if they co-occur in at least 50% of the remaining
(i.e., non-NID drugs). This resulted in a network
containing only six ADRs, namely headache, vomiting,
diarrhoea, rash, nausea, and dizziness. Although these are
also among the most central ADRs in the NID specific
network, they are not NID specific, since they are also
prevalent and commonly occur together in the non-NID
case. Some notable ADRs central in the NID-specific net-
work but not parts of the non-NID specific network in-
clude pruritus, pyrexia, thrombocytopenia, nervousness,
asthenia, acute lymphocytic leukaemia, decreased appetite,
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insomnia, and depression. Degree and eigenvector central-
ity produced the same ranking (Table 2).

Ontology-based analysis of benzimidazole NID drugs and
their associated ADR types
Out of the 53 drugs, we used the ChEBI chemical
ontology structure to examine the chemical classifica-
tion of these 53 drugs and their associated
upper-level hierarchies. One interesting group of che-
micals becomes interesting to us, which is the group
of benzimidazole, a colorless heterocyclic aromatic
organic compound that consists of the fusion of ben-
zene and imidazole [31]. Benzimidazole drugs are
structural isosteres of naturally-occurring nucleotides,
allowing them to interact with the biopolymers of liv-
ing systems and become an important group of drugs
with antimicrobial, anti-inflammatory, and anticancer
activities. The three benzimidazole NIDs identified in
our study include lansoprazole, omeprazole, and pan-
toprazole (Fig. 4), which are all proton-pump inhibi-
tors that inhibit gastric acid secretion [32]. These
three drugs can all be used for relief of symptoms of
gastroesophageal reflux disease, gastric and duodenal
ulcer disease, and eradication of Helicobacter pylori
infection [32]. Their shared and different ADR pro-
files have not been studied.
In our study, lansoprazole, omeprazole, and panto-

prazole are associated with 389 (273 are unique), 298
(165 are unique), and 166 (74) ADRs, respectively.
We identified 43 ADRs associated with all three
drugs. Based on our drug class effect definition [15],
these 43 ADRs are all categorized as AEs out of the
class effect of the benzimidazole drug class. Further-
more, we applied the OAE to generate a subset view
of these ADRs in the OAE framework (Fig. 5). As
shown in this figure, these 43 ADRs are focused on
behavioral and neurological ADRs, digestive ADRs,
and skin ADRs. There are also many ADRs in the
hematopoietic system, homeostasis system, immune
system, and muscular system.

Discussion
The contributions of this study are multiple fold.
First, we developed and applied an ontology-based
SciMiner literature mining approach, which was then
used to mine the FDA TAC 2017 dataset. It is a huge
challenge to identify all ADRs using textual descrip-
tion of ADR case reports. Our MedDRA/OAE-based
SciMiner literature mining approach was successfully
used to mine the FDA TAC 2017 dataset with a spe-
cial focus on 53 neuropathy-inducing drugs (NIDs).
Our study demonstrates the important role of the
MedDRA controlled terminology and ontologies (e.g.,
ChEBI, OAE, and ODNAE) in the literature mining

Table 1 Identified ADRs from 53 NIDs drug labels

Color highlight was used to visualize difference among the number of ADRs
across NIDs
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and further ADR analysis. Second, we constructed an
ADR-ADR network and applied centrality analysis to
identify the hub ADRs in the network. Third, among
the 53 NIDs, our ChEBI-based analysis found three
benzimidazole drugs, which formed a drug class effect
on 43 ADRs. An OAE analysis of these ADRs further
identified many enriched ADR categories. Based on the
results, we can hypothesize that the proton-pump inhib-
ition role, common to all the three benzimidazole drugs,
might participate in different pathways leading to these
ADRs. To our knowledge, our study represents the first of
such literature mining-derived ontology-based drug class
effect analysis.
The present study is based on a subset of US FDA

drug labels, which was included in the 2017 Text
Analysis Conference (TAC) Adverse Drug Reaction
Extraction from Drug Labels track. We used this data
set as a proof of concept as well as to develop a proto-
type version of ADR-SciMiner. We assumed that if an
ADR is mentioned in the file of a drug, it is associated
with the drug. However, it is likely that the ADR occurs
within a negation or speculation statement such as
‘depression was not observed as an ADR of the drug’ or
‘depression might be an ADR of the drug’. Therefore,
more semantic oriented NLP analysis techniques may be
developed to identify whether an ADR is really associ-
ated with a drug or not.
To identify the most salient ADRs associated with

NIDs, we created ADR-ADR networks both specific
to NIDs and non-NIDs using a threshold of 50% for
association. In other words, two ADRs were

connected by an edge, if they co-occur in at least
50% of the NIDs or non-NIDs. Six of the central
ADRs in the NID specific network were also in-
cluded in the non-NID specific network, showing
that these are prevalent and commonly occur to-
gether both in NID and non-NID cases. The other
ADRs in Table 2 are central only in the NID associ-
ated network, which might reveal that they are more
NID specific. As future work, we plan to extend the
network analysis by including the specific drugs to
the network as well and creating bipartite drug-ADR
networks. The types of relations between drugs and
ADRs can be identified by using the Interaction Net-
work Ontology (INO) [24].
Our study identified three benzimidazole drugs (i.e.

lansoprazole, pantoprazole, and omeprazole) that
induce similar profiles of ADRs. Overall these three
drugs have been found safe in terms of their associ-
ated ADR reports [33–35]. For example, a previous
study with 10,008 users of lansoprazole in daily prac-
tice indicated that the most frequently reported lanso-
prazole ADRs were diarrhoea, headache, nausea, skin
disorders, dizziness, and generalized abdominal pain/
cramps, but no evidence of rare ADRs were found
[33]. Current study found many ADRs associated with
each of these three drugs, and all these three drugs
are associated with 43 ADRs, commonly behavioral
and neurological, digestive, muscular, and skin ADRs.
A common reason for stopping pantoprazole usage
was found to be the diarrhea ADR [34], which is also
listed as one of the 43 ADRs.

Fig. 3 NID associated ADR network. Two ADRs are connected by an edge if they co-occur in over 50% of the NIDs. Node sizes are proportional
to the degrees of the nodes. Edge thickness corresponds to the number of drugs having two ADRs
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A previous study suggested that these three drugs have
similar profiles to interact with other drugs (most com-
monly vitamin K antagonist), suggesting a class effect
[36]. According to the ODNAE records [14], lansopra-
zole, omeprazole, and pantoprazole are all associated
with neuropathy adverse events. Our study found 43
AEs commonly shared with these three benzimidazole
drugs. Interestingly, many of these AEs are also found to
be the hubs of the highly enriched NID network from
our literature mining data centrality analysis. It is likely
that these three benzimidazole drugs, which function as
proton-pump inhibitors, use the same or similar path-
ways to induce neuropathy adverse events.

It is noted that the ontology-based drug class ef-
fect study is novel in many aspects compared to its
original report [15]. First, compared to the previous
report using the drug package insert information,
our study uses the data generated from literature
mining of FDA provided case report data. Second,
given the large size of AE data for each vaccine, we
were able to identify many AEs commonly used by a
class of drugs, in our case, 43 AEs associated with
the three benzimidazole drugs. Our OAE-based ana-
lysis was able to further identify the common pat-
terns among these AEs. Such a high throughput
study was not reported in the previous package in-
sert document-based studies.
The ADR identification performance is not yet op-

timal and there is still much room for improvement.
The majority of falsely identified ADR terms by
SciMiner could be grouped into three types: (1)
incorrect mapping of acronyms to ADRs (e.g., ‘all’, as
in ‘all patients’, mapped to ‘acute lymphocytic leukae-
mia’); (2) ADR that may not be caused by the
current drug (e.g., ‘caution is needed in patients with
diabetes’); and (3) ADRs that occur as discontinuous
entities in text (e.g., ‘corneal ulceration’ is an ADR,
but does not occur as a continuous text fragment in
‘corneal exposure and ulceration’). Integration of
other dictionaries such as SNOMED CT [37] into
ADR-SciMiner will be explored to possibly expand
the ADR dictionary thus to improve the recall. Iden-
tifying whether a term is an acronym for an ADR or
not, determining whether an ADR that occurs in a
drug label is really caused by that drug, and detect-
ing ADRs that occur as discontinuous text fragments

Table 2 The centrality scores of the ADRs in the NID specific
ADR-ADR network

ADR Degree Eigenvector

nausea 27 0.311

headache 26 0.310

vomiting 23 0.301

diarrhoea 23 0.301

pruritus 19 0.270

dizziness 16 0.245

pyrexia 14 0.231

rash 14 0.231

thrombocytopenia 14 0.228

nervousness 13 0.222

asthenia 13 0.214

acute lymphocytic leukaemia 10 0.187

decreased appetite 10 0.177

insomnia 8 0.149

depression 8 0.148

urticaria 7 0.139

hypersensitivity 7 0.138

leukopenia 7 0.137

abdominal pain 6 0.122

dyspepsia 6 0.118

constipation 6 0.114

neuropathy peripheral 5 0.102

seizure 4 0.086

somnolence 4 0.086

paraesthesia 2 0.044

myalgia 2 0.044

arthralgia 2 0.041

alopecia 1 0.022

hyperhidrosis 1 0.022

Two centrality measures (degree and eigenvector) were calculated using
Cytoscape app CentiScaPe

Fig. 4 Identification of three benzimidazole drugs associated with
neuropathy adverse events. The three drugs were grouped by ChEBI
under the benzimidazoles chemical group. The hierarchical structure
of the benzimidazoles chemical group is also laid out
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in text require deeper semantic understanding of the
sentences by considering the context information
(i.e., the surrounding words) of an ADR in text. Our
current method is a dictionary and rule-based
method, which does not consider the context of an
ADR occurrence in text. These challenges can be
tackled by using machine learning methods with fea-
tures that capture context information and utilize
the syntactic analysis of the sentences such as their
dependency parses.
As future work, we plan to develop machine learning

based methods to improve the accuracy of ADR tagging
as well as the detection of the associations between
ADRs and drugs. We will also extend our approach to
include all available structured drug labels in the
DailyMed database, maintained by National Institute of
Health. DailyMed currently contains listings of 95,513
drugs submitted to the US FDA, about 28,000 of which
are prescription drugs for human. Our ontological study
of NIDs will be extended using this larger drug label
dataset.

Conclusions
In this study we developed an MedDRA and
ontology-based SciMiner literature mining pipeline, ap-
plied the pipeline to mine a FDA text set for ADRs asso-
ciated with neuropathy-inducing drugs, performed
centrality network analysis, and drug class effect studies.
Our approach identified scientific insights regarding
these drug-specific ADRs. Our study demonstrates the

feasibility of using ontology-based literature mining,
network analysis, and drug class effect classification to
efficiently identify and study specific drugs and their
associated ADRs.
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