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Abstract

Background: VerbNet, an extensive computational verb lexicon for English, has proved useful for supporting a
wide range of Natural Language Processing tasks requiring information about the behaviour and meaning of verbs.
Biomedical text processing and mining could benefit from a similar resource. We take the first step towards the
development of BioVerbNet: A VerbNet specifically aimed at describing verbs in the area of biomedicine. Because
VerbNet-style classification is extremely time consuming, we start from a small manual classification of biomedical
verbs and apply a state-of-the-art neural representation model, specifically developed for class-based optimization, to
expand the classification with new verbs, using all the PubMed abstracts and the full articles in the PubMed Central
Open Access subset as data.

Results: Direct evaluation of the resulting classification against BioSimVerb (verb similarity judgement data in
biomedicine) shows promising results when representation learning is performed using verb class-based contexts.
Human validation by linguists and biologists reveals that the automatically expanded classification is highly accurate.
Including novel, valid member verbs and classes, our method can be used to facilitate cost-effective development of
BioVerbNet.

Conclusion: This work constitutes the first effort on applying a state-of-the-art architecture for neural representation
learning to biomedical verb classification. While we discuss future optimization of the method, our promising results
suggest that the automatic classification released with this article can be used to readily support application tasks in
biomedicine.

Keywords: Verb lexicon, Representation learning

Background
Natural Language Processing (NLP) and text mining of
biomedical literature are critically important for the man-
agement of rapidly growing literature in biomedical sci-
ences. Core bio-NLP technologies such as syntactic and
semantic parsing, event identification, relation extrac-
tion, and entailment detection can all benefit from rich
computational lexicons containing information about the
behaviour and meaning of words in biomedical texts.
While relatively well-developed resources are available for
nouns in biomedicine (e.g. UMLS Metathesaurus, [1]),
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verb-related resources are still lacking in both depth and
coverage [2–6].
One particularly useful verb resource for general

domain NLP is VerbNet [7]. Providing detailed syn-
tactic and semantic information for English verbs, this
broad-coverage resource has proved useful in supporting
a wide variety of NLP tasks and applications, including
word sense disambiguation [8], semantic role labelling [9],
semantic parsing [10], information extraction [11] and
text mining applications [12, 13], among others.
Our ultimate aim is to create BioVerbNet – the

first VerbNet for supporting NLP and text mining in
biomedicine. However, because manual VerbNet-style
classification is a highly expensive and time-consuming
task, we first investigate a data-driven approach to the cre-
ation of this resource. Previous works have shown that
while an unsupervised verb clustering approach based
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on conventional NLP has the advantage of discover-
ing novel verb classes from corpus data with minimal
prior knowledge, such automatically acquired classes nec-
essarily contain quite a lot of noise [14]. Conversely,
when training data is available, supervised verb clas-
sification can yield higher precision. Korhonen et al.
(2006) manually developed a VerbNet-style gold stan-
dard for evaluation of automatic verb classification in
biomedicine [15] (detailed in “Automatic verb classifica-
tion” section). We take this resource as a starting point
in supervised classification aimed at finding novel mem-
ber verbs and classes in data, with the idea that human
evaluators can validate the output and use the correct
classifications as a starting point for the development of
BioVerbNet.
Most existing methods for automatic verb classifica-

tion rely heavily on feature engineering, which is time-
consuming and requires expert knowledge [16]. Hence, we
automate the process of feature learning by using a neu-
ral learning approach, followed by the application of the
Nearest Centroid Classifier to assign verbs into classes.
We encode word features into a low-dimensional space
using neural networks [17–19]. Neural word represen-
tations (embeddings) serve now as invaluable features
in a broad range of NLP tasks, including named entity
recognition [20–22] and text classification [23, 24]. Neural
representation models such as the skip-gram model with
negative sampling (SGNS) are highly efficient in captur-
ing syntactic and semantic properties of words in corpora
and are therefore intuitively useful also for VerbNet-style
classification [25].
Our methodology consists of two steps: First, we apply

the recent method by Vulić et al. [26] to identify best con-
texts for learning biomedical verb representations. The
method, based on the skip-gram model with negative
sampling (SGNS), has produced successful results in the
general domain but has not previously been applied to
specialised domains such as biomedicine. It involves first
creating a context configuration space based on depen-
dency relations between words, followed by applying an
adapted beam search algorithm to search this space for the
class-specific contexts, and finally using these contexts to
create class-specific representations.
In this work, we apply the method to a large biomedical

corpus: the PubMed Central Open Access subset [27] and
all the PubMed abstracts, consisting of about 10 billions
tokens and 27 million word types in total. We evaluate
the trained representations against a gold standard aimed
at capturing verb similarity in biomedicine (BioSimVerb,
[6]). Our results show that when the model is optimized
with context configuration for verbs, it outperforms the
baseline model (a standard SGNS without verb-specific
contexts) significantly, yielding a 5 point improvement in
Spearman’s rank correlation (referred to as ρ henceforth).

In the second step, the optimized representation is used
to provide word features for building a verb classifica-
tion. This is obtained by expanding the small manually
developed VerbNet-style classification of 192 biomedi-
cal verbs by Korhonen et al. [15] (details in “Automatic
verb classification” section) with 957 new candidate verbs.
The candidate verbs are chosen from BioSimVerb (details
in “Verb classification” section), based on their frequent
occurrence in biomedical journals across 120 subdomains
of biomedicine (as categorized by Broad Subject Terms
[28]). This ensures the wide coverage of verb classifica-
tion ideal for the development of BioVerbNet. We use the
Nearest Centroid Classifier to connect the new candidates
to an appropriate class in the resource of Korhonen et al.
[15]. The resulting classification provides 1149 verbs
assigned to the 50 classes in the original resource. It lists,
for each verb, the most frequent dependency contexts
that reflect their syntactic behaviour along with example
sentences.
Qualitative evaluation of the automatically expanded

classes by linguists and biologists reveals that the method
is highly accurate: the vast majority of the novel mem-
bers verbs and classes are legitimate. The method can
therefore be used to greatly facilitate the development
of BioVerbNet by hypothesizing novel classifications for
expert validation. We discuss further optimization of the
method for real-life computational lexicography, but our
promising results suggest that the automatic classification
released with this article can be used to readily support
NLP application tasks in biomedicine.
Apart from proposing an automatic approach to the

creation of BioVerbNet, our study provides an investi-
gation of how different types of dependency-based con-
texts influence the learning of verb representations in
biomedicine. The optimal context configuration proved to
be highly domain-specific. Our results and insights can
facilitate researchers to develop useful methods for train-
ing class-specific representations for biomedical NLP. The
resources are publicly available to the research commu-
nity under an Open Data license at: https://github.com/
cambridgeltl/bio-verbnet.

Related work
Computational verb lexicons
VerbNet [7] is the most extensive verb lexicon currently
available in the general domain. It consists of verbs
grouped into classes based on their shared syntactic and
semantic properties, such as syntactic frames, semantic
roles of arguments, etc. For example, the members (e.g.
delete and discharge) in the verb class Remove have similar
frames and meaning, and can be used to describe sim-
ilar events. VerbNet classes have supported many NLP
tasks, such as word sense disambiguation [8], information
extraction [11] and text mining applications [12, 13]. The
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current version of VerbNet (v3.3) consists of 9344 verbs
organised in 329 main classes [29]. Although it has a wide
coverage for general domain NLP applications, it is not
designed for specialized domains, such as biomedicine,
where verbs tend to have a very different meaning and
behaviour than in general English [2, 3]. Hence, there is
a need to develop domain-specific resources to support
biomedical NLP.
Some large lexical resources, such as UMLS Metathe-

saurus [1], can be found in the biomedical domain. How-
ever, most of them focus on nouns and do not provide a
good coverage of other important word classes like verbs.
The lexicons which cover biomedical verbs are usually
smaller in scale and limited to certain sub-domains in
biomedicine. For example, the UMLS SPECIALIST lex-
icon [30], which is created manually by lexicographers,
mainly contains medical and health-related vocabularies.
On the other hand, the BioLexicon [31] – a corpus-driven
lexicon which contains syntactic and semantic frame
information for verbs – is extracted from the Escherichia
Coli (E.Coli) domain, which limits its usefulness to appli-
cations that deal with other sub-domains of biomedicine.

Automatic verb classification
Verb classification links together syntactic and semantic
properties of groups of verbs by means of lexical classes.
Such grouping can reduce the parameters used for repre-
senting verbs individually. While it is time-consuming to
manually classify a large number of verbs, previous stud-
ies have shown that it is possible to automatically acquire
verb classes from both general [32–35] and biomedical
texts [15, 36, 37]. For example, Li and Brew (2008) classify
1,300 verbs into 48 Levin classes using Bayesian Multi-
nomial Regression for classification [38]. A range of verb
features have been explored in their works, including
the dependency relations between the arguments and the
prepositions. On the other hand, Sun (2013) uses rich fea-
tures based on the predicate-argument structure (e.g. verb
subcategorization frames and selectional preferences) to
classify 192 biomedical verbs into 50 classes [37]. From
the cognitive science perspective, Barak et al. (2014) apply
a two-stage Bayesian model to cluster verbs (first based
on syntax then on semantic classes) in order to analyze
how computational clustering is similar to human verb
knowledge generalization [35]. Apart from these, methods
which induce verb classes of other languages (e.g. Esto-
nian [39] and German [40]) as well as of a particular type
of verb (e.g. Propositional attitude verbs including think
and want [41]) have also recently emerged.
Both supervised and unsupervised approaches have

been proposed for verb classification: A supervised
approach assigns verbs into one of several pre-defined
verb classes, whereas an unsupervised approach uses
clustering techniques to induce verb classes based on

similarity between verbs. The two types of approaches
can serve different purposes: An unsupervised approach
requires less prior knowledge and can be used to dis-
cover new classes in scenarios where no manually created
classification (i.e. training data) is available; however, the
resulting classification unavoidably contains noise. In con-
trast, when relevant training data is available, supervised
approaches have an immediate advantage in terms of pre-
cision of the verbs they classified, as reflected in previous
studies [42]. For example, Sun et al. (2008) classify 204
verbs into 17 Levin classes, using three supervised classi-
fiers (Support Vector Machines, Maximum Entropy and
Gaussian method) and one unsupervised method (Pair-
wise clustering) [42]. They report a better result when
using the supervised method (Gaussian) and a markedly
worse result when using the unsupervised method (pair-
wise clustering). Hence, the supervised approach can be
useful for supplementing existing classification with addi-
tional (and more accurate) members when training data is
available. In this regard, Korhonen et al. (2006) manually
developed a VerbNet-style gold standard for verb classi-
fication in biomedicine (Table 1), containing 192 verbs
organised into a class taxonomy consisting of 50 fine-
grained classes for biomedical verbs [15]. To the best of
our knowledge, it is the only biomedical resource of this
type. We use this resource as a starting point for creation
of a supervised approach intended to facilitate the devel-
opment of BioVerbNet. Our basic idea is to expand the

Table 1 Example gold standard classes and class members from
Korhonen et al. (2006) [15]

Index Class name Subclass
name

Example members

2.2.1 Biochemical
events

Biochemical
modification

dephosphorylate,
phosphorylate

4.1.3 Experimental
procedure

Label stain, label, immunoblot,
probe, fix

4.2.0 Precipitate coprecipitate,
coimmunoprecipitate,
precipitate

9.1.1 Report Examine assess, evaluate, estimate,
examine, explore, analyze

9.1.2 Establish establish, test, investigate

9.2.1 Presentational argue, hypothesize,
conclude, reason, note,
speculate, assume

10.1.1 Perform Quantitate quantify, quantitate,
measure, monitor

11.0.0 Release Release release, detach, excise,
dissociate

12.0.0 Use Use utilize, employ, exploit

14.0.0 Call Call name, designate

16.0.0 Appear Appear become, occur, seem
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resource by automatically connecting new candidate verbs
to existing verbs based on their euclidean distance found
in the vector space of an optimized representation model
(see the details in “Verb classification” section).
A vast majority of previous works in automatic verb

classification rely heavily on feature engineering. This is
a time-consuming and expensive approach that does not
port easily to new tasks, and therefore does not provide
an optimal solution for classification of verbs in spe-
cific domains.Works which perform verb classification on
automatically-learned features (through neural networks)
are emerging recently. For example, Vulić et al. (2017) per-
form verb classification across multiple languages based
on automatically-learned features [26]. These sets of fea-
tures are unsupervisedly induced from corpora (without
expert knowledge or feature engineering). They report
state-of-the-art results in verb classification across six lan-
guages as compared with previous studies that extract
features using complicated language-specific resources.
In this paper, we address this problem and introduce an
approach that combines the benefit of supervision with
that of automatic feature learning using neural networks.

Representation learning
We base our feature learning on representation learning.
In recent past there have been a lot of work on encoding
word features into a low-dimensional space in an unsu-
pervised fashion using artificial neural networks [17–19].
These representation models encode the linguistic prop-
erties of words in a form where semantically similar words
appear closely in vector space. They have proved highly
popular and successful for many NLP tasks, including
named entity recognition [20–22, 43], event identifica-
tion [44], relation extraction [45] and text classification
[23, 24]. Among them, the skip-gram model with negative
sampling (SGNS, [46]) has achieved cutting-edge results
in a range of semantic tasks such as sentence completion
and analogy [46, 47].
In the original SGNS, the representation of a word is

learned by predicting all its neighbouring words in a win-
dow (contexts), assuming all contexts are useful. However,
some contexts that are useful for the representation learn-
ing of one word class may be uninformative for another
one. For example, a noun pre-modifier may be useful for
learning noun representations but not verb representa-
tions. Hence, other types of contexts, such as dependency
relations and symmetric patterns (e.g. x and y), have been
proposed [48, 49]. These studies show that the quality of
specific word class representation (e.g. nouns or verbs) is
intrinsically linked to the contexts they learned from. For
example, Schwartz et al. (2015) report that symmetric pat-
terns (e.g. x or y) are essential as contexts for verb and
adjective representations whereas BOW is useful for noun
representation [48]. In the general domain, Vulić et al.

(2017) propose a framework for identifying the most use-
ful (class-specific) contexts for learning representations
for nouns, verbs and adjectives, respectively [26]. Such
class-specific optimization can greatly extend the use-
fulness of representation models for tasks relating to a
particular word class.
However, all these studies have only involved general

domain text, and their results do not necessarily apply
to biomedical text. In our work, we aim to identify
the optimal dependency-based context configurations for
learning representations of biomedical verbs whose lex-
ical characteristics can be distinct from general domain
verbs. We adopt the recent framework of Vulić et al. to
perform class-specific optimization for biomedical verb
representation. In this framework, a context configura-
tion space is created based on the dependency relations
between words, followed by using an adapted beam search
algorithm to search this space for the class-specific con-
texts. These contexts are then used to create class-specific
representations. The authors show that selecting class-
specific contexts helps representation models better cap-
ture the semantic and syntactic properties for individual
word class, which renders the technique particularly use-
ful for our purposes. We also extend the usefulness of the
framework by using our optimized representation to cre-
ate a new verb classification for biomedicine. In the next
section, we will describe our implemented framework for
context selection.

Dataset design
Context selection
Our aim is to fine-tune the learning of verb representation
so that it can be used to build a verb lexicon. For this, we
first identify contexts contributing to biomedical verb rep-
resentation learning. We use the Stanford typed depen-
dencies (DEPS, [50]) as contexts for selection. This is
because, first, DEPS can help representation models learn
lexical information beyond the BOWcontext window and,
second, they can provide a natural grouping of related
words [26]. For example: (contain, glucose_dobj) and (gen-
erates, radiation_dobj) which share the same dependency
dobj can be grouped into the dobj bag (referred to as con-
text bag henceforth). In the next section, we describe how
we construct these context bags.

Creation of context bags
We organised the dependency-parsed corpus for train-
ing representation in the form of (word, context) pairs, as
in the work of Levy and Goldberg [49]. Word is the tar-
get word for training the representation model, whereas
context stands for its corresponding context elements in
text (e.g. dependency relations and the head of the depen-
dent word). To give an example, the pair (modulator,
efficient_amod) denotes a target word modulator with an
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adjectival modifier (amod) context: efficient. Given the
dependency-parsed corpus, we break it down into indi-
vidual context bags based on the dependency relation of
each (word, context) pair. Hence, the context bag dobj
consists of pairs such as (regulate, cells_dobj) or (fire,
neuron_dobj). We follow the same procedure as Vulić et
al. to process the context bags. First, Prepositional and
Conjunction relations are collapsed. Hence, all pairs with
(prep_x) or (conj_y) such as (prep_in) and (conj_or) will
be merged into the context bags (prep) and (conj) cor-
respondingly. Second, similar dependencies (i.e. those at
the bottom two levels of each dependency type in the
Stanford dependency hierarchy) are merged. For example,
direct (dobj) and indirect objects (iobj) are merged into
the context bag (obj). Third, infrequent pairs and unin-
formative dependencies are removed (e.g., punctuation).
A context configuration denotes a set of individual con-
text bags used for training representation models. We call
a configuration consisting of M individual context bags
a M-set configuration. Examining every possible context
configuration is computationally expensive when there are
many context bags. For example, assessing all contexts in
a 10-set configuration (i.e. 10 context bags) would involve
training 210 − 1 = 1023 different representation models.
We aim to improve the representation without exhaus-
tively evaluating all possible combinations. To achieve
this, we apply the context selection framework proposed
by Vulić et al., which uses a beam search [51] style selec-
tion to reduce the numbers of visited configurations. We
will describe the details in the next section.

Configuration search
We implement the framework for context selection as
proposed by Vulić et al. First, we filter contexts that are
uninformative for learning verb representation. For exam-
ple, the nn bag denotes contexts linked from a noun to
its noun pre-modifier. This is likely to be useful for learn-
ing noun representations, but not verb representations.
Hence, when we evaluate the quality of verb representa-
tion trained solely with the nn bag, we expect that its score
will be low. To filter uninformative contexts, we first train
a set of representation models with every context bag we
obtained from the dependency-parsed corpus, and evalu-
ate them individually with the Bio-SimVerb dataset, a verb
similarity gold standard recently created by Chiu et al.
[6] (details are described in “Representation learning”
section). A threshold score of ρ ≥ 0.2 is used to filter unin-
formative contexts. Consequently, we use 7 context bags
as the initial configuration in our experiments. They are:
comp, conj, prep, pcomp, rel, subj and obj. Vulić et al. sug-
gest this step can effectively remove less relevant contexts
at a minimal cost for accuracy [26].
After constructing the initial context configuration, the

search algorithm starts from the full M-set configuration

and testsM(M-1)-set configurations in which one individ-
ual bag is removed at a time to generate each such configu-
ration. The algorithmnarrows down the search by keeping
only those sets of configurations which outperform the
origin M-set configuration. It continues searching over
lower-level (M-1)-set configurations until it reaches the
lowest level or when no further improvement over its
original configurations is found.
Using this context selection framework, the search for

the optimal configuration for verbs is reduced to only 27
context configurations out of 127 possible configurations
(27 − 1 = 127). This includes seven 1-set configurations
(i.e. individual context bag) plus twenty other configura-
tions. After we identify the optimal context configuration
for verbs, we train a representation model with this con-
figuration. This model will be used for constructing an
initial candidate grouping for our BioVerbNet-style verb
classification. We describe our construction in the next
section.

Verb classification
As described earlier, we expand the VerbNet-style clas-
sification of biomedical verbs of Korhonen et al. [15]
(see “Automatic verb classification” section) with a list
of new candidate verbs selected from BioSimVerb (see
“Representation learning” section). We use BioSimVerb as
a source for candidate verbs for multiple reasons: First,
it contains verbs that have been manually validated by
domain experts, chosen based on their common usages
in biomedical text. This avoids the problem of includ-
ing overly general verbs such as ’have’ and ’be’ or too
specific verbs such as ’x-ray’. Second, these verbs have
been sourced from journals across 120 sub-domains of
biomedicine (as categorized by Broad Subject Terms [28]),
ensuring a wide coverage over different areas. Such wide
coverage is essential as our methodology is ultimately
aimed at suporting the creation of BioVerbNet. Further-
more, since we evaluate our models against BioSimVerb,
we expect that our optimized model can best capture the
syntactic and semantic properties of verbs in BioSimVerb.
Finally, to connect new candidates to a class in the exist-
ing verb resource, we use the Nearest Centroid Classifier.
It represents each class by the centroid of its member
verbs in vector space (from our optimized representation)
and connects the new candidates to their nearest class
centroids (in terms of euclidean distance).

Human evaluation of verb classes
Since our aim is to investigate the suitability of our
classification methodology for facilitating the creation of
BioVerbNet, we use human experts (two linguists and
two biologists) to evaluate the novel member verbs and
possible novel classes in the sample of a classifier out-
put. Following well-established practices in related works
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[37, 52], the task of the experts is to determine whether
the new member verbs within each verb class are similar
enough in terms of theirmeaning and syntactic patterns to
the existing verbs in the original classification to be legit-
imate members of the class. Whenever this is the case,
the method has accurately learned correct classification.
When this is not the case, the verbs are examined further
for potential discovery of new subclasses to be included in
the original classification. When verbs are clearly misclas-
sified, they are excluded or re-assigned to other classes as
agreed by the experts.
For this evaluation, the experts followed guidelines

specifically developed for the purpose (can be found in
Additional file 1). The data provided for the experts
includes the original class names and member verbs from
the resource of Korhonen et al. [15], the new member
verbs from the classifier output and the set of 10 most fre-
quent dependency contexts for each verb. For example, all
verbs from the Class 1.2 are labelled ’Verb of affect’, the
class consists of member verbs such as modulate and reg-
ulate which are used to describe events that have an effect
on entities. The dependency context of regulate as in the
sentence Dox could effectively regulate bFGF expression
is denoted as (subj#obj). Thirty sentence examples, three
per the ten most frequent dependencies of each verb, are
also provided along with the dependency information to
demonstrate how each individual verb is used in context.

Dataset construction
Data
The dependency-parsed corpus is compiled from the pre-
processed PubMed Central Open Access subset (PMC)
and PubMed abstracts, which are distributed by Hakala
et al. [53]. POS tags and tokens in this resource are gen-
erated using the BLLIP constituency parser [54] trained
on a biomedical corpus [55]. The resource covers over
26M abstracts and 1.4M full articles with more than 388M
parsed sentences. We filter out words that appear fewer
than 100 times in text, as suggested in the work of Levy
and Goldberg [49]. Consequently, the corpus consists of
approximately 27 million word types.

Word representation models
In this experiment, we use the popular SGNS architec-
ture to train the word representations. Levy and Goldberg
have developed a tool which allows SGNS to learn rep-
resentations from dependency-parsed contexts formatted
as (word, context) pairs [49]. All representation models
used in this experiment are trained with vector dimension
(d=300). Similar settings can be found in other studies
[48, 56]. The baseline we used is a SGNS model trained
with all dependency contexts in the corpus (DEP-ALL),
a SGNS model trained only with the seven verb-related
contexts (POOL-ALL) we identified in “Configuration

search” section (i.e. contexts with evaluation scores ρ ≥
0.2 on BioSimVerb) and a standard SGNS trained with
bag-of-words contexts (BOW) using the word2vec tool
[46]. They are used to compare against other represen-
tation models with different context configurations. The
best-performing model (evaluated with BioSimVerb as
described in “Representation learning” section) is then
used to build the prototype of BioVerbNet that is validated
and corrected manually.

Evaluation of representation models
The BioSimVerb (a word similarity evaluation dataset) is
used as the gold standard to measure the quality of our
verb representation models. It consists of 1000 verb pairs
whose degree of similarity has been ranked by human
judges. The similarity ranking for a representation model
is computed as the cosine similarity of the vectors of these
verb pairs. Following the standard evaluation protocol,
we compare the similarity rankings produced by humans
and by individual model on those 1,000 verb pairs using
the Spearman’s ρ correlation. A higher correlation value
implies a better model in capturing verb semantics in text.

Utility and discussion
Representation learning
We examine whether different context configurations can
improve the quality of verb representation when eval-
uated against human judgements on a verb similarity
task (BioSimVerb, as measured in ρ points). Results are
shown in Table 2. In general, selecting an optimal con-
text configuration for verbs gives better performance.
From Table 2, there is an apparent difference (5 ρ points)
between models trained with and without context selec-
tion: While an evident improvement (4 ρ points) can
already be found when we pool only contexts that are use-
ful for verbs (POOL-ALL, detail in “Word representation
models” section) from the generic corpus (DEP-ALL), a
further selection among these verb-related contexts yields
additional improvements (1 ρ point). Overall, the model
trained with the best context configuration is approx-
imately 2 ρ points over the best baseline. The results
indicate that not all contexts contribute to the learn-
ing of biomedical verb representations. Hence, identifying
verb-specific contexts is valuable for learning verb repre-
sentations.

Automatic verb classification
To classify verbs into semantic groups, the Nearest Cen-
troid classification is run on top of the class-specific
representations, using vector dimensions as features for
learning verb classes. The classifier is first trained using
the resource from Korhonen et al. (details in “Automatic
verb classification” section). It then connects new verbs to
classes based on their euclidean distance (details in “Verb
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Table 2 Performance on the BioSimVerb (in ρ) using
representations learned with different context configurations.
(Bold: best-performing configuration and its score)

Baseline Spearman’s ρ

BOW (win=5) 0.4664

DEP-ALL 0.4323

Configurations: Verb

POOL-ALL 0.4724

conj+obj+pcomp+prep+rel+subj 0.475

conj+obj+prep+rel+subj(Best) 0.4889

conj+obj+pcomp+prep+subj 0.4578

conj+obj+pcomp+rel+subj 0.4478

conj+obj+pcomp+prep+rel 0.4406

conj+obj+prep+subj 0.4611

conj+obj+rel+subj 0.4572

conj+obj+prep+rel 0.442

comp+obj+pcomp+prep+rel+subj 0.4376

comp+conj+obj+prep+rel+subj 0.4762

comp+conj+obj+pcomp+prep+subj 0.4655

comp+conj+obj+pcomp+rel+subj 0.4583

comp+conj+obj+pcomp+prep+rel 0.4413

comp+conj+obj+prep+subj 0.4635

comp+conj+obj+rel+subj 0.4592

comp+conj+obj+prep+rel 0.442

obj+pcomp+prep+rel+subj 0.4446

obj+prep+rel+subj 0.441

BOW denotes a basic SGNS learned with bag-of-words context with context window
size 5. DEP-ALL denotes a configuration where no filtering of context is used. POOL-
ALL denotes a configuration where all individual context bags from the verb-related
pools are used. “Best” identifies the best-performing configuration found

classification” section). Consequently, 957 verbs are clas-
sified into 50 classes.

Human validation of verb classes
In order to evaluate the output of the classifier we
employed four experts, two linguists and two biologists
with at least a postgraduate level of training in their sub-
ject areas. The experts first performed the validation of
selected classes individually according to the guidelines
(included as Additional file 1), and then consulted and dis-
cussed their validations in each domain-specific pair and
in linguist-biologist pairs. The 14 classes selected for vali-
dation were chosen at random from the classifier output,
so as to ensure that both the biomedical and the general
scientific domains were represented, with 7 classes chosen
per domain, each class consisting of 4-28 member verbs.
The experts were presented with written guidelines

and the following materials: (1) a file including the verb

classes, their original members from Korhonen et al. [15]
and the new candidates to be reviewed (Table 3); (2) an
Excel spreadsheet for recording the updated index of the
class for each verb based on the manual revision of the
class candidates, (3) 30 example sentences drawn from
the corpus used in the experiment representing the 10
most frequent dependency contexts for each verb. The
guidelines instructed the experts to verify whether the
new candidate verbs were similar in terms of their mean-
ing as well as syntactic patterns to the existing member
verbs in the original classification. The 30 example sen-
tences provided were meant to facilitate the review pro-
cess by illustrating how a given verb is used in biomedical
texts (keeping in mind that this may differ from its typ-
ical usage in the general language domain), i.e. the most
common syntactic structures in which it appears. Based
on the analysis of the semantic and syntactic behaviour
of the new candidates with respect to the existing class
members, the experts were asked to decide if each new
candidate has been correctly assigned to a given class, or
if not, whether it should be (a) reassigned to another class
in the classification, (b) form a subclass within a broader

Table 3 Example classes validated by experts

Index Subclass
name

Example
members

New candidates

1.1.2 Suppress suppress,
repress

downregulate,
transactivate

7.1.0 Collect harvest,
select,
collect

decide, pick, cultivate,
procure, gather, choose,
transfuse, prioritize, obtain

13.1.0 Encompass encompass,
possess,
comprise,
bear, span,
harbor

overlie, display, hold,
exhibit, cover, infest,
belong, range

14.0.0 Call call, name,
designate

qualify, regard, rename,
mention, request

1.4.0 Modify modify,
catalyze

hydroxylate, hydrolyze,
methylate, deaminate,
esterify, oxidize, detoxify,
metabolize

4.1.3 Label stain,
label,
immunoblot,
probe, fix

supershift, assay,
immunostain, tag,
immunolabel, clone,
postfix, digest, clamp,
counterstain, buffer,
electroblot, fluoresce,
radiolabel, blot

11.0.0 Release release,
detach,
excise,
dissociate

reinsert, retract,
disassemble, deacylate,
extrude, remove,
depolymerize, mobilize,
lose, resect, separate

10.1.3 Conduct perform,
conduct

execute, undertake
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existing class, or (c) should be moved to a new class alto-
gether (along with some other misclassified verbs); or
otherwise, if no appropriate class could be thought of, (d)
whether it should be discarded as noise (i.e. a mistake
by the classifier). Importantly, a given verb could only be
assigned to a single class or subclass (i.e. soft clustering
was not permitted).

Qualitative analysis
After having completed the validation task, the experts
compared and discussed their analyses to come up with
the final classification that they agreed on. The results of
the validation are presented in Table 4.
The evaluation shows that over 83% of the new can-

didates generated across the two domains are valid class
members, and in each of the 14 classes individually the
majority of novel classifications are correct. From the total
number of 166 novel candidates, 139 were judged as cor-
rect, which demonstrates that our automatic method can
be used as a highly accurate starting point for the creation
of BioVerbNet.
In two of the evaluated classes, ’Conduct’ in the gen-

eral domain and ’Suppress’ in the biomedical domain, all
of the novel classifications were marked as valid member
verbs, while in four other classes - ’Examine’ and ’Indi-
cate’ in the general domain and ’Interact’ and ’Release’
in the biomedical domain - over 90% of new candidates

were judged as correct. The ’Conduct’ class provides a
good example of how our system accurately selects can-
didates that are semantically similar to the existing class
members based on similarity of their syntactic behaviour:
the original member verbs, perform and conduct, are pro-
vided with new synonymous counterparts, execute and
undertake. Analogous cases are found in the biomedical
domain, e.g., in the ’Interact’ class, a new candidate col-
laborate is a close synonym of one of the original class
members, cooperate. What is more, our classifier picks
up not only synonymous, but also antonymous verbs as
candidates for a given class, as seen in the biomedical
domain (e.g. downregulate - transactivate). This is con-
sistent with what has been observed in previous work on
manual semantic classification of verbs [52], where human
annotators were found to consistently group antonyms
together as semantically similar. Despite representing the
opposites of a meaning continuum, antonyms have almost
identical distributions, and that paradigmatic similarity is
what makes annotators judge them as semantically closely
related.
An in-depth analysis of the candidate verbs by the

experts sheds light on the strengths of the presented
approach, as well as the error patterns and areas for
future improvement. Overall, only 15.7% of new candi-
dates were judged as incorrect across all 14 classes, with
slightly more noise found in the general scientific classes

Table 4 Results of class validation by experts, for seven general scientific (General) and seven biomedical classes (Biomedical), and
across the two domains (Total). Bold: the total no of correct/incorrect candidates (in %) as rated by annotators of each sub-group, and
the sum of the two

No. of new candidates No. of correct candidates % correct candidates No. of incorrect candidates % incorrect candidates

7.1.0 COLLECT 9 6 66.7 3 33.3

9.1.1 EXAMINE 21 19 90.5 2 9.5

9.3.0 INDICATE 11 10 90.9 1 9.1

10.1.3 CONDUCT 2 2 100 0 0.0

13.1.0 ENCOMPASS 8 6 75.0 2 25.0

14.0.0 CALL 5 4 80.0 1 20.0

16.0.0 APPEAR 19 16 84.2 3 15.8

General total 75 63 83.9 12 16.1

1.1.2 SUPPRESS 2 2 100 0 0.0

1.1.4 INACTIVATE 15 11 73.3 4 26.7

1.4.0 MODIFY 8 6 75 2 25

2.3.0 INTERACT 21 19 90.5 2 9.5

4.1.3 LABEL 15 11 73.3 4 26.7

8.3.1 TRANSPORT 19 17 89.5 2 10.5

11.0.0 RELEASE 11 10 90.9 1 9.1

Biomedical total 91 76 84.6 15 15.4

Total 166 139 84.3 27 15.7
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(16.1%) than in the biomedical classes (15.4%). In the gen-
eral language domain, the linguists identified between 0-3
incorrect candidates per class, whereas in the biomedical
domain, the experts marked between 0-4 candidates per
class as incorrect for the class in question, either judged
as mistakes or as candidates for reassignment to another
class.
Several recurrent reasons behind the erroneously clas-

sified verbs can be identified: (a) accidental syntactic par-
allels, (b) parsing errors, and (c) clustering loosely related
verbs (rather than strictly semantically similar).

a Examples of candidates which ended up in a given
class purely through accidental syntactic similarity to
the existing members are found, for instance, in the
biomedical class ’Transport’. The two incorrect
candidates identified, tailor and generalize, share the
syntactic contexts of subj#obj (The methods
generalize earlier approaches...), subj#prep (This
advantage did not generalize to the visual domain),
and subj#obj#prep (We also generalize some known
results from the real-valued case to the
complex-valued one) with the original class
members (e.g. Highly resistive wires transmit
intracardiac electrograms, Occasionally these viruses
transmit to other mammals, GPCRs transmit signals
through heterotrimeric G proteins). In the general
scientific domain, examples of coincidentally parallel
syntactic behaviour between new and original class
members were noted, for instance, in the ’Collect’
class: decide and prioritize, marked as noisy, share
the syntactic contexts of subj#obj (Future research
should prioritize addressing symptoms...) and
obj#prep (Should the surgeon decide on
relaparoscopy...) with harvest, select and collect.

b In some cases the syntactic contexts themselves were
mistakenly identified as identical due to a parser
error, which produced noisy candidates. For
example, the verb lie got classified with the ’Appear’
class members based, among others, on the shared
subj#obj#prep context, exemplified by the phrase:
Thermal imaging as a lie detection tool at airports,
where ’lie’ is a noun modifier of ’detection’, both of
which form a compound modifying the noun ’tool’,
rather than being a verb taking a noun object and a
preposition. Or similarly, in the context
subj#obj#prep We review the technical challenges
that lie ahead, ’ahead’ is mistakenly analyzed as the
object rather than a preposition. Another type of
error had to do with analyzing the particle ’to’ as a
preposition rather than an infinitive marker, as in the
few cases of misidentified syntactic contexts such as
HIV and HCV seem to co-opt DDX3 as identical to
subj#prep: many interventions may vary between

population groups, or (...) await for clinical
applications, which contributed to clustering
dissimilar verbs such as vary, await, pave together in
the ’Appear’ class with appear and seem.

c Another type of misclassification involves candidate
verbs which are related to the existing class members
but are dissimilar to them with respect to some
meaning components or semantic properties
identified as characteristic of the class in question. In
the biomedical domain, examples of this kind of
error are found in the ’Modify’ class, where 8 new
candidates are added: hydroxylate, hydrolyze,
methylate, deaminate, esterify, oxidize, detoxify,
metabolize. Out of these, the last two (detoxify,
metabolize) were flagged as standing out from the
rest, based on the fact that they describe processes on
the cellular level, in contrast to the rest of member
verbs referring to a specific chemical changing (i.e.
terms pertaining to the chemical level). In the general
scientific domain, examples of related but not strictly
similar verbs added through looser association with
the existing members include optimize and
understand yielded for the ’Examine’ class, or
cultivate in the ’Collect’ class.

The new verbs judged as not valid were marked as can-
didates for reassignment to another existing class, or as
members of a subclass or a new class altogether. An
incidence matrix showing the class reassignments is pre-
sented in Additional file 2 for reference. For instance,
exacerbate, aggravate and magnify, found in the ’Inacti-
vate’ class, were highlighted as forming a separate clus-
ter of similar verbs, while the verb deacylate found in
the ’Release’ class was reassigned to the ’Modify’ class.
In the general scientific domain, an example of reas-
signment involved verbs display and exhibit, found in
the ’Encompass’ class but considered better suited for
the ’Indicate’ class, within which four other candidates,
underline, underscore, highlight, emphasize, were marked
as forming a subclass of ’underline’-type verbs. Such cases
demonstrate the potential of the classification method for
also discovering valid novel classes not in the original
classification.

Discussion
The in-depth scrutiny of the new candidates shows that
our automatic classification approach is highly accurate
and thus likely to be very useful for extending the manual
classification of biomedical verbs to a large-scale BioVerb-
net. Although some human validation and filtering of
the noise is necessary for the development of a fully
accurate resource, the time and cost required for this
is likely to be small in comparison with a fully manual
development of such a large resource from scratch. The
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manual development of the original Levin classification
[57] and VerbNet [7] required years of research effort,
although semi-automatic methods were used to facilitate
their extensions too [58]. Our qualitative analysis shows
that despite being based purely on syntactic behaviour and
combinatorial properties of verbs, the method also asso-
ciates verbs in terms of their shared semantics, yielding
classes of semantically similar and closely related mem-
bers.
The error analysis reveals some areas of potential

improvement. While the accidental syntactic parallels are
a difficult problem to deal with (and have, in fact, been
reported to challenge verb classification regardless of the
clustering approach adopted [37]), errors from parsing
could be addressed in the future via use of tools capa-
ble of dealing with the problem cases highlighted in the
previous section. Misclassifications involving candidate
verbs which are related to the existing class members
but dissimilar to them with respect to some semantic
properties are not necessarily an issue that needs to be
addressed. Rather, such cases may actually demonstrate
the potential of the method to hypothesize novel classes
and classifications for human validation and offer the
means for subsequent refinement of the original classifica-
tion. This is important because the original classification
is, by nomeans, comprehensive and is likely to require fur-
ther development as we scale it up to cover language in
biomedicine.

Conclusion
This paper introduces and evaluates an automatic verb
classification approach to facilitate cost-effective develop-
ment of BioVerbNet. From the methodological point of
view, our work constitutes the first effort applying a state-
of-the-art architecture for neural representation learning
to biomedical verb classification. In terms of our contribu-
tion to representation learning, while previous works have
shown that such neural models can be highly efficient for
learning linguistic properties from large corpora, there
has been little work on fine-tuning the models for class-
specific tasks (e.g. verbs). Our work demonstrates that the
learning of class-specific representation is highly context-
sensitive. In particular, we identify the contexts that are
essential for training representation for biomedical verbs.
This can facilitate the development of different learn-
ing approaches for class-specific representations as well
as support researchers in biomedicine to better under-
stand the syntactic and semantic properties of verbs in
biomedical texts.
As a verb classification method, our method is attrac-

tive in terms of avoiding the heavy feature engineering
involved in most previous approaches. Our evaluation
reveals that it is also highly accurate, suggesting that the
classification of 957 new verbs created by our method

(details in “Automatic verb classification” section) and
released with this article could be used to readily support
application tasks in biomedicine. Our plan is to ulti-
mately use it to support the development of BioVerbNet
via expert validation - an approach that can yield a fully
accurate computational resource and enriched taxonomy
with novel classes. Such a BioVerbNet, once developed,
will provide a welcome addition to lexical resources in
biomedicine which largely focus on nouns (e.g. the UMLS
Metathesaurus mainly covers noun concepts) or a limited
set of verbs (e.g. the BioLexicon provides the syntactic
and semantic information of 168 verbs commonly used in
E.Coli).

Future work
The methodology introduced in this paper can be
improved further in a variety of ways. First, in the current
work we use a supervised approach for verb classification.
While this provides an immediate benefit in terms of the
accuracy of verbs classified, it requires a fixed set of pre-
defined verb classes as part of the training data. To allow
unsupervised discovery of novel verb classes and sub-
classes, one idea for future work would be to improve the
performance of unsupervised clustering algorithms with
a small amount of supervision in the form of labels on
the data (seeds), constraints or user feedback. This type
of approach, commonly known as semi-supervised clus-
tering, can not only group candidates using the classes
learned from the seed data, but also extend and mod-
ify the existing set of classes as needed to reflect other
regularities in the data. Studies of this nature are emerg-
ing [59, 60] and it would be interesting to investigate
how they could be applied to our task to reduce the
need for pre-defined classes while maintaining promising
precision.
Another potential research avenue is to improve the

quality of representation learning through context mod-
elling. Here, our work experiments with dependency-
based contexts, showing that they are effective in
producing large semantically meaningful groups of
classes. Nevertheless, there are a few cases where
semantically dissimilar verbs are mis-classified together
because they share similar syntax, showing room
for improvements in identifying other discriminative
contexts.
Last but not least, our representation models are

trained on word co-occurrence frequencies to capture
verb semantics on the word-level. Becausemany word for-
mations in biomedicine follow rules (e.g. phosphorylate
and dephosphorylate), it is possible to improve represen-
tation learning by incorporating both word and character-
level information. In future, we plan to explore other
representation learning techniques for verb classification
including FastText [61], whose learning procedure takes
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into account the morphological (subword) information.
To encourage future research in related aspects, we make
our resource available to the community at https://github.
com/cambridgeltl/bio-verbnet.

Additional files

Additional file 1: Annotation guidelines. This document includes the
guidelines used in human validation of verb classes reported in the paper.
(PDF 179 kb).

Additional file 2: Supplementary Information. (PDF 99 kb)
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52. Majewska O, McCarthy D, Vulić I, Korhonen A. Acquiring verb classes
through bottom-up semantic verb clustering. In: Proceedings of the
Eleventh International Conference on Language Resources and
Evaluation, LREC 2018, Miyazaki, Japan, May 7-12, 2018. Miyazaki:
European Language Resources Association; 2018.

53. Hakala K, Kaewphan S, Salakoski T, Ginter F. Syntactic analyses and
named entity recognition for pubmed and pubmed
central—up-to-the-minute. ACL 2016. Berlin: Association for
Computational Linguistics; 2016. p. 102.

54. Charniak E, Johnson M. Coarse-to-fine n-best parsing and maxent
discriminative reranking. In: Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics. Ann Arbor: Association for
Computational Linguistics; 2005. p. 173–80.

55. McClosky D. Any domain parsing: automatic domain adaptation for
natural language parsing. PhD thesis. 2010.
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