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Abstract

Background: Information technology has transformed the way healthcare is conducted. There is a deluge of patient
data dispersed in different systems that are commonly not interoperable. As a result, access to patient data has become
a major bottleneck for healthcare professionals that struggle to find the relevant information in a timely way and without
missing critical clinical information.

Results: We implemented PreOptique, a novel hybrid semantic and text-based system that was commissioned by a
large hospital in Norway for providing integrated access to patient health records scattered over several databases and
document repositories.
We use ontology-based data access (OBDA) for the seamless integration of the structured databases at the hospital
through the Optique platform. We employ text analysis techniques to extract vital sign measures and clinical findings
from patient documents.
PreOptique was developed and deployed at the hospital. This solution demonstrates how OBDA technology can
provide integrated data access to disparate structured sources in healthcare, without requiring the replacement
of existing databases. Unstructured clinical texts are also mined to extract patient findings, while the graphical
user interface (GUI) provides a single access point that hides the underlying complexity of the system. We ran a
usability study with 5 target users, obtaining a system usability score (SUS) of 86.0. Further, participants in the study
stressed the simplicity of the GUI and the integration of data sources enabled by the system.

Conclusions: This pilot study showcases the use of OBDA technology and text analysis to enable the integration of
patient data for supporting clinical surgery operations. PreOptique is usable and can be easily employed by medical
personnel to find patient data in a timely way.
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Background
Medical practice generates a deluge of patient data,
including diagnostic codes, medication orders, labora-
tory test results, and medical imaging. Typically, several
vendors supply systems to document and collect data
related to patient care. Medical professionals use these
systems for care planning and documentation purposes
related to patient encounters with the healthcare system.
When a patient is referred to a unit, the physician may
order tests and imaging prior to seeing a patient. Health-
care professionals often use the system to access pre-
viously recorded clinical notes that can provide relevant
background including diagnosis and even status regarding

previous health-related assessments such as whether the
patient has had a driver’s license revoked for medical
reasons. Tracking all the data and relating it to the
patient’s current status involves accessing the right system,
evaluating the data that is there, checking date/time of
documentation, assessing whether “this is the same or
different incident” of a certain condition, and also con-
textual information like the type of medical encounter,
e.g. a routine examination, or even the role of the reporter.
Despite the wealth of patient data and the omnipre-

sence of healthcare systems, use of these systems does
not necessarily equate to an increase of efficiency or
improvements in quality of care [1]. One key issue is the
lack of information exchange between systems which
results in healthcare professionals using a great deal of
time jumping between multiple different information
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technology (IT) systems in an attempt to tie together
patient information. In this regard, [2] reports physicians’
frustration and professional dissatisfaction with electronic
health record (EHR) systems due to “insufficient health
information exchange”.
The interoperability of hospital IT systems is impacted

by the many underlying policies, organizational con-
straints and culture, and understanding of hospital work-
flow reflected in the architecture and design of each
system in use. To address this challenge, ontology-based
data access (OBDA) technology can be used to seamlessly
integrate structured data and information from these
systems [3]. The role of an ontology is to define the princi-
ples ruling real-world entities and their interrelations,
describing a domain’s inherent structure and behavior [4].
Semantic data integration involves the use of such a repre-
sentation of entities and relationships to eliminate possible
heterogeneities. The Optique project [5] has developed a
number of tools and methods to support OBDA, inclu-
ding tools for enabling users to formulate queries using
familiar vocabularies and conceptualizations, and inte-
grating data spread across multiple distributed data sources.

Ahus case study
Access to patient data is the chief complaint of the
healthcare personnel at the day surgery unit in Akershus
University Hospital (Ahus). Medical staff described an
environment where they were allocated 20 min to check
all patient information before surgery, but they were
actually investing much longer times to prevent missing
relevant information. We reproduce here some of their
quotes:
«We use too much time to search for information»
«We are not sure that we have checked all»
«We should rather spend the time on patients than on

the computer systems»
The underlying problem is that patient data is scat-

tered across different hospital IT systems, i.e. the registry
of medical encounters, the archive of clinical notes, the
repository of patient measures, the registry of laboratory
tests, and the pharmacy system. Furthermore, some of
these systems lack the necessary functionalities to facili-
tate data access. As an example, Ahus staff can browse
the clinical notes of a particular patient, but text search
is not provided.

In this paper we present a novel hybrid semantic and
text-based system that was commissioned by Ahus for
providing integrated access to patient health records
scattered in several databases and document reposito-
ries. The system makes use of the results from the
Optique project and is based on reuse and extension of
the OBDA tools available. The test case was the surgery
planning process that involves surgeons, anesthesiolo-
gists, and nurses. The proposed system is named PreOp-
tique (Pre-Op support with Optique). We showcase the
benefits of this solution and present the results of a
preliminary usability study.

Implementation
Ahus requirements
Ahus provides healthcare services to approximately
500,000 inhabitants in the county of Akershus, east of
Oslo, Norway. Ahus is a mid-size/large hospital with 953
beds, 62,489 admitted patients, and 28,300 day patients
registered in 2015. Patient data at Ahus is scattered
across several systems – the main information systems
employed by the day surgery unit are shown in Table 1.
However, these systems are not integrated and access to
patient data is not easy; for instance, there is no search
facility for the DIPS document archive (DIPS stands for
Distributed Information and Patient Data System in
Hospital). As a result, medical professionals at Ahus
complain about too much time spent searching patient
information, and they fear missing critical information
related to surgical preparation.
We started a pilot project with the day surgery unit at

Ahus aiming to improve the access to existing patient
information. More specifically, Ahus requested support
for the surgery planning process in which surgeons,
anesthesiologists, and nurses collaboratively fill in a
paper form with the operation plan. In a first stage, sur-
geon and patient agree on the surgery to be performed.
Resources are then allocated and the preparations for
the operation begin. There is a patient safety procedure
before and after the operation to assess that the
operation plan has been followed.
To complete the form, patient data has to be collected

manually from the systems in Table 1, requiring a
significant effort to find patient information and with
concerns about missing critical pieces of information for

Table 1 Main information systems employed by the day surgery unit at Ahus

System Provider Type Data description

DIPS DIPS Electronic health record system SQL database with administrative data, medical encounters and patient measures

Metavision Evry Physician order entry system SQL database with administrative data and patient measures
Document archive of laboratory tests and medical images

DIPS archive DIPS Document repository Document archive of unstructured clinical notes
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the planned operation, e.g. an allergy. Therefore, the goal
of the project was to provide an IT solution for suppor-
ting the surgery planning process with the following
requirements:

� Integrate patient data coming from structured
sources, i.e. the SQL databases of DIPS and
Metavision.

� Perform text analysis of the DIPS document archive
and provide access for the operation planning.

� Offer a single easy-to-use access point to patient data.
� Provide provenance information for every piece of

patient data.
� Design a non-invasive solution, i.e. no replacement

of the existing IT systems at Ahus.
� Provide adaptation to emerging user needs and new

data sources such as the laboratory tests and medical
images in Metavision that were not part of this pilot.

The Optique platform
Optique is a solution for unlocking access to corporate
data sources by enabling end users to formulate their
information needs through an intuitive visual query
interface [5]. The platform is based on OBDA techno-
logy [3] that provides an automated connection between
complex information requirements and relational data
stores. More specifically, an ontology is employed to
describe the end users’ domain with familiar and com-
prehensible terms that are translated into queries over
the data sources through a set of mappings.
Optique provides access to data in a non-invasive way,

since the data sources do not need to be replaced or
converted to another format. Instead, the platform
manages the ontology and mappings, giving the illusion
of a virtual integrated semantic store. In this way, a
query formulation component such as OptiqueVQS [6]
or PepeSearch [7] can directly plug in, enabling end
users to pose ad hoc queries without requiring special-
ized IT skills.
Optique relies on open standards such as SPARQL [8] for

querying the virtual triple store, OWL [9] for ontology spe-
cification, and R2RML [10] for the definition of mappings.
Open standards avoid vendor lock-in situations and
facilitate adaptation to diverse scenarios. For instance,
Optique has been successfully deployed on Statoil’s
corporate exploration and production data store [11],
as well as on Siemens’ service centers for monitoring
power plants [12, 13].

Text analysis
While the Optique platform can be used to provide
flexible access to structured data sources, it cannot be
directly used with unstructured data. Instead, natural
language processing (NLP) can be applied to analyze

clinical text, the most common and abundant data type
in the healthcare domain.
Text search engines [14] have become prevalent for

dealing with unstructured data, e.g. Web search. Search
engines maintain an index of the document corpus.
Queries are evaluated against the index and results are
then returned to the user. A query is typically composed
of one or more keywords, although explicit phrases can
also be supported. Potential answers are ranked using a
similarity measure to estimate the relevance of a docu-
ment for a query. The index is a data structure that
maps terms to the documents that contain them, thus
enabling fast query evaluation. Several parsing tech-
niques are commonly applied in the construction of the
index and in query evaluation, such as stemming
(removal of variant endings from words), case folding
(conversion to lowercase), or stopping (removal of common
words such as the).
Besides regular text search, clinical documents can be

mined to extract structured information about patients.
This is typically done using NLP tools, which combine a
range of linguistic, statistical and heuristic methods [15].
Deriving structured information from clinical text
involves entity extraction algorithms that commonly
employ medical vocabularies and ontologies such as
SNOMED CT [16] to drive the entity extraction task.
Difficulties in entity extraction include the presence of
negating terms such as ‘no’ or ‘never’ [15]. cTAKES [17]
is an example of an NLP tool for entity extraction from
clinical text.

PreOptique, integrated access to patient data
We aimed to support the surgery planning process by
offering a single easy-to-use access point to patient data
without replacing the existing IT systems at Ahus. In
order to comply with the requirements, we developed a
hybrid semantic and text-based system named Pre-
Optique. The logical architecture is sketched in Fig. 1
and has three main parts: the semantic backbone (teal
color), the text search engine (pink), and the graphical
user interface (GUI) that glues all the components and
serves as entry point to the medical personnel (blue).
The semantic backbone is based on the Optique plat-

form and deals with the integration of patient data
coming from structured sources. The key artefact is the
ontology that was developed to support this setting. The
development of the ontology was thus driven by the
database schemata of the structured sources employed
at Ahus, i.e. DIPS and Metavision. We also used ano-
nymized screenshots of the DIPS user interface to
inform the design. In addition, we interviewed members
of the medical staff at Ahus in order to gather the main
limitations of the existing solution (see the reproduced
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quotes in Section 1.1). With these inputs, we identified
that the main components the ontology should include:
administrative patient data, medical diagnoses and
diseases, healthcare encounters, data items such as
documents, and measurements of vital signs.
For constructing the ontology we decided to reuse

existing medical ontologies in the OBO Foundry suite
[18]. OBO Foundry’s Basic Formal Ontology (BFO) [19]
is an upper-level ontology that provides a common
top-level structure to support the interoperability of the
multiple domain ontologies. BFO forms the basis of
numerous medical ontologies such as the NCBI organis-
mal classification (NCBItaxon), Ontology of Medically
Related Social Entities (OMRSE), Disease Ontology (DO),
Ontology for General Medical Science (OGMS), Clinical
Measurement Ontology (CMO), and the Information
Artifact Ontology (IAO), or Relation Ontology (RO) – we
reused classes from all these OFO Foundry ontologies.
The starting point was the definition of patient as a sub-

class of human being (NCBItaxon) that has a patient role
(OMRSE). We borrowed properties from the FOAF vo-
cabulary [20] to model basic patient data such as names,
gender or image, while we defined local properties to rep-
resent the Norwegian social security number and the date
of birth. We were therefore able to describe all the admin-
istrative patient data coming from DIPS and Metavision.

In Norway, medical diagnoses in the source DIPS EHR
dataset are tagged using version 10 of the standard
International Statistical Classification of Diseases and
Related Health Problems diagnostic coding schema
(ICD-10) [21]. DO is a domain ontology of human
diseases based on BFO and organized from a clinical
perspective of disease etiology and location [22]. DO is
thus more closely aligned with how medical personnel
work and think than ICD-10, so we decided to employ
this ontology using disease from OGMS as the top con-
cept. Since DO includes cross-references to ICD-10, we
were able to map the medical diagnoses of patients in
DIPS to DO terms. Alternatively, we could have
employed the Monarchy Disease Ontology (MONDO)
[23] that includes mappings to ICD-10 and DO.
We used health care encounter (OGMS) as the upper

concept for modelling the various healthcare processes
at Ahus. Specifically, we defined classes for every clinical
operation specified in [24] since these codes are used in
the source DIPS EHR dataset. We also prepared a
taxonomy of data items (IAO) – reusing concepts from
OGMS such as clinical finding and diagnosis – and
arranging the different document types employed at
Ahus, e.g. admission document. We extended RO to define
object properties for connecting the different concepts, e.g.
has disease as a subproperty of has disposition (RO), and

Fig. 1 Logical architecture of PreOptique
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datatype properties such as date of diagnosis. Overall, we
had all the terms in the ontology for annotating the data
items about medical encounters coming from DIPS.
For the measures of vital signs we selected scalar

measurement datum (IAO) as the top concept and
reused subtypes from CMO such as body temperature,
pulse, or diastolic blood pressure. We also defined a
local illness severity score concept (known as ASA in
Norway), as requested by Ahus. Since patient measures
can appear in DIPS, Metavision and even within
unstructured clinical notes, it was important to track the
source of data and we used the Provenance, Authoring,
Versioning (PAV) ontology [25] for this purpose. This
ontology was also used to trace the source of health care
encounters and patient documents.
The ontology itself is formalized in OWL 2 QL, as

required by the Optique platform. We give above a
detailed description of the ontologies that were reused.
Overall, we created 84 new classes, 36 new object
properties, 12 new datatype properties, and 13 new
annotation properties to accommodate patient data.
With the ontology in place, we created the mappings to

the underlying databases, i.e. DIPS and Metavision,
expressed in the W3C RDB2RDF Mapping Language
(R2RML) [10]. This process was simplified by using the
database schemata as the primary source for developing the
ontology, so we already had in mind where the source rela-
tional data should be mapped in the ontology. A mapping
assertion in R2RML consists of a SQL statement from the
source database and a target definition of RDF triples con-
structed with the retrieved values from the source. The
basic procedure comprised mapping every table in the data-
bases to a class in the ontology, then mapping table col-
umns to datatype properties, and finally mapping foreign
keys to object properties. We defined the following scheme
to mint the IRIs of the corresponding individuals: http://
data.ahus.no/rd/{table_name}/{primary_key}.
Optique’s query transformation system, Ontop [26],

was employed to rewrite user queries (expressed in
terms of the ontology) into database queries using the
ontology and the mappings. We used test instances of
the databases of the pilot, i.e. DIPS and Metavision, in
order to validate the mappings. More specifically, we
assessed that the answers to user queries obtained with
Ontop were consistent with the contents in the test
database instances. In this fashion, Ontop exposes the
underlying databases as a virtual RDF dataset that can then
be queried using SPARQL. One obvious advantage of this
approach is the integration of DIPS and Metavision without
requiring the replacement or the modification of the rela-
tional data sources – this is illustrated in Section 3 with the
measurements of vital signs coming from different sources.
Furthermore, the integration of additional domain

knowledge into the system can better support the user

needs at Ahus. To support our point, consider the
following information need: “find the names of the
patients diagnosed with an intestinal disease”. Posing a
SQL query to satisfy this information need in DIPS is
challenging because you need to know the list of all the
ICD-10 codes corresponding to intestinal diseases. In
contrast, this information need can be represented by
the following SPARQL query:

In this case, the use of DO allows the formulation of
the query in a more abstract way and closer to the physi-
cians’ needs. Note that a query builder like PepeSearch
[7] can be plugged in to pose such SPARQL queries
through a form-based web interface. We present in [27]
a PepeSearch demo using a former version of the ontol-
ogy developed at Ahus.
Regarding the collection of clinical notes, we used an

open source search platform, Solr [28], that provides a
scalable and flexible solution for querying unstructured
text. We defined a document schema with metadata fields
for document and patient identifiers, document types, and
timestamps that was used to index the collection. Further
configuration included stopping, case folding, and stem-
ming for Norwegian text. With this set-up, Solr was ready
to answer full-text searches over the collection of clinical
notes, supporting queries with boolean expressions,
phrases, fuzzy matching, and filters, e.g. to limit the results
to a specific patient or to a document type. This alone was
a significant improvement, since the DIPS archive at Ahus
can only be browsed by document title.
Beyond supporting text search, we were required to

automatically extract information about patient allergies,
smoking habits, and measures of vital signs from the
collection of clinical notes. This was a requirement due
to the need of medical staff at Ahus to decrease time
used in manual browsing of documents because the
current archive is not searchable. We had access to a set
of anonymized clinical notes in the Norwegian language
for developing the information extraction module. The
solution consisted on a set of Solr transformers that
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analyze every document in the collection and create new
fields when an occurrence is found. As a first step, we de-
fined fields in the document schema for accommodating
the different types of information requested, e.g. blood_pul-
se_value, as well as additional fields for placing source text
fragments, e.g. blood_pulse_info. This allowed the medical
team to find a value extracted by a transformer as well as
the original text fragment in the source document.
We used text tokenization, normalization, text expansion,

and pattern matching of strings in the transformers. For
every required information element we prepared a regular
expression [29] for extracting the values. As an example,
we defined the following regular expression for extracting a
text snippet with blood pulse information (corresponding
to the blood_pulse_info type that was defined as a first
step):

This regular expression is quite robust since it takes into
account optional elements such as colon and whitespace.
Further, pulse values require two or three digits. We con-
strained the range of possible values for every vital meas-
ure to limit errors. In other cases we invested a significant
effort specifying alternative terms and abbreviations, e.g.
the Norwegian word for temperature is temperatur,
although physicians at Ahus also use the abbreviations
temp and t. As a result, we defined regular expressions
that capture alternative terms when necessary.
Extracting allergies and smoking habits from the

text was more involved, requiring language analysis to
deal with uncertainty and negation. We thus had to
employ more varied and complex regular expressions
to detect text snippets indicating positive, negative, or
uncertain allergy status, as well as positive, negative,
former, or uncertain smoker. We used the set of
anonymized clinical notes to fine-tune the devised
regular expressions. After importing a document to
Solr, the set of transformers is run to extract the
required information, creating appropriate fields with
the values found. As an example, we provide below
the set of regular expressions we crafted to detect a
non-smoker and to extract the key text snippet (the
part inside parenthesis):

Finally, we aimed to design a GUI that would be easy to
use and understandable to the medical personnel. We
decided to employ a form-based GUI that is common
in medical IT systems. The GUI includes a security

module that grants access to authorized users. The
medical personnel can then select a patient in the
system and obtain all the information pulled from the
different sources.

The integration of patient data is thus handled within
the GUI (see Fig. 1). This component includes a seman-
tic data access module for querying a triple store, as well
as a text-based data access module for querying a Solr
index. The former makes use of a bootstrapping
SPARQL query for listing patients, while the rest of the
queries are generic and can be applied to any individual
(a patient, for example): one for obtaining the types;
another for getting predicate-object lists; and another
for getting subject-predicate lists referred to the target
individual. Similarly, the text-based data access module
is prepared to query the document index in order to
find information contained in the clinical notes of a
particular patient.
The GUI queries the data sources under demand and

caches the responses obtained for performance and sca-
lability reasons. The ontology drives the access to
semantic data, depending on the type of information of
interest. As an example, weight measurements of a
patient can be obtained by looking for property ahus:per-
sonWeightMeasurement in the predicate-object list
retrieved from the semantic data access module.
Regarding clinical notes, the document schema plays
a similar role to the ontology. This way, it is possible
to query the Solr index to get patient documents con-
taining weight measurements (as obtained in the text
analysis stage).

Since the amount of information about a patient can be
overwhelming, the GUI is structured in several tabs – see
Figs. 2, 3, 4, 5, 6 and 7. Specifically, there is a tab for
browsing and querying the clinical notes of a patient;
another tab with the patient vital signs; another one with
the medical encounters registered in the hospital; another
with critical information, e.g. allergies; and a final tab for
creating a surgery operation plan. For every data item the
GUI provides overviews to limit the amount of infor-
mation presented, while the user can then zoom in if
interested in a particular item.
PreOptique is available with an open source license. The

GUI was developed for the Ahus case and can be accessed
at [30]. The rest of PreOptique components, i.e. Ontop
and Solr, are also available at [31, 32], respectively.

Results
The ethics committee at Ahus approved this study and
10 patients gave consent to use their health records to
demonstrate the system. The IT personnel at Ahus pre-
pared a copy of the production databases using the 10
hospital’s patients and gave us access. We were able to
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deploy PreOptique and plug in the target data sources,
i.e. DIPS, MetaVision and DIPS archive. Specifically,
administrative data is extracted from DIPS and Meta-
vision; information about medical encounters comes
from DIPS; and patient measures can appear in DIPS
and Metavision, but also within clinical documents. As
explained in Section 2.4, we exploit text analysis to
extract patient measures and information about aller-
gies and smoking habits from the collection of clinical
documents (the latter is not available in any structured
dataset at Ahus).
In the remainder of this section we demonstrate the

functioning of the system using snapshots taken from
this setting. Note that personal patient data has been
anonymized and all timestamps removed, and that
Ahus approved the use of these snapshots for re-
search purposes.
We organize this demonstrator around the main func-

tionalities of PreOptique, corresponding to the GUI tabs:

1. Medical encounters. The system is able to obtain
health patient data coming from DIPS. This is
illustrated in Fig. 2, listing the medical encounters
of a particular patient in reverse chronological
order. The items in yellow correspond to medical
processes that are still ongoing. Further details can
be obtained by clicking on an item, namely,

timestamps, disease label, associated diagnoses and
operations.

2. Patient documents. Solr indexes the collection of
clinical notes, while the GUI provides controls for
browsing and searching the collection – see Fig. 3.
Users can type their queries in a text input box.
Query expressiveness ranges from simple keyword
queries to boolean expressions or fuzzy matches, as
supported by Solr. In addition, users can specify
date ranges and document types for filtering. As
illustrated in Fig. 3, results are displayed in a
paginated tabular representation that includes a text
snippet and highlights the query terms in yellow.
Results are ranked according to query relevance
and document freshness. Clicking on the rightmost
icon of a table row shows a pop-up window with
the whole document.

3. Patient measurements. Measurements of patient
vital signs at Ahus are scattered in different sources,
including structured databases and annotations in
clinical documents. PreOptique is able to retrieve
all patient measurements and provide a single and
coherent access point, as illustrated in Figs. 4 and 5.
In this pilot we extracted the following
measurements: BMI, height, weight, illness
severity score (ASA), pulse, blood pressure, and
temperature. Since there could be many data

Fig. 2 Excerpt of the medical encounters of a patient at Ahus. Each item includes a start date, a closing date and a title. Ongoing medical
processes are shown in yellow
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points for a specific patient, we use collapsibles
in the GUI to display the latest value for each
measurement type. Expanding a collapsible shows
the full list of values in reverse chronological
order (see Fig. 4). Users can switch to a
graphical representation, as illustrated by Fig. 5.
Provenance information is available in the form
of buttons (Fig. 4) and tooltips (Fig. 5).
Additional details can be obtained by clicking the
provenance buttons, e.g. in the case of a
document, the document content is shown in a
pop-up window with the source text snippet
highlighted in yellow.

4. Critical information. This section includes important
patient information that should be considered in
most medical procedures. In this pilot we only
focused on information about allergies and smoking
habits, as requested by Ahus. Since this information
is missing in the structured databases, clinical notes
were the only source employed, applying natural
language processing techniques (see section Text
Analysis above). Figure 6 shows the information
found about the smoking habits of a patient,
classified by status. Each section includes a list of the
documents found to support the assessment, along

with the specific text snippets and timestamps. In
this particular example, there are 7 documents
classified as “Non smoker”, 9 as “Uncertain smoker”,
and 1 as “Ex-smoker”. Interestingly, the snippets of
the documents classified as uncertain correspond to
smoking questions (do you smoke?), health
recommendations about tabaquism, and a protocol
for an operation banning smoking. For every
document found, the contents can be displayed by
clicking the rightmost button.

5. Operation surgery plan. This last tab corresponds
to the operation surgery plan that is available as a
form structured in three sections – the surgeon
completes the first two parts and the
anesthesiologist the third one. The first part
includes the type of surgery and the resources
involved; the second section inquires about the
operation details and the patient status from the
surgeon’s point of view; and the third part is for the
anesthesiologist’s team, requesting information
about the patient status, e.g. arrhythmias, asthma,
or infarcts. The provided form is identical to the
paper-based procedure currently used at Ahus.
While this version of PreOptique does not support
synchronous editing of the operation surgery plan,

Fig. 3 Example of a document search asking for documents of type “andre” (“other” in Norwegian) containing the keywords “blod” (“blood” in
Norwegian) or “bt” (abbreviation of blood type). This screenshot shows that 36 documents have been found. Each item listed corresponds to a
document found
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Fig. 4 Excerpt of the patient measurements found (tabular mode). The list includes three values of weight measurements obtained from
Metavision (1) and documents (2)

Fig. 5 Excerpt of the patient measurements found (graph mode). The graph presents blood pressure data points found in the different sources.
The screenshot shows a tooltip of a systolic blood pressure measurement with the timestamp, value and origin
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the form fields include summaries of existing
information found in the system. For example, Fig. 7
shows compact representations of measurements:
latest value in red, minimum and highest values,
and timestamping information – sparklines are
also provided, although Ahus requested to
remove them from the snapshots. Users can
automatically fill the latest value of a measurement
field and they can also browse all the measures
using a 1-click button. Similarly, PreOptique
presents summaries of the smoking status and
allergies of a patient in the corresponding form
fields (see the allergy field in Fig. 7). The operation
surgery plan is stored in PreOptique and can then be
looked up by the medical team (surgeons, anesthe-
tists and nurses) at any time.

Overall, PreOptique seamlessly integrates the data
coming from the structured databases and the collection
of clinical notes. Patient information is provided in a
unified way through a form-based user interface that
also supports the preparation of operation surgery plans.
As a result, physicians no longer need to access several
different systems and manually inspect a collection of
documents to check relevant patient information for
conducting a particular surgery procedure.

Preliminary usability study
After the deployment of PreOptique at Ahus, we ran a
usability study in order to test the system in the real set-
ting and collect feedback from 5 target users. Their roles
were as follows: Senior Medical Advisor, Health Project
Manager, Head of Anesthesia, Medical doctor, and Head
of Nursing. All of them volunteered and gave their
consent to use their study data for research purposes.
Each participant in the study tested the system in a

single session lasting 30 to 60min. No previous training
was given, a member of the technical team briefly
explained the functionalities to each participant and
answered their questions. Participants were requested to
complete a questionnaire after testing PreOptique. The
employed questionnaire has two sections; the first one
corresponds to the System Usability Score (SUS) [33], a
popular questionnaire for evaluating the usability of sys-
tem interfaces. The second part consisted of the follow-
ing open-ended questions:

� How can this system be employed in your daily
practice? [Usage]

� What did you like most about this system? [Like]
� What did you dislike most about this system?

[Dislike]
� Other comments and suggestions [Other]

Fig. 6 Smoking habits information extracted from the clinical notes of a patient. The list includes 17 occurrences; each one with the predicted
smoking status, the document timestamp, the text snippet used for the assessment, and a button to display the whole document
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We computed the SUS scores for the participants’
responses, obtaining 86.0 in average with a standard
deviation of 10.7.1 Since we were not allowed to use test
versions of DIPS and Metavision in this usability study,
we employ historical SUS scores from other studies for
comparison purposes ([34], ch. 8). Reports SUS statistics
based on data from 446 studies and over 5000 individual
SUS responses, finding that the mean SUS score is 68
and the 97% percentile rank is 85. Therefore, the
obtained SUS score of 86.0 can be considered high.
Beyond the SUS results, we analyzed the responses to

the second part of the questionnaire, extracted the
topics, and compiled the results displayed in Table 2.
Participants in the study stressed the integration of
patient data as the principal advantage of PreOptique.
They also considered the system to be easy to use and
fast. About the limitations, one participant indicated that
the security functionality is not completely in place, and
there were several comments stressing the need to move
to the production stage.

Discussion
Principal results
Data integration is a hard problem that involves a num-
ber of challenges that can be grouped into system-based,

logical, and, social categories ([35], ch. 1). System-based
challenges must address methods for enabling different
systems to communicate seamlessly to one another.
Logical challenges involve correcting for differences in
the structure of the data sources, e.g. different schemata.
Social challenges cover a number of non-technical prob-
lems such as data owners not wanting to cooperate. The
PreOptique system exemplifies how OBDA technology
can provide integrated data access to disparate struc-
tured sources in healthcare. Patient data integration is
achieved through the specification of an ontology and
mappings to the source databases. Furthermore, this
solution relies on open standards and does not require
the replacement of existing databases, thus dramatically
reducing the installation overhead.
While it is possible to design an SQL-based solution

to integrate DIPS and Metavision, an ontology is a sen-
sible conceptual middle layer between differing data
models and the non-technical end users. In describing
the domain, instead of the data, an ontology provides a
common layer over differently modelled databases. As a
matter of fact, the OBDA approach provides several
advantages over a pure SQL-based solution [3]: (1) data
integration is performed declaratively through a
system-independent specification of the domain, i.e. the
ontology; (2) physical/logical independence of the

Fig. 7 Excerpt of the operation surgery plan form (surgeon section). There are fields for including patient measurements of vital signs, while the
right part of the form presents the measures found in the system in a compact way. A summary of patient allergies is also provided
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information system is further enforced, thus improving
data access by non-experts; (3) data integration can be
carried out in an incremental way; and (4) the ontology
provides a common ground for the documentation of
the data sources. The proposed ontology not only can be
applied to the Ahus case, but to other surgical units in
Norway since DIPS and Metavision are deployed in
every hospital in this country.
PreOptique also exploits unstructured clinical text by

using a search engine and natural language processing
for extracting patient findings. The GUI provides a
single access point and hides the underlying complexity
of the system. A form-based interface is employed to
present patient data, while user actions are translated
into SPARQL and Solr queries behind the scenes. The
ontology enforces the coherence of patient data, using
terms from the medical domain. Participants in the
usability study stressed the simplicity of the GUI and the
integration of data sources that the system enables, while
the obtained SUS score was quite high.
Importantly, PreOptique is designed to improve access

to patient data, but not to make medical decisions. As a
result, the main focus is to pull data from different
sources, to present the integrated data points in a
consistent way, and to give access to the source data
(including provenance information). Participants’ com-
ments in the usability study suggest that the system can
be effective for finding relevant patient information in a
timely way – see Table 2.

Limitations
We were only allowed to test the system with a copy of
the production databases for 10 patients at Ahus. Never-
theless, this should not entail scalability issues, since
query complexity does not change with the number of
patients. Some of the patients have hundreds of clinical

documents associated with numerous medical encoun-
ters. Given that PreOptique queries patient data on
demand and caches responses, perceived performance
was good, as pointed out by participants in the usability
study. Furthermore, Optique has been successfully tested
in the data-intensive petroleum company Statoil [11].
This use case is far more complex than the one consi-
dered here, since the EPDS dataset alone (Statoil’s cen-
tral repository of exploration and production data) has
about 3 K tables, ~ 37 K columns all together, and a size
of ~ 700 GB. Experience from Statoil showed that the
time required to generate SQL queries through ontology
mappings was negligible compared to query execution
time. About the efficiency of the generated SQL queries,
running times were no worse than what a database
expert could have achieved manually [11]. Nonetheless,
we plan to carry out a performance study with a larger
patient base in order to assess whether PreOptique can
be used to examine patient data without performance
issues, as well as to respond to ad hoc queries such as
the one listed in Section 2.4.
The scope of this pilot was restricted to the surgery

operation planning, and some data sources such as la-
boratory tests or patient medications were explicitly ex-
cluded by the project management for this pilot. Thus, a
natural extension point is the integration of the afore-
mentioned databases. In this way, PreOptique can better
support surgery operation planning and can be easily
extended to support other hospital processes such as
medication orders.
While the number of participants in the usability study

is relatively low, experts in the field report that only five
participants are needed on average to find 85% of usabi-
lity problems in a design [36]. Further, [37] found no
correlation between the number of usability problems
detected and the number of participants (ranging from 5

Table 2 Main findings obtained from the usability questionnaire along with supporting statements from participants’ responses and
source (question type and participant code)

Finding Sample comments Source

Enables patient data integration Perfect to find information that now is “hidden” because you don't have time to seek [Usage - P1]

The fast integration of patient information/data from different systems, incl. text mining [Like - P3]

Gather info from different databases [Usage - P5]

Fast Fast to find information [Like - P2]

Easy to use It gives information that I need very easy [Like - P1]

Easy to find patient stats [Like - P4]

Easy to understand [Like - P5]

Lacks some security features Security functionality not completely in place (work in progress) [Dislike - P2]

Transition to production deployment Full roll-out as soon as possible [Other - P2]

It is not yet ready to use [Dislike - P1]

Only a small demo [Dislike - P5]

Looking forward to next step [Other - P5]
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to 15) when evaluating the same interface design. In any
case, we do not make claims about the statistical signifi-
cance of the results, since our analysis is rooted in the
qualitative research tradition [38].

Comparison with prior work
Integration of patient data is quite challenging due to
the range of different data types [15] and the diversity of
medical information systems involved [39, 40]. As a
result, there is a plethora of standards, terminologies
and initiatives for interoperability in healthcare [15]. For
example, OpenEHR [41] is an open architecture
designed to support the development of distributed pa-
tient health records. One of the main problems for the
adoption of interoperability standards is handling legacy
systems and data [42]. In this regard, our solution (and
OBDA in general) does not assume any particular stan-
dard or data format; the mappings are designed to ad-
dress the mismatch between the ontology and the
underlying data sources.
There have been several initiatives trying to use ontol-

ogies to solve interoperability problems in healthcare, but
only a few propose a system implementation, i.e. an OBDA
system. For example, [43] uses ontologies to transfer
medical records from structured databases to an RDF triple
store. This solution adopts the materialization approach,
typical of data warehouses, that has several drawbacks,
namely, data duplication, need for synchronization, and
potentially slow query execution, although materialization
allows quite flexible transformations of data. In contrast,
PreOptique uses query rewriting that does not require data
duplication and synchronization, despite the fact that trans-
formations are restricted to the query language supported
by the sources and that transformations are performed at
query time.
Existing OBDA systems in the medical domain assume

that end users will employ a formal query language like
SPARQL – this is the case of [43, 44]. However, this is a
very stringent constraint that cannot be met in many
settings, as in the Ahus case. For this reason, we deve-
loped a form-based GUI to easily interact with the sys-
tem instead of providing users with a query editor. While
this GUI was purposely designed to support the function-
alities of the Ahus case, a generic visual query editor like
OptiqueVQS [6] or PepeSearch [7] can also be employed
to formulate ad hoc queries by the medical staff, e.g. to
find the set of patients with a particular disease.
Extracting information from clinical text is a difficult

problem, and there is a whole body of research in this
field – see for instance [45]. Here, our focus was not the
proposal of novel natural language processing tech-
niques, but the integration of clinical text as another
data source. This was addressed through the GUI

component, since the Optique platform (and OBDA in
general) is purposed for structured databases.

Conclusions
Providing medical staff with flexible access to patient
data is a major bottleneck in the healthcare domain. In
this pilot study with Ahus, we showcased a hybrid
semantic and text-based system, PreOptique, enabling
the integration of disparate data sources. We developed
an ontology for capturing nurses’ and doctors’ vocabu-
lary and prepared a set of mappings from the ontology
to the structured databases. Clinical notes were also
indexed and analyzed to extract patient information. We
designed a form-based GUI to access patient data and to
support surgery operation plans, as requested by Ahus.
PreOptique was successfully deployed at the hospital,
enabling the seamless integration of patient data. Results
from a preliminary usability study suggest that medical
personnel can easily find patient information in a timely
way. Our future work includes the integration of new
databases such as patient medications and laboratory
tests; further user studies, including a formal experiment
for gathering the critical information for surgery proce-
dures; a performance experiment to test PreOptique
with a larger patient base; and the deployment of
PreOptique in the production IT environment at Ahus.

Availability and requirements
Project name: PreOptique
Project home page: https://github.com/guiveg/preoptique
Operating system: Platform independent
Programming language: JavaScript
Other requirements: Ontop, Solr 6
License: Apache 2.0

Endnotes
1SUS scores range from 0 to 100.
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