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Abstract

Background: We introduce TranScriptML, a semantic representation schema for prescription regimens allowing
various properties of prescriptions (e.g. dose, frequency, route) to be specified separately and applied (manually or
automatically) as annotations to patient instructions. In this paper, we describe the annotation schema, the curation
of a corpus of prescription instructions through a manual annotation effort, and initial experiments in modeling and
automated generation of TranScriptML representations.

Results: TranScriptML was developed in the process of curating a corpus of 2914 ambulatory prescriptions written
within the Partners Healthcare network, and its schema is informed by the content of that corpus. We developed
the representation schema as a novel set of semantic tags for prescription concept categories (e.g. frequency); each
tag label is defined with an accompanying attribute framework in which the meaning of tagged concepts can be
specified in a normalized fashion. We annotated a subset (1746) of this dataset using cross-validation and
reconciliation between multiple annotators, and used Conditional Random Field machine learning and various
other methods to train automated annotation models based on the manual annotations. The TranScriptML schema
implementation, manual annotation, and machine learning were all performed using the MITRE Annotation Toolkit
(MAT). We report that our annotation schema can be applied with varying levels of pairwise agreement, ranging
from low agreement levels (0.125 F for the relatively rare REFILL tag) to high agreement levels approaching 0.9 F for
some of the more frequent tags. We report similarly variable scores for modeling tag labels and spans, averaging 0.
748 F-measure with balanced precision and recall. The best of our various attribute modeling methods captured
most attributes with accuracy above 0.9.

Conclusions: We have described an annotation schema for prescription regimens, and shown that it is possible to
annotate prescription regimens at high accuracy for many tag types. We have further shown that many of these
tags and attributes can be modeled at high accuracy with various techniques. By structuring the textual
representation through annotation enriched with normalized values, the text can be compared against the
pharmacist-entered structured data, offering an opportunity to detect and correct discrepancies.
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Background
Patient medication regimens are described in a variety of
genres of medical documents, including prescription or-
ders, intake interview medication lists, discharge sum-
maries, prescribing guidelines, and medication orders.
Often, at least some aspects of the regimen are described
in free text; in many cases, the entire regimen is speci-
fied in free text alone. Regimen information is essential
to patient care, as well as for secondary uses such as

retrospective studies and pharmacovigilance, but the free
text representation presents great challenges in accessing
the information computationally. In this introduction we
describe the availability and current state of the art of
medication information extraction tools. We then de-
scribe community evaluations, open representation sche-
mata, and corpus development efforts in the medication
regimen domain.

Medication information extraction systems
Over the last two decades, several systems have been de-
veloped to identify medication names and associated
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dosage attribute information in the free text of clinical
reports. Early rule-based systems include CLARIT [1],
MedLEE [2, 3], and MERKI [4]. MERKI is an open
source system that uses a library of regular expressions
and a lexicon of drug names to identify medication
names and dosage attributes. Authors of this system re-
port accuracies of 83.7% for dose, 88.0% for route of ad-
ministration, and 83.2% for frequency. CLARIT, a
commercial system, combines basic NLP, general and
special lexicons, and pattern matching rules to identify
medication names and dosage attributes. MedLEE, a
commercial system developed to extract various med-
ical concepts, identifies medication names but not dos-
age attributes. Additional commercial systems include

LifeCode™ from A-Life Medical, Inc., Natural Language
Patient Record™ from Dictaphone Corporation, and
FreePharma™ from Language and Computing NV. Al-
gorithms for these systems are not publicly available.
A 2009 assessment of the medication extraction per-

formance of commercial systems from four vendors (Lan-
guage and Computing, Coderyte, LingoLogics, and
Artificial Medical Intelligence) [5] found that they did well
identifying medication names (F-measure 0.932) but less
well identifying attributes such as strength (F = 0.853),
route (F = 0.803), and frequency (0.483), and concluded
that automated extraction could support but not replace a
manual process for clinical applications such as medica-
tion list generation.

Table 1 A comparison of concept coverage, and the identifiers for those concepts, in various information representations: MedXN/
PredMed information extraction output, SHARPn annotation schema, FHIR clinical data structures, and TranScriptML

MedXN / PredMed SHARPn FHIR TranScriptML

Dosage: amount of medication to be taken with each administration

Dosage Dosage Dose Take, Doseamount

Duration: how long patient is expected to be or has been taking the drug

Duration Duration Duration

Form: Physical form of the drug

Form Form Form

Frequency: how often the drug should be administered

Frequency Frequency Frequency, frequencyMax, period, periodMax, periodUnits Freq

Indication: the reason the drug is being taken by the patient

Reason Indication

Medication: Name of the drug

Medication Medication Medication Medication

Miscellaneous:

Modifiers Additional Instructions Instruction

PRN: Whether the drug is to be taken as needed

asNeeded PRN

Route: how the drug is administered

Route Route Route Route

Status: whether the medication is currently being taken

Status Change

Strength: the amount of active drug per unit (e.g. per tablet or per ml solution)

Strength Strength Strength

Timing: additional information relating to life events

When Timing
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The i2b2 2009 Medication Challenge shared task [6]
focused on extraction of medication-related information
from clinical text. The information to be extracted in-
cluded medication name, dosage amount, route of ad-
ministration, frequency, duration, and reason for
administration. Twenty teams participated in this chal-
lenge, and while all of the top 10 systems recognized
medication names well with F-measures above 0.75
F-measure, they performed less well on other attributes.
The attributes that proved hardest to extract were dura-
tions and reasons, for which the highest scores were
0.525 and 0.459, respectively.
Seven of the top ten performing systems were

rule-based systems [7–13]. Three of the top ten [14–16]
were hybrid systems that combined machine learning
and rules, including the highest ranking system [14],
which used machine learning for tagging and rules for
integrating related components.
PredMed [17] and MedXN [18] are two more recent

systems which improve on the accuracy demonstrated
by the 2009 i2b2 challenge entries. PredMed is not yet
publicly available; MedXN is available as a free and
open-source UIMA-based tool. Both target the same set
of seven medication-related concepts, which are listed in
Table 1 in comparison to other information
representations.
Both PredMed and MedXN find spans referencing

these seven concept types in text. Additionally, MedXN
assigns an RxCUI id to normalize the medication name,
performs coreference between medication names and
regimen concepts, and attempts to assign an RxCUI
normalization to the full medication concept. The full
normalization produces a structured string combining
the referenced regimen concepts. However, neither sys-
tem normalizes the individual concepts (e.g. Frequency);
individual concept references are left in their original
surface text form.

Medication annotation schemas
In the i2b2 2009 challenge, the target output included
standoff annotations of six fields of medication information
(medication names, doses, modes [i.e. routes], frequencies,
durations, and reasons [i.e. indications]). This schema cap-
tures the text positions and surface text of each category of
information, but does not capture any semantic or normal-
ized representation for each tagged instance.
A large annotation task undertaken by Strategic Health

IT Advanced Research Projects (SHARP) Research Focus
Area 4 (SHARPn) consisted of annotating a variety of
medical named entities in clinical notes. The annotation
task was intended to support development of clinical NLP
tools. The SHARPn NLP team used the annotation to
improve the functionality, interoperability, and usability of
a clinical NLP system, Clinical Text Analysis and

Knowledge Extraction System (cTAKES), which is now
publicly available as Apache cTAKES (http://ctakes.apa-
che.org/).
The SHARPn annotation task consisted of (1) identify-

ing mentions of clinical concepts (i.e. spans of source
document text which refer to those concepts), including
medications, (2) mapping them to a UMLS code [19]
from the provided terminology (RxNORM for medica-
tions) [20], and (3) identifying modifiers or attributes of
the mention. Terms to be annotated as a medication
were terms belonging to a specified set of UMLS seman-
tic types with RxNORM as the terminology source. In
the SHARPn annotation task, the annotation was ap-
plied to a corpus of free-text clinical notes, including
radiology and breast cancer notes, in which medication
mentions occur primarily in sentential text or
semi-structured text such as medication lists [21, 22].
SHARPn’s annotation types related to medication regi-

mens are listed in Table 1 in comparison to other infor-
mation representations; an additional annotation,
Allergy_Indicator, relates to medications, but not to pre-
scribed regimens. In addition to medication-specific at-
tributes, several general attributes (that is, attributes not
specific to a particular entity class) were applied to
medication text: Negation_indicator, Uncertainty_indica-
tor, Conditional, Subject, and Generic.
The SHARPn schema captures text positions and sur-

face text for medication names and attributes, and nor-
malized representation of medication names with
RxNorm codes. Normalization of dosage attributes was
not a focus of the annotation effort, and reasons for tak-
ing a drug (i.e., indication) were not included as part of
the medication annotation task.
A 2015 BioNLP effort [23] captured annotations of

medication information from Adverse Event Report doc-
uments. In addition to adverse event content, these an-
notations captured medication names as well as several
types of regimen information: Dosage, Route, Frequency,
and Duration. However, normalization of the captured
information was not within the scope of this effort.

FHIR medication resource schema
The medication information representation schema refer-
enced above all relate specifically to inline annotation of
medication regimen concepts, and the information extrac-
tion systems described have been designed and evaluated in
the context of those annotation schema. To fulfil the prom-
ise of NLP-enabled downstream applications such as medi-
cation decision support and medication reconciliation,
information extraction systems must produce results that
are compatible with the information structures used by
EHRs and other production systems. A full survey of clin-
ical applications’ schemas for representing medication
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information is out of scope of this article, but Tran-
ScriptML’s attribute structure for normalizing regimen con-
cepts was designed to be compatible with the Fast
Healthcare Interoperability Resources (FHIR) standard
representation.
Health Level Seven (HL7) is currently developing

FHIR, a standard for RESTful exchange of clinical data
[24]. FHIR is not an annotation schema and is not
intended as a markup language for natural language
data, but it is relevant for its inclusion of a richly de-
tailed data structure for medication regimens in its Med-
icationOrder resource. FHIR MedicationOrders [25]
include, among other data, regimen fields related to dos-
age, frequency (highly structured and allowing for
normalization of expressions like “take X to Y times per
Z days, with meals”), indication, and route. Table 1
shows these data types in comparison to other
representations.

Methods
Description of the data
We developed our annotation schema and conducted our
experiments using a dataset obtained from Partners
Healthcare. The full dataset consisted of 2914 prescrip-
tions, each of which included a number of fields that con-
tain structured data (e.g., ID, medication, dose, form,
frequency, duration, etc.) as well as a directions field con-
taining unstructured text (e.g., “take 3 tablets twice a day
for the next 2 weeks then stop”). Forty percent of the re-
cords were preserved as an unexamined test set for other
related work, and 60% (1746 records) were used in the

present study to develop and test the TranScriptML anno-
tation schema. Our annotation effort focused exclusively
on the directions field, with other fields informing the de-
sign of the annotation tag set. A simplified sample input
record appears in Table 2.
The directions field was extracted from each of the train-

ing records to create 1746 short text files for annotation.

Annotation and modeling environment
We constructed our annotation schema, conducted our
annotation, reconciled our results, and built our models
using the MITRE Annotation Toolkit (MAT). (MAT is a
generalization and extension of the MIST
de-identification system [26].) Open-source installation
files and full documentation of MAT are available at
http://mat-annotation.sourceforge.net/. MAT provides a
declarative language for specifying the details of an an-
notation task, including tag names, attributes, and rela-
tions, as well as annotation workflows. MAT also
provides a facility for building predictive models (via ma-
chine learning) from and conducting experiments with
annotated data. The model building component imple-
ments machine-learning algorithms including Condi-
tional Random Fields span annotation and Maximum
Entropy classification. A sample record being annotated
in MAT appears in Fig. 1.

Annotation Schema
Throughout the remainder of the paper, we will use the
following terms with specific meanings: a tag refers to
an annotation denoting that a medication regimen con-
cept is described in a particular part of a document; a
label refers to the category to which the tagged concept
belongs (e.g. DOSEFORM, DURATION); a span refers
to the specific portion of the document (defined by start
and end character indices) to which the tag applies; an
attribute is an annotated property of a tag (specific to
the label type) which by itself or in combination with
other attributes assigns a normalized semantic represen-
tation of the tagged concept.
Our annotation schema, TranScriptML, is designed to

provide flexible markup and representation of the regi-
mens described in prescription directions. It was devel-
oped iteratively; each iteration included redundant
annotation of small subsets of the corpus (~ 40 docu-
ments) by four annotators (A1-A4) using candidate Tran-
ScriptML schema versions. Discrepancies and flagged
issues were discussed by all four annotators together after
each iteration, which served the dual purposes of refining
the schema and resolving annotator misunderstandings
prior to primary annotation (which is described later).
Once the schema stabilized, all documents used in schema
development were reannotated along with the remainder
for the sake of corpus consistency. TranScriptML contains

Table 2 Sample Prescription Record

FieldName Contents

ID 247

Medication IBUPROFEN

Route PO

Dose 600

Dose Units MG

Strength 600MG

Take 1

Form Tablet

Frequency TID

PRN 1

PRN Reason Pain

Duration 30

Duration Units

Dispense Quantity 90

Dispense Quantity Units Tablet(s)

Directions take 2 tablets three times a day as
needed for pain
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19 tag types, each with associated attributes. Tran-
ScriptML is a detailed representation that expands signifi-
cantly on the complexity of medication regimens that can
be described by the schemata used in earlier representa-
tions such as those used in the i2b2 and SHARPn medica-
tion annotation challenges. For example, TranScriptML’s
attribute structure allows full specification of frequency
ranges (e.g. “every 4-6 hours”), preserves the differences in
meaning of frequency information that is stated as periods
rather than frequencies (e.g. “every three days” vs. “three
times per day”), and enables specification of additional
timing information (e.g. “1 hour after meals”). The de-
tailed attribute structure for dose, strength, frequency, and
timing information is mappable to the detailed data struc-
tures used in FHIR’s MedicationOrder resource, described
earlier. The list of tag descriptions appears in Table 3.
There are several tag label types represented in Tran-

ScriptML. Simple span-only tags such as PRN and INDI-
CATION mark spans of text that refer to corresponding
concepts; these tags identify the concept spans but have
no additional attributes to describe and normalize the
content. Other tags have attributes associated with them
that encode the semantics that the text spans describe.
These attributes are either numeric (e.g., quantity of a

DOSEAMOUNT), text strings (e.g., units or events), or
Boolean (e.g., REFILLs allowed or not allowed). Some
tags are complex, with multiple attributes (e.g, FREQ
and TIMING). A list of tags and their attributes appears
in Table 4.

Annotation effort
Four annotators (A1-A4) participated in the study, and
each document in the corpus was double-annotated.
The 1746-document corpus was divided into 4 groups
(G1- G4), with each annotator individually tagging all
documents in 2 of the groups. After the initial annota-
tion, each group of documents was adjudicated by a
third annotator who had not been one of the primary
annotators of that group. Finally, annotators A1 and A2
reconciled the entire corpus. This double-annotation,
followed by the two-stage adjudication and reconcili-
ation process was an effort to ensure we produced a
consistently tagged corpus.

Model building
We conducted several learning experiments, described
below, to model the annotations in our corpus.

Fig. 1 Sample record in MAT annotation environment
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We used the Carafe [27] Conditional Random Fields
(CRF) engine included with the MAT distribution to
learn models of tag spans and labels. For span tagging
and labeling, we used MAT’s default English tokenizer
and the following feature set:

� Prefix and suffix ngrams of length up to 3
� Whether the current or previous token starts with a

capital letter
� Whether the current token contains a digit
� The surface form of the current token
� The surface form of each of the single tokens 1, 2,

or 3 tokens away from the current token

Depending on the intended use case of a trained
model, the relative importance of precision and re-
call may not be equal, but rather there may be a
particular need for high recall, or high precision. Ca-
rafe includes a parameter (prior_adjust) to adjust the
tradeoff between precision and recall; we used this
to build three span label models: one biased toward
high recall (prior_adjust set to − 3), one biased to-
ward high precision (prior_adjust set to + 3), and
one with balanced recall and precision (default
prior_adjust of 0 applied). Adjusting this parameter
can result in higher recall at the expense of lower
precision, or higher precision at the expense of
lower recall.

For modeling the attributes of tagged spans, we used
several different methods and combinations of methods,
because there are several different types of attributes
(numeric, string, Boolean), and many tags include mul-
tiple attributes of different types. We describe the attri-
bute modeling methods below in the context of
particular tags and classes of tags. Classifiers for model-
ing attributes were trained using Carafe’s Maximum En-
tropy engine. Model building experiments for both span
annotation and attribute learning used an 80/20 train-
ing/test split of the 1746-document annotated corpus.

Preprocess
Before modeling attributes, we normalize number ex-
pressions by using a numeric retokenizer that maps all
number expressions to canonical forms. For example,
three is mapped to 3, one and a half to 1.5, and 4 to 4.
Except where noted below, prescriptions containing nor-
malized number expressions are the inputs for the mod-
eling experiments.

Frequency
The FREQ tag is complex, encoding the times-per-day
and/or timing interval for medications, as well as units
for these numbers. As such, it contains both numeric
and string attributes, and we explored several methods
for modeling the attributes. For example, “take 2-3 times
per day” would involve a FREQ tag with attributes

Table 3 TranScript annotation tag Label type descriptions

Tag Example Description

Dispense 120 The quantity of a medication to be issued by the pharmacist.

Dispense_unit tablets

Medication Ibuprofen Text specifying a specific pharmaceutical product.

Take 2 The quantity of medication per application, from the patient’s perspective.

Strength 400 The amount of active ingredient per physical quantity of medication.

Strength_unit mg

Doseamount 800 The amount of active ingredient per application of medication.

Doseamount_unit mg

Doseform capsules The form of medication taken. Often marked in conjunction with TAKE.

Duration 3 The period of time a patient should continue using a medication.

Duration_unit weeks

freq 3–4 times per day The frequency of use of a medication.

Timing before meals The intended timing of medication use or application. Differs from FREQ in
that it specifies temporal alignment of doses rather than patterns of repetition.

PRN as needed Text indicating medication to be taken only as needed.

Indication pain Condition for which medication is taken.

Route p.o. A medication’s manner or point of application to the body.

Refill no refills Indicates whether refills are allowed or not.

Sub_status no substitutions Indicates whether substitutions are allowed or not.

Instruction if pain persists, call your physician Text indicating patient actions that are not captured by another tag.
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times_per = 2, to_times_per = 3, every = 1, to_every = null,
and unit = DAY. The Baseline method simply counts
each UNIT value and applies the most common value,
along with the default numeric feature values of time-
s_per = 1, to_times_per = null, every = 1, and to_every =
null. The Hybrid method used a simple model contain-
ing bag of words, bigrams, and count of number expres-
sions as features for learning the value of the UNIT
attribute, as well as to determine whether the FREQ in-
stance is an interval (every N time-units), or a count (N
times per time-unit) phrase. Our Classifier method is a
variation on the Hybrid method that adds a classifier for
each numeric attribute, normalizing to allow only 1–12,
15, 30, 45 and 60 as valid values.

Timing
The TIMING tag is also complex, with multiple numeric
and string attributes. The Baseline method chooses the
most common value for each attribute. The Hybrid
method builds a classifier for direction, event, and offse-
t_unit, and maps the numeric attributes directly from

the normalized token list. The Classifier method adds a
classifier for the numeric attributes as well, using the
same features as used for the FREQ tag, and normalizing
numeric attributes to the same list of valid values.

Numeric attributes
DISPENSE, DOSEAMOUNT, STRENGTH, TAKE, and
DURATION all have only numeric attributes. We
experimented with just two conditions here, Un-norma-
lized, in which the source string is mapped as-is to the
attribute (e.g., “take <TAKE amt=‘three’>three</TAKE>
tablets”), and Normalized, in which the numeric retoke-
nizer preprocess is applied (e.g., “take <TAKE amt=‘3’>-
three</TAKE> tablets”).

Choice attributes
Applying the unit tags (DISPENSE_UNIT, DURATIO-
N_UNIT, etc.) and ROUTE involves selecting attribute
values from fixed lists. We explored four methods for
modeling these attributes. The Baseline method simply
chooses the most common value seen in the training

Table 4 Transcript annotation tag label types and their attributes

Tag Attributes Type (Values)

Dispense quantity, to_quantity Numeric

Doseamount amount, to_amount Numeric

Strength

Take

Duration num, to_num Numeric

Dispense_unit unit string (select from fixed list)

Doseamount_unit

Strength_unit

Duration_unit unit string (minute, hour, day, week, month, other)

Doseform form string (select from fixed list)

Medication name string (free text defaults to text span)

Route route string (select from fixed list)

side string (left, right, both)

Freq times_per, to_times_per, every,
to_every

numeric

unit string (minute, hour, day, week, month, other)

Timing offset, to_offset numeric

offset_unit string (minute, hour, day, week, month, other)

direction string (before, after, other)

event string (breakfast, lunch, dinner, meals, morning, noon, afternoon, evening, bedtime,
procedure, treatment, other)

Instruction note string (free text input)

Refill refill boolean

Sub_status subst boolean

PRN (no attributes)

Indication
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data. The Literal Match method memorizes the mapping
between text spans and attribute values in the training
data, and uses the most common match. As a fallback, if
a span does not appear in the training data, but matches
one of the available values, the value is selected. The
Levenshtein Fallback method is similar to the Literal
match method, but the fallback method selects the value
having the smallest edit distance [28] from the span, ra-
ther than requiring an exact match. Finally, the Classifier
method builds a classifier for each attribute, using
bag-of-words and bigrams as features.

Boolean attributes
For the Boolean attribute tags (REFILL and SUB_STA-
TUS), our Baseline method chooses the most common
value seen in the training data, and the Classifier
method builds a classifier for each attribute using
bag-of-words and bigrams as features.

Results
Pairwise agreement
Because each document was annotated by exactly two of
the four annotators, we calculated pairwise agreement
for each of the four annotator pairings (G1-G4) by cal-
culating the F-measure between each set of annotations.
These calculations are presented both broken down by
tag label and also in total, and they reflect the degree of
agreement between human annotators without reference
to automated system output. Pairwise agreement results
by F-measure appear in Table 5.
Pairwise agreement by F-measure was fairly consistent

between the groupings, with overall agreement ranging
between 0.685 to 0.752. Inconsistent use of the
STRENGTH, STRENGTH_UNIT and REFILL tags low-
ered their agreement levels. The agreement levels for the
INSTRUCTION tag were also predictably low, as IN-
STRUCTION is a catch-all tag for capturing patient in-
structions not captured elsewhere. Most of the other
tags had relatively high agreement levels.

Label and span accuracy
Table 6 shows precision, recall, and f-measure scores for
conditional random field modeling experiments for tag
labels and spans. We report three experiments, one
where the modeling is biased towards high precision
scores, one biasing high recall scores, and a balanced
run. The balanced run performs best overall, with an
overall f-measure score of 0.748, and a narrow spread of
precision and recall. Training with a bias towards preci-
sion boosts precision significantly (to 0.996), at the ex-
pense of recall (0.407). Surprisingly, training with a bias
towards recall fails to boost recall (0.726) but does lower
precision (0.651). Overall modeling results for labels and

spans are encouraging, but show substantial room for
improvement, particularly for the lower-frequency labels.

Attribute accuracy
Table 7 shows accuracy results for modeling attribute
values of various types. These experiments involved pre-
dicting attribute values for manually annotated span la-
bels (thus there is no compounding of span prediction
errors with attribute prediction errors). For choice attri-
butes the Levenshtein Fallback and Classifier methods
perform best (side being a notable exception where Lit-
eral Fallback outperforms Levenshtein Fallback). For the
attributes of FREQ and the attributes of TIMING both
the Hybrid and Classifier methods do quite well, with
most accuracy scores in the 0.9–1.0 range. For the nu-
meric attributes the Normalized method outperforms
the Un-normalized method, by a large margin for some
attributes. The exception is to_amt, where the Un-nor-
malized method is slightly better. Finally, for Boolean at-
tributes the Classifier method outperforms the Baseline
method.

Discussion
The results of our annotation efforts show that it is pos-
sible to create a detailed annotation schema that cap-
tures a variety of information about prescription

Table 5 Pairwise agreement F-measures by annotation group
and tag

Tag G1 G2 G3 G4 Average

Dispense 0.800 0.606 0.750 0.750 0.727

Dispense_unit 0.870 0.611 0.421 0.556 0.614

Doseamount 0.786 0.845 0.779 0.841 0.813

Doseamount_unit 0.828 0.810 0.707 0.822 0.792

Doseform 0.943 0.917 0.939 0.950 0.937

Duration 0.868 0.738 0.647 0.824 0.769

Duration_unit 0.916 0.779 0.702 0.868 0.816

FREQ 0.919 0.897 0.850 0.883 0.887

Indication 0.729 0.729 0.795 0.698 0.738

Instruction 0.260 0.294 0.229 0.381 0.291

Medication 0.861 0.528 0.769 0.723 0.721

PRN 0.786 0.977 0.800 0.920 0.870

Refill 0.000 0.000 0.500 0.000 0.125

Route 0.689 0.674 0.713 0.520 0.649

Strength 0.154 0.476 0.500 0.000 0.283

Strength_unit 0.167 0.421 0.615 0.000 0.301

Sub_status 0.609 0.786 0.929 0.462 0.696

Take 0.955 0.830 0.847 0.928 0.890

Timing 0.774 0.504 0.721 0.609 0.652

Overall 0.752 0.685 0.720 0.747 0.726
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directions in a structured way. Our pairwise agreement
levels show that most of the tags in this schema can be
applied in a consistent manner. The agreement levels
show room for improvement, and point to the need to
adjudicate a gold standard (which we did). There is al-
ways a tradeoff between the complexity of an annotation
schema and the consistency with which it can be ap-
plied, as reflected in pairwise agreement numbers. The
lower agreement numbers of the STRENGTH and
STRENGTH_UNIT tags may be a result of their confus-
ability with DOSEAMOUNT and DOSEAMOUNT_U-
NIT. These two sets of tags have clearly different uses,
but capture similar information. In a complex annota-
tion task such as ours these distinctions can become too
subtle to apply consistently, and the more frequently oc-
curring tags (DOSEAMOUNT and DOSEAMOUNT_U-
NIT in this comparison) can become the default in an
annotator’s mind for particular text strings.
One of the lower performing tags in our label and

span modeling is MEDICATION. Of the 26 MEDICA-
TIONs in the test corpus, just three were correctly iden-
tified by label and span in the Balanced model. Nine
were assigned an INSTRUCTION tag (and often a lon-
ger span) by the model, and 14 were missed entirely.
This result is unsurprising. MEDICATION strings vary

greatly, as do INSTRUCTION strings, and are very
sparse in this corpus, as medications often appear only
in the structured data and not in the patient prescription
regimen string. The methods in this study relied solely
on our small training set, whereas any system intended
for production use should rely on a medication name
vocabulary (such as RxNorm) as an additional source of
information. Our attribute modeling experiments show
that there are methods available to assign attributes
automatically at a high level of accuracy. However, the
best-performing methods differ for different attribute
types. The Classifier methods tend to perform at or near
the top for all classes of attributes, save numeric, which
we did not model with any classification method.
Our study is limited in that it describes an annotation

schema developed over a single corpus of prescription
regimens. As there was no earlier effort to build on, devel-
opment of the schema was a labor-intensive task, involv-
ing several rounds of pilot annotation and refinement of
the schema. The schema has not been validated against a
second corpus from a different source; this would be a
valuable direction for future work.
Previous related work in de-identification has shown that

the labor needed to apply a schema to a corpus can be sig-
nificantly reduced by iteratively applying preliminary

Table 6 Precision, recall, and F-measure results for labels and spans

Tag # train Balanced P & R Precision Bias Recall Bias

P R F P R F P R F

Dispense 46 1.000 0.333 0.500 1.000 0.364 0.222 1.000 0.333 0.500

Dispense_unit 73 0.857 0.316 0.462 1.000 0.348 0.211 1.000 0.316 0.480

Doseamount 221 0.900 0.614 0.730 1.000 0.275 0.159 1.000 0.500 0.667

Doseamount_unit 202 0.921 0.761 0.833 1.000 0.386 0.239 1.000 0.630 0.773

Doseform 533 0.975 0.826 0.895 1.000 0.769 0.625 0.981 0.736 0.841

Duration 205 1.000 0.754 0.860 1.000 0.659 0.492 1.000 0.590 0.742

Duration_unit 193 1.000 0.772 0.871 1.000 0.705 0.544 1.000 0.579 0.733

FREQ 1329 0.978 0.735 0.840 0.990 0.683 0.522 0.977 0.700 0.816

Indication 319 0.879 0.296 0.443 1.000 0.310 0.184 0.852 0.235 0.368

Instruction 4075 0.602 0.892 0.719 1.000 0.068 0.035 0.510 0.928 0.658

Medication 145 1.000 0.103 0.188 1.000 0.000 0.000 1.000 0.103 0.188

PRN 232 1.000 0.855 0.922 1.000 0.804 0.673 1.000 0.782 0.878

Refill 70 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

Route 591 0.947 0.423 0.584 1.000 0.408 0.256 0.884 0.363 0.515

Strength 33 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

Strength_unit 34 1.000 0.000 0.000 1.000 0.000 0.000 1.000 0.000 0.000

Sub_status 112 0.929 0.500 0.650 1.000 0.000 0.000 1.000 0.462 0.632

Take 774 0.952 0.855 0.901 0.993 0.726 0.573 0.962 0.761 0.850

Timing 1359 0.979 0.634 0.770 1.000 0.506 0.339 0.908 0.564 0.696

Overall 10,546 0.743 0.753 0.748 0.996 0.407 0.256 0.651 0.726 0.687

For each tag, the highest performing f-measure is presented in boldface
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machine-learned models to unseen data as pre-taggers [29].
By doing this, the annotation task becomes a correction task
(inspecting and correcting the output of the preliminary
models), which has been shown to speed-up model and cor-
pus development [30]. A logical next step for this work is to
apply these tag-a-little, learn-a-little principles to bootstrap
the development of an annotated prescription regimen cor-
pus from a second source, to validate our approach.

Conclusions
Through an annotation development effort, we have dem-
onstrated a method for capturing structured data from pre-
scription regimen strings, and have shown that the schema
can be applied manually with high accuracy for many tag
label types. We have further shown that conditional ran-
dom field modeling techniques can apply tag labels to text
spans with similar accuracy levels in this corpus, and that
various modeling techniques can correctly set the attributes
of these tags at high accuracy. Future work can address the
applicability of these techniques to other corpora, and

explore using tag-a-little, learn-a-little iterative model and
corpus development to reduce the labor needed to create
annotated corpora of prescription regimens.
The strings in our corpus are textual representations of

prescription regimens, complete with errors. By structur-
ing the textual representation through annotation, the text
can be compared against the pharmacist-entered struc-
tured data (through one-to-one data structure mapping in
the case of FHIR-compliant pharmacy data), offering an
opportunity to detect and correct discrepancies.
TranScriptML is a richer representation of medication

regimen information than those used in previous natural lan-
guage annotation efforts, and is consistent with emerging
standards for representation of structured data in the same
domain. We hope these standards will encourage compatibil-
ity between clinical NLP tools and the Electronic Health Rec-
ord (EHR) software ecosystem. For these reasons, we are
releasing our annotation schema and guidelines alongside
this report, and urge that TranScriptML or compatible rep-
resentations be used in future corpus development.

Table 7 Accuracy results for tag attributes

Choice Attributes Baseline Literal Fallback Levenshtein Fallback Classifier

form 0.597 0.944 0.965 0.944

route 0.339 0.667 0.738 0.887

side 0.792 0.935 0.173 0.935

unit 0.477 0.831 0.869 0.823

Attributes of FREQ Baseline Hybrid Classifier

every 0.808 0.984 0.981

to_every 0.954 1.000 0.986

times_per 0.570 0.927 0.900

to_times_per 0.876 0.949 0.954

unit 0.722 0.976 0.976

Attributes of TIMING Baseline Hybrid Classifier

direction 0.396 0.990 0.990

event 0.406 0.919 0.919

offset 0.480 0.883 0.742

to_offset 0.866 0.950 0.950

offset_unit 0.430 0.826 0.826

Numeric Attributes Un-normalized Normalized

amt 0.160 0.927

to_amt 0.882 0.857

num 0.115 0.885

to_num 0.836 0.885

quantity 0.889 1.000

to_quantity 1.000 1.000

Boolean Attributes Baseline Classifier

refill 0.333 1.000

subst 0.500 0.615
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Additional file 1: TranScriptMLAnnotationGuidelines.docx (MS Word
document). TranscriptML Annotation Guidelines. Guidelines for applying
the TranscriptML annotation schema to textual prescription regimens.
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Additional file 2: TranscriptAnnotationTask.xml (XML file). TranscriptML
Task Definition. XML file defining the Transcript task for use with the
MITRE Annotation Toolkit. (XML 19 kb)
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