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Abstract

Background: There is an increasing amount of unstructured medical data that can be analysed for different
purposes. However, information extraction from free text data may be particularly inefficient in the presence of
spelling errors. Existing approaches use string similarity methods to search for valid words within a text, coupled with
a supporting dictionary. However, they are not rich enough to encode both typing and phonetic misspellings.

Results: Experimental results showed a joint string and language-dependent phonetic similarity is more accurate
than traditional string distance metrics when identifying misspelt names of drugs in a set of medical records written in
Portuguese.

Conclusion: We present a hybrid approach to efficiently perform similarity match that overcomes the loss of
information inherit from using either exact match search or string based similarity search methods.
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Background
There is a large amount of unstructured data being pro-
duced by different kinds of information systems, in a
variety of formats, due to the advancement of commu-
nication and information technologies [1, 2]. Within the
clinical domain, Electronic Health Record (EHR) sys-
tems are becoming widely adopted, from which infor-
mation describing the patient’s health conditions is often
presented and stored in the form of free text notes [3].
Existing text-mining methods aim to extract detailed
structured information from clinical narratives, such as
drug prescriptions, their variability, and adverse drug
reactions [4, 5]. However, free-text is susceptible to typ-
ing and phonetic misspellings. Spelling errors of generic
drug names can occur in up to one out of six entries
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in electronic drug information systems. Such errors are
likely to be responsible for up to 12% of adverse drug
events, mainly caused by errors during transcription of
prescriptions, illegible prescriptions, or drug name confu-
sion [6]. Due to such frequency and the relevance of drug
information in clinical tasks, spelling correction becomes
crucial to support health care professionals with spelling
error-tolerant engine systems.

Similarity comparison algorithms can be used to iden-
tify and extract concepts from free text [7] when text is
loaded with misspellings. String similarity metrics (e.g.
Edit Distance [8] and Jaro-Winkler Distance [9]) can mea-
sure similarity between two strings. These functions can
be used to compare the elements from the input data
source against an existing dictionary in order to identify
a possible valid word matching a misspelling. However,
existing string similarity algorithms may be inefficient to
analyse text loaded with spelling errors because they may
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not necessarily handle specific aspects, such as phonetic
errors [10]. In these cases, it is necessary to use phonetic
similarity metrics.

In order to overcome the possible loss of information
by using exact match search methods to find mentions of
drugs within patient records, we propose a hybrid solution
coupling string and phonetic similarity metrics to identify
misspelt names of drugs. This approach was used to pro-
duce a dictionary of misspelt variations. A Trie-based
fast similarity search algorithm was then able to iden-
tify a broader range of potential candidates as misspelt
variations for each drug name.

Use-case
Since July 2013 the Brazilian government tries to address
the shortage of doctors, especially in the inner cities and
the outskirts of large cities in Brazil, through the hir-
ing of doctors from other countries. With the addition of
doctors with distinct language background in the public
health system (especially from South and Central America
where people originally speak Spanish), a larger number of
spelling errors have been found in electronic record sys-
tems. Such errors occur mainly due to the similarity of the
Portuguese language with other Latin languages (such as
Spanish and Italian) [11].

InfoSaude (InfoHealth) [12] is an information system
created to manage and track medical records, such as
exams, vaccinations, and drug prescriptions. The system
is used to meet the needs of 75 public health centres
in the city of Florianopolis/Brazil. It integrates different
information structures used by the Brazilian Ministry of
Health, such as the Outpatient Information System (CIS)
and the International Code of Diseases (ICD). The system
also generates information for Ambulatory Care Indi-
vidual Report (RAAI), summarizing data on the type of
care, pregnancies, procedures performed on the patient,
applied vaccines and drug prescriptions. Whilst maintain-
ing a series of structured information, the system also con-
tains textual fields that are filled by health professionals
during patient care.

Although InfoSaude has structured information about
drug prescriptions, a deeper analysis on drug usage, abuse,
or checking whether patients are correctly and effectively
making use of the prescribed drugs, relies on the observa-
tions registered by the clinicians using free text. However,
the textual content of the medical records does not go
through any kind of review. Thus, it is common to find a
number of spelling and phonetic errors that could harm
any further analysis. An information extraction system
is expected to overcome this problem in order to avoid
information loss.

Approximate string match
The existing similarity match methods range from using
basic string similarity distance metrics, which measure

inverse similarity between two text strings by providing
an algorithm-specific numerical indication of distance, to
the use of more sophisticated methods coupled with the
phonetic representation of words in a given language.

Edit Distance (ED) (or Levenshtein Distance) [8] is
the most widely known string metric. ED operates
between two input strings – ED(w1, w2) – and returns the
minimum number of operations (single-character edits)
required to transform string w1 into w2. Other exam-
ples and variations of string similarity metrics include
Jaro-Winkler Distance [9], Hamming Distance [13], and
StringSim [14]. However, string distance measures tend to
ignore the relative likelihood errors.

Phonetic representations encode words based on the
sound of each letter to translate a string into a canonical
form. Soundex [15] is an example of a phonetic match-
ing scheme initially designed for English that uses codes
based on the sound of each letter to translate a string into
a canonical form of at most four characters, preserving
the first letter. In addition, phonetic similarity metrics are
able to assign a high score even though comparing dissim-
ilar pairs of strings that produce similar sounds [14, 16].
As the result, phonetically similar entries will have the
same (or similar) keys and they can be indexed for efficient
search using some hashing method. However, phonetics
is language-dependent [17, 18] and solutions for this sort
of problems must be specially designed for each specific
language.

In addition, fast similarity search approaches have been
proposed in order to match free text against large dic-
tionaries or databases, being supported by either indexed
database structures [14, 19, 20] or Trie-based (prefix
index) approximate matching [21–23]. In an initial exper-
iment, Fuzzy Keyword Search [22] has proved to be
efficient by combining Trie-based search with string sim-
ilarity functions. However, processing time grows expo-
nentially as long as the Edit Distance threshold increases,
becoming inefficient for ED > 2, which we were able to
confirm by comparing the processing time (in millisec-
onds) spent to perform 1000 searches over a dictionary of
80,000 entries, varying ED amongst 0 (16 ms), 1 (218 ms)
and 2 (3267 ms).

Method
As part of a NLP pipeline that aims to identify different
aspects of drug usage by patients, one of the atomic steps
within this pipeline is the identification of drug names
in free text. In this section we describe how string and
phonetic similarity metrics can be combined to improve
accuracy on identifying misspelt names of drugs within
a set of records written in Portuguese. Our approach has
two main steps. First, we combine string (StringSim) and
language-dependent phonetic (PhoneticMapSimPT ) sim-
ilarity metrics proposed in [18] in a hybrid similarity
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search solution in order to produce a base dictionary
of misspelt variations. These metrics were originally
designed for the Brazilian Portuguese language. Finally,
this dictionary is used as input for a fast Trie-based
similarity search algorithm that finds potential candidates
to be annotated as drug names in text.

We started using list of 5535 drug names available in
the InfoSaude system, and searching the most cited drugs
in a experimental dataset of clinical notes provided by
the InfoSaude team (de-identified data with no ethical
approval required) from 4748 distinct patients (multiple
documents per patient). An exact match search produced
a list of 516 drug names, from which the 20 most cited
drugs in the text were initially selected (Table 1).

In this first step, we aim to produce a base dictionary
of misspelt drug name variations by combining string and
phonetic thresholds in order to maximise the accuracy on
identifying true positive misspelt words. Such thresholds
are used to determine whether a candidate misspelt word
correspond to a drug name. Inappropriate low threshold
values may return too many false candidates favouring low
precision by including words with low similarity values
that do not correspond to a drug name. In contrast, high
threshold values may exclude possible valid misspelt drug
names from the final matching, favouring low recall. The

Table 1 Occurrence (#) of the 20 most cited drug names in a set
of 4748 medical records written in Portuguese

Drug name Number of occurrences

Fluoxetina 18624

Paracetamol 8697

Diazepam 8474

Amitriptilina 8463

Omeprazol 7825

Dipirona 7320

Glicose 5721

Captopril 5383

Insulina 5290

Nimesulida 4228

Clorpromazina 4226

Enalapril 4144

Imipramina 4135

Sinvastatina 3862

Carbamazepina 3853

Amoxicilina 3716

Ibuprofeno 3714

Metformina 3467

Risperidona 3464

Atenolol 3224

method used to find the most suitable string and phonetic
similarity thresholds is described below:

• We selected a list of candidate words (similar words)
for each drug, by finding all words that have at least 3
matching consonantal phonemes in each pair of true
positive and candidate drug name or the Edit
Distance metric ≤ 3.

• The returned list of similar words corresponding to a
given drug name d was manually analysed. We
applied a filter in order to consider candidates words
w where StringSim(d, w) ≤ 0.6 (this threshold can be
considered relatively low and resulted approximately
50% of false positive candidates). The final result is a
list of 1791 distinct candidate words for the set of
drug names listed in Table 1 – an average of 90
similar candidate words per drug.

• The candidate words were manually annotated to
identify whether each word corresponds to a valid
drug name, resulting 938 positive matches and 853
negative matches. We also automatically annotated
each positive and negative match with the
corresponding string and phonetic similarity
measures (StringSim and PhoneticMapSimPT).

• We used the annotated set of candidates to perform a
grid search over the combined string and phonetic
similarity values in order to find the best similarity
threshold values that favour precision and recall. The
list of 20 drugs was split into two groups (10 drugs
each) used as training and validation sets. The grid
search algorithm is presented in the form of a
pseudo-code in Fig. 1.

The pseudo-code performs an exhaustive search for the
best pair of phonetic and string similarity thresholds. The
input comprises two manually annotated lists (trainSet
and validSet) – containing names of drugs and candidate
similar words with the corresponding positive or negative
match flag – and a list with 7730 pairs of possible string
and phonetic threshold values. 660 pairs of similarity
values contain StringSim = 0, i.e. a possible solution con-
sidering only the phonetic similarity metric as a threshold.
Finally, for each possible pair of threshold values, the algo-
rithm calculates Precision, Recall, and F1 for each set of
10 drugs (trainSet – lines 2-7 – and validSet – lines 8-13).
The final thresholds are updated each time both F1train
and F1valid simultaneously achieve better values – lines
14-19. After executing the described pseudo-code on the
data extracted from the medical record set, we observed
a hybrid solution considering both phonetic and simi-
larity thresholds achieved better accuracy on identifying
misspelt names of drugs. The hybrid solution combines
a smaller phonetic threshold to perform a fast similar-
ity search that result more similar words, coupled with a
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Fig. 1 A pseudo-code to find similarity thresholds

string similarity threshold that works as a complementary
filter. Table 2 depicts the final resulting threshold values.

Results
The final threshold values were used to find positive mis-
spelt names for a broader list of drugs. A total of 1442
misspelt words corresponding to 409 different drug names
were identified. Table 3 shows the drug names (except
those occurring in the training and validation sets) in

Table 2 Best threshold values found by the grid search method

Parameter Value

Training Set Number of true positives 417

Number of false positives 31

Number of false negatives 25

Precision 0.931

Recall 0.943

F1-score 0.937

Validation Set Number of true positives 477

Number of false positives 39

Number of false negatives 19

Precision 0.924

Recall 0.961

F1-score 0.942

Thresholds Phonetic similarity 0.844

String similarity 0.831

which the greatest number of misspelt forms were found,
as well as the corresponding accuracy (precision, recall,
F1) on identifying the misspelt variations for each drug.
We also compare the accuracy of our approach against the
widely used Edit Distance metric.

Information Extraction and NLP systems are tradition-
ally evaluated through precision, recall, and F1-score rel-
evance measures. Precision is equivalent to the amount
of retrieved instances that are relevant, while recall is
equivalent to the amount of relevant instances that are
retrieved. The terms true positives (TP) and true negatives
(TN) represent the correct result and the correct absence
of results respectively, while the terms false positives (FP)
and false negatives (FN) correspond to the unexpected
result and the missing result respectively. These terms are
used to define precision and recall according to Eqs. 1
and 2. In other words, the greater is precision the lesser is
the proportion of false positive results, whilst the greater
is recall the lesser is the proportion of false negative
results. Finally, the F1-score result can be interpreted as
the weighted average (or harmonic mean) between preci-
sion and recall [24], reaching its best value at 1 and worst
score at 0 (Eq. 3).

Precision = TP
TP + FP

(1)

Recall = TP
TP + FN

(2)
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Table 3 Drugs with the highest number of misspelt variations

Drug name Number of similar words
Inexact Phonetic Match F1-Score when using only string match

Precision Recall F1 ED ≤ 1 ED ≤ 2 ED ≤ 3 ED ≤ 4

Propanolol 52 0.960 0.979 0.967 0.310 0.819 0.945 0.955

Glibenclamida 49 1.000 1.000 1.000 0.829 0.956 0.955 0.961

Anlodipino 49 0.913 0.976 0.944 0.612 0.938 0.952 0.942

Medroxiprogesterona 47 1.000 0.914 0.955 0.763 0.881 0.955 0.927

Metoclopramida 46 1.000 0.977 0.989 0.750 0.977 0.965 0.964

Loratadina 46 0.837 0.947 0.889 0.774 0.973 0.963 0.955

Dexametasona 45 1.000 0.800 0.889 0.615 0.915 0.954 0.952

Furosemida 43 0.963 1.000 0.981 0.844 1.000 0.976 0.961

Prednisona 42 1.000 0.878 0.935 0.730 0.952 0.976 0.956

Hidroclorotiazida 41 1.000 0.975 0.987 0.776 0.962 0.952 0.940

Diclofenaco 41 0.923 0.947 0.935 0.812 0.914 0.950 0.912

Ciprofloxacino 37 1.000 0.918 0.958 0.520 0.878 0.935 0.922

Espironolactona 36 1.000 1.000 1.000 0.714 0.941 0.948 0.962

Salbutamol 36 1.000 0.972 0.986 0.819 0.956 0.976 0.943

Clonazepam 34 1.000 1.000 1.000 0.692 0.969 0.961 0.939

Beclometasona 33 1.000 0.967 0.984 0.777 0.935 0.961 0.921

Dexclorfeniramina 31 1.000 0.903 0.949 0.708 0.872 0.960 0.959

Metronidazol 30 0.965 0.965 0.965 0.816 0.964 0.942 0.926

Prednisolona 30 0.965 0.965 0.965 0.739 0.925 0.976 0.966

Isossorbida 29 0.963 1.000 0.981 0.761 0.960 0.957 0.936

Average F1-score 0.963 0.718 0.934 0.958 0.945

The best F1 score is highlighted for each drug

F1 = 2 × Precision × Recall
Precision + Recall

(3)

Some drugs reach recall lower than 0.9 (e.g. “Dexameta-
sona” and “Prednisona”) and “Loratadina” has a precision
around 0.83, which is lower than most others. Although
not being conclusive and still needs further investiga-
tion, we found in an initial analysis the observed differ-
ences among the scores refer to some prefixes (e.g. “cap”,
“clo”, “para”, “ox”) and suffixes (e.g. “mina”, “lina”, “pina”,
“tina”) that are used to compound names of distinct drugs,
increasing the value of the similarity scores for negative
matches, thus leading to false positives. Some words in
Portuguese can also be compound by the verbal derivative
form of a noun, such as “insulinizar” as a verb referring
to the substance “Insulina”. All these factors combined
increase the probability of a drug name being similar to a
more diverse set of distinct words or other drugs in this
specific language.

A hybrid solution showed to be efficient on dealing
with both phonetic and spelling errors, and combining
both string and phonetic similarity thresholds favoured
precision and recall when looking for misspelt drug

names. However, this approach suffers in terms of per-
formance in a large corpus. Thus, we used the result-
ing dictionary of true positive misspelt names of drugs
as input for an adapted version of the Trie-based fast
search approach algorithm proposed in [22]. This com-
bined approach showed to be efficient (in terms of per-
formance) on finding dictionary-based variations with
max(ED(word1; word2)) = 1. As a result, hundreds of
potential misspelt variations for drug names were identi-
fied after processing a new set of medical records com-
prising approximately 5 million documents. To illustrate
the potential use of such combined method, 231 positive
misspelt variations for “Fluoxetina” (Fluoxetine) and 501
positive misspelt variations for “Paracetamol” have been
already positively identified. Table 4 shows that some of
this variations for the drug “Fluoxetina” can have high
values for the Edit Distance metric.

Conclusions and future work
In this paper, we presented a hybrid similarity approach
that efficiently performs a joint string and language-
dependent phonetic similarity search over a set of med-
ical records written in Portuguese. Experimental results
showed this method is potentially accurate and able to
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Table 4 Examples of misspelt variations for “Fluoxetina”
(Fluoxetine) and the corresponding Edit Distance (ED) values

Misspelt variation ED

dfluoxetina 1

flluoxetina 1

floxetina 1

fluoexetina 1

fluoixetina 1

fluopxetina 1

fluoxertina 1

fluoxetiina 1

fluoxetijna 1

fluoxetin 1

fluoxetinas 1

fluoxetna 1

fluoxetona 1

fluoxettina 1

fluoxetuina 1

fluoxewtina 1

fluoxtina 1

fluozxetina 1

fluuoxetina 1

fluuoxetina 1

fluxetina 1

fluyoxetina 1

flhuoxetin 2

flluoxetin 2

flouxetina 2

fluoxeitna 2

fluoxetian 2

fluxoetina 2

fluxotina 2

fluloextina 3

fluoxetinaate 3

fluoxetinapor 3

flxtina 3

fluoxetinapara 4

infloexetina 4

identify misspelt names of drugs, overcoming the loss of
information inherit from using either exact match search
methods or string based similarity search. We coupled
the proposed approach with a Trie-based fast similarity
search algorithm that is able to use small Edit Distance
threshold (≤ 1) over the produced dictionary of mis-
spelt names in order to find a broader number of misspelt
variations within an affordable processing time in a large
corpus.

Some of the directions in which this work can be
extended include: a) adapting the phonetic matching pro-
cess originally designed to the Portuguese language to be
used over large corpora in different languages, such as
English; b) integrating our method in a framework for
Medical Records Information Extraction applications to
address the problem of generically dealing with spelling
errors in the information extraction process beyond
names of drugs, including other types of clinical variables,
such as symptoms and diagnoses; c) exploring the use of
machine learning methods to optimally and dynamically
tune the threshold parameters and disambiguating mis-
spelt candidates in cases when they are similar to more
than one medication; d) comparing the proposed solution
with other approximate string match approaches.
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