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FAIR data representation in times of
eScience: a comparison of instance-based
and class-based semantic representations
of empirical data using phenotype
descriptions as example
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Abstract

Background: The size, velocity, and heterogeneity of Big Data outclasses conventional data management tools and
requires data and metadata to be fully machine-actionable (i.e., eScience-compliant) and thus findable, accessible,
interoperable, and reusable (FAIR). This can be achieved by using ontologies and through representing them as
semantic graphs. Here, we discuss two different semantic graph approaches of representing empirical data and
metadata in a knowledge graph, with phenotype descriptions as an example. Almost all phenotype descriptions are
still being published as unstructured natural language texts, with far-reaching consequences for their FAIRness,
substantially impeding their overall usability within the life sciences. However, with an increasing amount of
anatomy ontologies becoming available and semantic applications emerging, a solution to this problem becomes
available. Researchers are starting to document and communicate phenotype descriptions through the Web in the
form of highly formalized and structured semantic graphs that use ontology terms and Uniform Resource Identifiers
(URIs) to circumvent the problems connected with unstructured texts.

Results: Using phenotype descriptions as an example, we compare and evaluate two basic representations of empirical
data and their accompanying metadata in the form of semantic graphs: the class-based TBox semantic graph approach
called Semantic Phenotype and the instance-based ABox semantic graph approach called Phenotype Knowledge Graph.
Their main difference is that only the ABox approach allows for identifying every individual part and property mentioned in
the description in a knowledge graph. This technical difference results in substantial practical consequences that significantly
affect the overall usability of empirical data. The consequences affect findability, accessibility, and explorability of empirical
data as well as their comparability, expandability, universal usability and reusability, and overall machine-actionability.
Moreover, TBox semantic graphs often require querying under entailment regimes, which is computationally more complex.
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Conclusions:We conclude that, from a conceptual point of view, the advantages of the instance-based ABox semantic
graph approach outweigh its shortcomings and outweigh the advantages of the class-based TBox semantic graph
approach. Therefore, we recommend the instance-based ABox approach as a FAIR approach for documenting and
communicating empirical data and metadata in a knowledge graph.

Keywords: Phenotype data, Phenotype knowledge graph, Semantic phenotype, Ontology, Knowledge management,
Semantic graph, Data representation, FAIR data, ABox expression, TBox expression

Background
More than 90% of today’s data have been created within
the past two years, with more than 2.5 million new sci-
entific papers being published each year [1–4]. High-
throughput technologies, social media, mobile devices,
digital imaging, sensors, and the Internet of Things, all
contribute to Big Data in science and everyday life,
allowing researchers to answer questions that could not
be answered before. This new driving force for scientific
progress in data-rich fields of empirical research has
been called data exploration or eScience [5].
In times of pressing societal, technological, economic,

and ecological challenges that arise from climate change,
diversity loss, and the COVID-19 outbreak, the need for
continuously monitoring key parameters and rapidly ana-
lyzing large amounts of empirical and thus observation-
and measurement-based data and metadata has become
clear. In most of the cases, this requires first integrating
datasets from various sources and from diverse research
communities before they can be analyzed. In general, data
management tools and with them data and metadata for-
mats and standards have become increasingly important
to support various eScience workflows.
Whereas Big Data brings to us new opportunities for

research, it also comes with new challenges that arise
from the change in size, velocity, and variety of data,
outclassing the capabilities of conventional methods and
techniques of data management and analysis [6]. To be
most efficiently usable, data and metadata therefore
must be maximally Findable, Accessible, Interoperable,
and Reusable and thus comply with the FAIR Guiding
Principles [7]. A central aspect of making data and
metadata FAIR and fully eScience-compliant is making
them machine-actionable through using Semantic Web1

technologies such as ontologies [8, 9]. Ontologies and
other controlled vocabularies are important because they
provide a framework for integrating and documenting
data and metadata in the standardized semantic struc-
ture that eScience and the FAIR Guiding Principles re-
quire [10].

Ontologies are dictionaries that are used for describ-
ing a certain reality. They consist of terms with com-
monly accepted definitions that are formulated in a
highly formalized canonical syntax and standardized for-
mat, such as the Web Ontology Language2 (OWL) seri-
alized to the Resource Description Framework3 (RDF),
with the goal to yield a lexical or taxonomic framework
for knowledge representation [11]. OWL is based on de-
scription logics (DL), which provides a logical formalism
for ontologies. DL distinguishes TBox expressions that
contain universal statements about classes and ABox ex-
pressions that contain assertions about instances4 [12].
Both ABox and TBox expressions can be represented as
semantic graphs using RDF’s triple syntax of Subject,
Predicate, and Object. A semantic graph is a network of
RDF/OWL-based triple statements, in which a given
Web resource can take the Object position in one triple
and the Subject position in another triple, thereby con-
necting the triples to form a connected graph.
When we understand ontologies as modeling com-

monly accepted domain knowledge about specific kinds
of entities and their properties and relations, expressed

1The Semantic Web is an extension of the World Wide Web based on
standards provided by the World Wide Web Consortium (W3C) that
promote common data formats and exchange protocols. The aim of
the Semantic Web is to enable data to be easily shared and reused
through the Web by making them machine-actionable.

2OWL is a Semantic Web language. It is used to represent knowledge
about particular entities or kinds of entities, their properties, and
relations between them in a computational, logic-based syntax and for-
mat that is machine-actionable. Computer programs can verify the
consistency of knowledge contained in an OWL file or deduce implicit
knowledge from it. Many ontologies are stored as OWL files.
3RDF is a standardized model for interchanging data on the Web.
OWL files can be serialized to RDF—RDF is the primary exchange
syntax for OWL.
4OWL distinguishes three types of resources: classes, instances, and
properties. Classes are instantiated by instances. All instances of a class
usually share one or more characteristics and represent the extension
of the class. Instances are related to one another, and to literal values,
via OWL properties. OWL classes are described through class
descriptions. Class descriptions include, among others, specification of
the class identifier (i.e., its URI), intersection of two or more class
descriptions, union of two or more class descriptions, complement of a
class description, and property restrictions. When combined, several
class descriptions form class axioms.
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as classes and class axioms5 that are defined through
universal statements6 [13, 14], ontologies consist of
TBox expressions and not ABox expressions and thus
do not contain statements about individual entities.
Ontologies in this sense, therefore, do not contain ac-
tual empirical data. But one can employ ontology
terms in ABox expressions, for instance for stating
that a given individual entity is of a particular kind
and that it therefore represents an instance of the re-
spective ontology class.
Each ontology class, individual entity, and property

possesses its own unique and persistent Uniform Re-
source Identifier7 (URI), through which it can be identi-
fied and individually referenced in various contexts. By
providing URIs and machine-readable definitions for
their classes, ontologies can be used to substantially in-
crease semantic transparency and machine-actionability
for all kinds of information, including empirical data.
The URIs of ontology classes are often used for seman-
tically enriching documents for data mining purposes of
historical literature and for annotating database contents
to improve integration and interoperability of data and
thus computability of contemporary empirical data.
Using Semantic Web technologies, ontologies can be

employed to express, document, and represent empirical
data as structured, interlinked, and semantically rich se-
mantic graphs that substantially improve the findability,
accessibility, interoperability, and reusability of data, thus
making data compliant with the FAIR Guiding Principles
[7]. This is becoming increasingly important in the age
of Big Data and Linked Open Data and allows data and
metadata to be used in eScience [8, 9, 15–19]. Ontol-
ogies are thus cornerstones of the Semantic Web and
provide solutions to various problems of information
and knowledge management, including word-sense dis-
ambiguation, standardization, and measuring semantic
similarity, providing an efficient framework for question
answering, knowledge representation, natural language
processing, and semantic searches [20–28].

Real particulars, real universals, and their textual
representations
Documenting empirical data in the form of semantic
graphs attempts to represent a particular portion of real-
ity and is, as such, a semiotic process. When reflecting
on the way we do research and especially when compar-
ing different approaches of representing empirical real-
ity, it is good to distinguish basic categories of entities
that are involved in this semiotic process [9, 29–31].
Empirical data attempt to represent real entities and

their relations. Real entities are material objects, pro-
cesses, qualities, and states that exist in reality, inde-
pendent of any human mind. Any real entity is either a
particular (i.e., instance, individual, token) or a univer-
sal (i.e., kind, type). Particulars—e.g. the planet Earth or
you, the reader, and I—are singly located entities that
are bound to a specific location in space and time,
whereas universals—e.g. cell or multicellular organism—
are multiply located entities that exist in their corre-
sponding particulars [32, 33]. A universal is thus any-
thing that is instantiated by particulars and a particular
anything that instantiates a universal [34]. In this sense,
I am an instance of multicellular organism.
Real entities do not exist inside of our minds but out-

side in the real world. When we think of a real entity,
we generate a cognitive representation referring to it in
the form of thoughts, perceptions, concepts, ideas, and
beliefs. When we communicate information about a real
entity with somebody else, we want that person to share
a maximally similar cognitive representation about the
entity. In doing so, we often use language and thus
terms and statements for describing our cognitive
representations.
Any term and statement referring to a real entity is a

textual representation of a real entity and must be dis-
tinguished not only from the real entity it refers to but
also from the cognitive representation it should induce.
Based on the distinction of the two basic categories of
real entities, i.e., particulars and universals, we can dis-
tinguish between textual representations of particulars in
the form of proper names and assertional statements
and textual representations of universals in the form of
kind terms (also called general terms) and universal
statements. Proper names refer to particulars and usu-
ally have no textual definitions but only assertional state-
ments associated with them. Assertional statements are
statements that claim to be only true for a specific par-
ticular. If assertional statements are grounded in empir-
ical knowledge that is based on observation and
experimentation, we refer to them as empirical data.
Empirical data can be formulated in OWL and docu-
mented in the form of instance-based ABox semantic
graphs, in which particular real entities can be referred
to through assigning them their own URIs, and their

5Ontology classes are described using axioms, i.e., propositions that
define the class in a logical form, specifying the necessary and
sufficient conditions for an individual entity to be an instance of that
class.
6A universal statement is a proposition that states that all entities of a
specific kind have a particular property. A proposition stating that a
given individual entity is an instance of a specific kind of entity that
has specific properties, on the other hand, represents a particular
empirical observation.
7A URI unambiguously identifies a particular Web resource, i.e., any
identifiable digital, physical, or abstract thing. Uniformity of URIs is
guaranteed through a predefined set of syntax rules. The most
common form of URI is the Uniform Resource Locator (URL).
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class affiliation can be specified by referencing the URI
of the respective ontology class.
A kind term, on the other hand, is usually associated

with a concept in the form of a class that defines the
meaning of the term by means of universal statements.
A universal statement represents commonly accepted
domain knowledge and claims to be true for all in-
stances of the kind the statement is referring to. Scien-
tific theories, but also definitions of ontology classes
using axioms [35], are examples of universal statements.
Ontologies contain universal statements that can be for-
mulated in OWL and documented in the form of class-
based TBox semantic graphs.
These two types of textual representations can for instance

be applied to describing anatomical phenotypes. The result-
ing descriptions attempt to represent the organization of real
anatomical entities (cf. anatomical entity8 of Uber Anatomy
Ontology; id UBERON:0001062) in the form of textual repre-
sentations. Each description consists of at least one descrip-
tive statement. We here understand a descriptive statement
as the smallest semantically meaningful unit of empirical
information. Descriptive statements can be differentiated
based on their semantic content into assertional and univer-
sal statements [13, 14], e.g. the description of the essential
properties9 of a compound eye as a set of universal state-
ments defining the class compound eye or the description of
an individual compound eye possessing a particular set of
properties documented in a set of assertional statements.
For reasons of efficiency and simplicity, descriptions of

particulars usually always involve references to ontology
classes. Stating that a given particular entity is an in-
stance of the class compound eye, for example, implies
that all defining properties of the class ‘compound eye’
also necessarily apply to this particular entity. To which
degree information is provided through class affiliations
thereby depends on several factors, including the ana-
tomical variability of the Operational Descriptive Unit
(ODU),10 the frame of reference of the description and
which relevant ontology terms are available. However,
since an instance of a class necessarily has all the class-
defining properties, the reference to ontology classes
within a description logically and semantically represents
an implicit short form for what can be explicitly
expressed in an instance-based ABox semantic graph.
Regardless, empirical data necessarily and always have to

include some ABox expression, even if this may only be
a statement about some individual entity instantiating
some ontology class.
Here, we discuss and evaluate the conceptual differ-

ences between two approaches of semantically repre-
senting empirical data using semantic graphs, i.e., an
instance-based approach that represents data in the form
of ABox expressions and a class-based approach that
represents them in the form of TBox expressions. We
use phenotype descriptions as an example for this
comparison.

Phenotypes, canonical anatomy, instance anatomy, and
the use of ontologies for documenting phenotype
descriptions
The Phenotype of an organism refers to its observable
constituents, properties, and relations that can be con-
sidered to result from the interaction of the organism’s
genotype with itself and its environment. Anatomy is the
part of the phenotype that refers to the physical and
structural properties of the organism. Anatomical data
are the primary source of evidence for defining most
species, for understanding their phylogeny, for recogniz-
ing, defining, and diagnosing pathological conditions in
plants, animals, and other organisms, and they provide
valuable insights into the development, function, evolu-
tion, and interaction of phenotypes with their environ-
ments [36, 37].
In anatomy, we distinguish canonical anatomy and in-

stantiated anatomy. Canonical anatomy is “a field of
anatomy (science) that comprises the synthesis of general-
izations based on anatomical observations that describe
idealized anatomy (structure)”, whereas instance anat-
omy is “the field of anatomy (science) which comprises
anatomical data pertaining to instances (i.e., individuals)
of organisms and their parts” ( [38] p. 480; see also, e.g.,
[39, 40]). While instance anatomy aims at representing
the actual anatomical organization of a particular organ-
ism or a particular anatomical entity as it can be ob-
served, resulting in what could be called ‘factual’
descriptions [9, 31], canonical anatomy aims at repre-
senting the typical anatomical organization of the mem-
bers of a certain taxon or typical exemplar instances of a
specific kind of anatomical entity. Canonical anatomy is
applied in contexts in which deviation from a defined
‘normal’ condition is important, for instance, in medical
contexts or when studying mutants against a canonical
wild-type [41–45].
Information typically belonging to canonical anatomy

is commonly accepted domain knowledge in the form of
universal statements about kinds of anatomical entities
that can be found in ontologies and can be represented
as class-based TBox semantic graphs (see also invariants
in [46]), whereas information typically belonging to

8Throughout the paper, we use regular underlined for representing
ontology classes with their labels and italic underlined for representing
ontology properties with their labels.
9Essential properties of a specific kind of entity refer to the properties
that all instances of the kind must have.
10Analogue to the Operational Taxonomic Unit (OTU), which refers
to some taxonomic entity, the ODU refers to the object being
described. It is the referent of the description and, in the case of
anatomical phenotype descriptions, refers to some anatomical entity.
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instance anatomy is empirical anatomical data in the
form of assertional statements about particular anatom-
ical entities that can be found in phenotype descriptions
of individual specimens and can be represented as
instance-based ABox semantic graphs.
Unfortunately, despite their importance to life sciences

and beyond, anatomical data are usually still published
as anatomical descriptions using natural language and
thus in the form of unstructured texts. The descriptions
are not machine-actionable and often hidden behind
pay-walls. This substantially impedes the findability and
accessibility of anatomical data. Moreover, due to the
immanent semantic ambiguity of anatomical termin-
ology, researchers not familiar with the described taxon
and its associated anatomical literature will have sub-
stantial problems comprehending and interpreting ana-
tomical data [47]. The meaning of terms is often taxon-,
author-, and time-dependent. And while some terms
refer to a set of common spatio-structural properties,
others refer to a common function, a common develop-
mental pathway, or a presumed common evolutionary
origin, or some mixture of these. The same applies to
phenotype descriptions in general. The semantic ambi-
guity of phenotype descriptions that are based on natural
language substantially limits the interoperability and re-
usability of phenotype data, with the consequence that
phenotype data usually do not comply with the FAIR
guiding principles.
It has been demonstrated that phenotype descriptions

can be represented using ontology terms with RDF’s
triple syntax of Subject, Predicate, and Object and stored
as semantic graphs [47–56]. Two alternative basic ap-
proaches have been employed for representing the ana-
tomical organization of a given specimen using ontology
terms: a class-based TBox and an instance-based ABox
approach. The applicability of these two approaches is
not limited to phenotypic data but can be used for
representing any type of empirical data. The two ap-
proaches differ mainly in technical details that have sub-
stantial practical consequences in terms of their
respective applicability and can also be aligned to under-
lying conceptual differences resulting from different re-
search contexts.
In the class-based TBox approach, a specific anatom-

ical phenotype is described in reference to a specific
ontology class, which in turn is defined according to the
set of properties that are characteristic to the respective
phenotype (Fig. 1). The definition of the class takes the
form of an Entity–Quality (EQ) expression and provides
the description for that particular phenotype in the form
of a set of TBox expressions. Respective descriptions
have been called Semantic Phenotypes, in which the
ODU is specified as instantiating a specific phenotype
ontology class [48, 50–52].

In the instance-based ABox approach, the anatom-
ical phenotype is not described within the definition of a
single ontology class, but instead in the form of a de-
tailed semantic graph, built from ABox expressions that
consist of several instance resources (i.e., URIs), each of
which refers to a particular part or property/quality of
the ODU (Fig. 1C). The resources themselves thus rep-
resent instances and not classes, but they instantiate
ontology classes. We term the resulting descriptions
Phenotype Knowledge Graphs, and they follow a more
modular framework that makes use of anatomical entity
terms and property/quality terms from existing ontol-
ogies [29, 47, 49, 57–59].
In the following, we start by specifying the require-

ments that empirical data must satisfy in the age of
eScience and Big Data, with phenotype data as an ex-
ample. Based on these distinctions and requirements, we
introduce and compare the class-based and the instance-
based approach for documenting empirical data in the
form of semantic graphs. We provide some historical
background on how the class-based approach evolved to
explain why certain conceptual choices have been made.
We discuss the contexts in which the two approaches
can be applied and discuss and evaluate the technical
differences between them and their practical conse-
quences within the field of anatomy. We think that with
their considerable complexity and heterogeneity, cover-
ing quantitative (measurements) as well as qualitative
(form, shape) information, including contextual informa-
tion in the form of descriptions of a specimen relative to
some other specimen, phenotype descriptions provide a
well-suited framework for comparing and evaluating the
benefits and shortcomings of instance-based and class-
based semantic graphs as two basic approaches of se-
mantically representing empirical data. Finally, we dis-
cuss the conceptual suitability of both approaches
regarding meeting eScience-compliant standards and the
FAIR Guiding Principles.
We want to emphasize that we do not intend to com-

pare the overall benefits and problems of representing
and using data or knowledge in the form of ABox and
TBox expressions in general. We rather focus in our
comparison on the context of documenting and man-
aging empirical data and thus the results from observa-
tions, measurements, and experimentation.

Methods
In the age of eScience and Big Data, empirical data must
meet certain technical requirements to be able to take
full advantage of the benefits that semantic analytical
frameworks offer. They should be easily findable, ac-
cessible, and explorable for human readers in respective
online data repositories and actionable for machines
alike. In case of phenotype data, a researcher should be
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able to query a phenotype repository using detailed
searches, e.g., for descriptions of heads that possess a
specific type of antenna and that have a weight larger
than 10mg, restrict this search to a specific taxonomic
group and retrieve a list of corresponding descriptions,
preferably associated with images supporting the find-
ings. Ideally, we need something comparable to a
BLAST search for phenotypes that enables finding de-
scriptions in a repository that are maximally similar to
an input description.
Not only empirical data themselves should be findable,

accessible, and explorable but also all relevant associ-
ated metadata, amongst others to be able to evaluate
the trustworthiness and credibility of the data.
Non-experts should be able to understand and inter-

pret empirical data correctly, just like researchers can do

today with DNA sequence data without having to be a
molecular biologist by profession. Data representations
thus must be semantically transparent in the sense that
they make the meaning of terms used in the representa-
tion readily available.
Data representations should also be comparable, and

it should be possible to expand them and complement
them with additional and more detailed information.
Moreover, because humans make mistakes, we need an
effective way in which researchers can correct mistakes
in data representations and thereby transparently track
what has been changed.
It should be possible to integrate different frames of

reference (in the case of anatomical data, possible
frames of reference would be, i.e., structural, functional,
developmental, and evolutionary anatomy) within

Fig. 1 Phenotype description of an insect head with a flattened shape and with two antennae in the form of a class-based TBox semantic graph, OWL
Manchester Syntax, and an instance-based ABox semantic graph. A: The class-based TBox semantic graph description of an insect head with a flattened shape
that has two antennae as its parts. It consists of an instance (purple-bordered box) that instantiates the phenotype class that contains the actual description of
the phenotype (yellow-bordered box) in the form of a class axiom consisting of anonymous property restrictions and class descriptions (grey-bordered boxes).
The class axiom characterizes all instances of the class to consist of exactly one instance of insect head (id UBERON:6000004) that has the quality of a flattened
(id PATO:0002254) shape and that has as its parts exactly two instances of antenna (id UBERON:0000972). B: An alternative format representing the class axioms
from the ‘phenotype class’ from (A) expressed in OWL Manchester Syntax [60] (ontology classes shown with their label underlined, ontology properties with
their label in italics and underlined, ‘and’ being used in the sense of intersection of two mathematical sets and ‘exactly’ as a cardinality specification). C: The
instance-based ABox semantic graph description of an insect head with a flattened shape that has two antennae as its parts. It consists of the instance of the
class insect head (id UBERON:6000004), the instance of the class flattened (id PATO:0002254), which relates to the head as its quality, and two instances of the
class antenna (id UBERON:0000972), which relate to the head as its parts. Labels (in light-grey-bordered boxes) indicate how the different instances should be
represented in a human-readable format. For reasons of clarity, resources are not represented with their URIs but with their human-readable labels. Purple-
bordered box = instance resource; yellow-bordered box with rounded corners = ontology class resource; grey-bordered box with rounded corners = anonymous class;
light-grey-bordered box = literal or numerical value; labeled arrow=property resource
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descriptive empirical data and to fragment a descrip-
tion into smaller parts to reuse only those parts of the
description that are of interest for a given context.
If we establish a general, domain-specific standard for

representing descriptive empirical data, this standard
should be universally usable and reusable, i.e., the syn-
tax, format, and other standards associated with descrip-
tive data should not be specifically tailored for a
particular analytical framework such as phylogenetics
within the domain of anatomy. Researchers should be
able to use descriptive data in the scientific context that
is relevant to them.
Last, but not least, researchers should also be able

to generate empirical data in the most time-efficient
way. If for instance phenotype descriptions themselves
would be completely machine-actionable, we could
develop tools and algorithms that facilitate the semi-
automatic generation of phenotype descriptions
from images, therewith widening one of the most
problematic bottlenecks in anatomy: generating ana-
tomical phenotype descriptions and thus anatomical
data.11 If descriptions are machine-actionable, we can
also start to parameterize the analysis of phenotype
descriptions so that character analysis and character
construction no longer represent a black box or re-
main to be a matter of authority. We can develop
algorithms that quantify the degree of similarity be-
tween two given descriptions, hence subjecting simi-
larity propositions to constructive criticism and
corrections and providing comparative phenotypic
methods a mathematical statistical analytical frame-
work [29]. Eventually, the semantic framework could
provide the unified theory of character construction
that biology is yet lacking [61].
In the following, we discuss two different ap-

proaches to semantically representing phenotype de-
scriptions. We argue that, from a conceptual point of
view, the Phenotype Knowledge Graph approach is
superior to the Semantic Phenotypes approach be-
cause it minimizes the number of TBox expressions
necessary for carrying descriptive contents, which
brings about the technical advantage of each entity,
quality, and relation being referred to in a description
having its own URI. As a consequence, these entities,
qualities, and properties can be individually identified,

which in turn brings about various practical advan-
tages that together better meet the above-mentioned
requirements.

Results
Semantic phenotypes: phenotype descriptions as class-
based TBox representations
When researchers started to conduct large-scale mutagen-
esis screens in model organisms, labs were suddenly able
to analyze large collections of mutants. This raised new
challenges regarding scale and complexity of the newly
generated data and their analysis and interpretation with
respect to their relationship to corresponding phenotypes,
leading to the use of ontologies for standardizing mutant
phenotype descriptions [56, 62–64]. These mutant pheno-
type descriptions were comparative phenotype descrip-
tions, i.e., phenotype descriptions that are based on
comparative observations that characterize the outcomes
of an experiment or observed difference against a specific
reference state such as the mutant in comparison to the
wild-type [65]. The problem with comparative descrip-
tions against some ‘normal’ condition or state is that they
describe instance anatomy in reference to canonical anat-
omy and in doing so convey information about at least
two different entities, i.e., a particular mutant and a ‘uni-
versal’ wild-type. This restricts the usability of the descrip-
tions to the context of comparison against the wild-type,
because the direct observation, on which the comparison
is based, often cannot be derived anymore. When for in-
stance stating that the described specimen has an “in-
creased length of abdomen”, we do not know the actual
length of the specimen’s abdomen, not even relatively as
in “length of abdomen above 2.6 mm”. If we want to get
any information about that abdomen, we must first con-
sult the description of the wild-type, in order to derive the
lower boundary value of the possible length for the de-
scribed abdomen.
With respect to the application of ontologies for stan-

dardized mutant-phenotype descriptions, two different
class-based approaches were initially followed [64, 66–68]:

1) The class-based pre-composition approach uses
a single dedicated ontology that provides phenotype
descriptions in the form of ontology classes for
annotating natural language descriptions of
phenotypes, with each phenotype having its
corresponding ontology class [53] (pre-composed,
because the phenotype description is completely
covered by the definition of the respective ontology
class; reference to the URI of that ontology class is
sufficient). The definitions of phenotype classes
usually reference a combination of entities and
values (e.g., abnormal body weight, id MP:0001259,
of the Mammalian Phenotype ontology, MP). A

11One might argue that for morphologists/taxonomists, phenotype
descriptions are only ‘figure captions’ (pers. comm. István Mikó) and
images are more important than phenotype descriptions. However,
images stored in a database without the corresponding captions and
without structured annotations are increasingly difficult to find with
an increasing number of images in the database, turning the database
eventually into an image cemetery. Also, for analytical purposes, it is
usually necessary to translate the perceptual contents of images into
textual contents [31]. Logical inferences and tests against consistency
can only be performed against textual contents.
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particular phenotype is then described by
referencing the URI of a corresponding ontology
class [65]. In order to be able to reference a suitable
URI, however, the ontology class must be pre-
composed in advance by the ontology editor of the
respective phenotype ontology (see pre-composition
[69]).

2) In 2004, the need for a more systematic and
formalized approach was recognized, resulting in
the class-based post-composition approach and
the development of the Phenotype And Trait
Ontology (PATO) [70], a species-neutral ontology
of attributes and values [65]. The post-composition
approach characterizes and defines phenotypes fol-
lowing a formalized syntax using class expressions
from various distinct ontologies and applying the
entity-quality (EQ) format [71, 72] (post-composed,
because the actual phenotype description must be
composed from references to several ontology clas-
ses and/or values using the EQ format). According
to this post-composition approach, one character-
izes a phenotype in terms of a bearer entity (E) that
is described by a specific quality (Q). The term that
defines the bearer entity is provided by a class of
some domain ontology, the term defining the spe-
cific quality by a class of PATO. The resulting EQ
statement completely replaces the natural language
description of the phenotype. Originally, the state-
ment took the tripartite structure of Entity +Attri-
bute +Value such as in eye + color + red (EAV or
Entity-Attribute approach [66, 71, 72]). After the
quality terms in PATO have been organized hier-
archically, with more specific terms such as red (id
PATO:0000322) being subsumed as subclasses
under more general terms such as color (id
PATO:0000020), the tripartite structure has been
adapted to the bipartite structure of Entity +Quality
[48, 50, 51, 56, 63, 73–76]. As a result, the natural
language phenotype description “eye has red color”
translates into the EQ statement eye + red, with, for
instance, eye (id MA:0000261) from the Mouse
Adult Gross Anatomy Ontology and red (id
PATO:0000322) from PATO.

An obvious advantage of the post-composition ap-
proach is that it limits the number of ontology terms re-
quired for describing a given phenotype because
annotators have the ability to compose phenotype de-
scriptions on-the-fly using combinations of terms from
available ontology classes to form a multiplicity of differ-
ent EQ statements [67, 69]. The bipartite structure of
the EQ statements also lends itself for being stored in a
table of a relational database, with E and Q each provid-
ing a value in the form of a URI for a corresponding cell

in the table. However, phenotype annotations in such ta-
bles must not be confused with representing phenotypes
as semantic graphs, because these URIs only have the
function of providing semantic links for the E and the Q
of an EQ statement from a table to the corresponding
ontology classes of ontologies. When an EQ statement is
stored as a set of URIs in a table in a relational database,
the link between the URI in the E position and its corre-
sponding URI in the Q position is provided implicitly
through the position of their cells within the database
table, but it is not explicitly stated like it is when repre-
senting the EQ statement as a TBox semantic graph.
Initially, the EQ format was used for characterizing

and classifying different mutant phenotypes of a given
model organism by comparing them to their canonical
wild-type and then relating them to their underlying
genotype [56, 64, 73, 74]. The wild-type functioned as a
‘normal’ condition and point of reference. Respective
phenotype descriptions thus contained comparative
phenotype statements [65] that describe instance anat-
omy in reference to canonical anatomy. However, the
EQ approach was soon picked up by evolutionary mor-
phologists, who modified it to describe characters and
character states as they are known from phylogenetic
character matrices, resulting in direct phenotype de-
scriptions [65] that allow describing phenotypes in the
framework of instance anatomy. Typical character and
character state descriptions such as “eye color: red”
would lend themselves to being translated into EQ state-
ments, with Q representing the character state (Fig. 2)
[52, 56, 63, 69].
Many phylogenetic characters, however, cannot be

translated into the strict EQ syntax and require modifi-
cations [50]. Composite characters, for instance, require
the reference to more than one entity or quality term,
extending the EQ statement to a nested composition, in
which the E and/or the Q of the phenotype description
are themselves represented as one or several EQ state-
ments. Relational characters require modifying the EQ
model to E (QRE) (RE = related entity) and quantitative
characters to E (QC) (C = count) (see, e.g., Phenoscape’s
Guide to Character Annotation).
When an EQ statement is stored in a relational

database, with the URIs of ontology classes providing
only semantic links between the E or the Q of the
statement and the definitions of the corresponding
ontology classes, additional coding is required to con-
vert the table into an OWL file that documents the
EQ statement as a semantic graph. Similarly, EQ
statements stored within NeXML files [78, 79], an
XML-based phylogenetic data exchange standard in-
spired by NEXUS (e.g., [50]), as used by the Phenos-
cape project, require separate software for conversion
to a semantic model in OWL.
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Although at first glance the class-based pre-composition
and the class-based post-composition approaches appear
to be incompatible, it has been demonstrated that they are
actually complementary and fully compatible because sin-
gle term expressions and (composite) EQ statements can
be related to each other as being equivalent, providing
each pre-composed ontology class with a possible equiva-
lent logical definition in the form of a corresponding EQ
statement [69]. Any given EQ description of a phenotype
can thus be translated to the definition of a corresponding
ontology class (i.e., Semantic Phenotype expression class)
that represents that specific phenotype, and vice versa [48,
67]. As a consequence, EQ statements can be described
within ontologies, documented and exported as OWL
files, and represented as class-based TBox semantic
graphs.
Taxonomists became interested in the OWL-based

documentation of phenotypes and suggested that the
EQ approach could also be used for taxonomically
describing phenotypes [51, 75]. Respective EQ state-
ments can be composed as axioms of corresponding
ontology classes with the help of ontology editors
such asProtégé [80], using OWL Manchester Syntax
[60] and following general composition schemes [48,
51, 81, 82]. In order to express that a particular spe-
cimen bears a specific phenotype, the specimen is
represented in OWL as an individual resource with
its own URI. This individual is specified to be an in-
stance of the ontology class that defines the pheno-
type. The resulting direct phenotype descriptions have

been called Semantic Phenotypes and each Semantic
Phenotype is attached to one (or more) particular
specimen [51, 75, 81–83]. Semantic Phenotypes, thus,
can be completely expressed in OWL and stored in a
separate OWL file [51].
In some sense, Semantic Phenotypes combine the

class-based pre-composition approach with the class-
based post-composition approach since the description
of Semantic Phenotypes first requires the definition of
the corresponding phenotype classes (pre-composition),
which in turn use ontology classes in their axioms (post-
composition).
Direct anatomical phenotype descriptions are essen-

tially ‘factual’ anatomical descriptions consisting of
assertional statements that document empirical observa-
tions about particular anatomical entities. A Semantic
Phenotype represents the ‘factual’ anatomical description
through a single ABox expression that specifies a pheno-
type class that is instantiated by the ODU. All the actual
descriptive content is implicitly contained in the refer-
enced phenotype class in the form of class axioms and
thus TBox expressions. Consequently, the amount of re-
quired TBox expressions in the description exceeds the
necessary minimum. This represents a conceptual choice
that can be traced back to the history of the Semantic
Phenotype approach, which applied semantic workflows
and tools that originated from mutagenesis research on
model organisms (i.e., Homo sapiens and others) and
were therefore conceptualized for comparative pheno-
type descriptions that reference to canonical anatomy.

Fig. 2 A phylogenetic character statement compared to a phenotype description based on the EQ model. The upper line represents the character statement
“eye color: red”, following the syntax suggested by Sereno [77], with L1 indicating the (first) locator and V the variable, which together constitute the character
part of a character statement. The character state is represented by the value v1, which is one of the possible states defined for the character statement. This
phylogenetic character statement can be translated into the EQ statement eye+red, with eye from, e.g., the Mouse Adult Gross Anatomy Ontology (id
MA:0000261), representing the locator L1 part of the character and red from PATO (id PATO:0000322) representing the value v1 of the character state. Because
PATO organizes quality terms in a nested hierarchy of increasingly differentiated attributes, the reference to red implicitly references also color (id PATO:0000020)
and thus the variable V part of the character (cf. [52])
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While this choice has technical implications, as long as
phenotypes are only annotated within relational database
tables using sets of URIs of ontology classes instead of
documenting them as semantic graphs in a knowledge
base, the technical implications have no practical
consequences.
The most important technical consequence of docu-

menting descriptive contents using TBox expressions is
the fact that all entities, related entities, and qualities
mentioned in the axioms of phenotype ontology classes
used in Semantic Phenotypes are anonymous resources
and therefore do not possess their own URIs. They can-
not be referenced individually, and more complex Se-
mantic Phenotypes cannot be easily partitioned into
simpler descriptive fragments. This has far-reaching con-
sequences that also affect reasoning over Semantic Phe-
notypes, requiring the implementation of additional
rules to relate anonymous resources with one another
and with the specimen they describe. For instance the
phenotype “antenna longer than eye” can be expressed
in OWL Manchester syntax as ‘has part some (antenna
and bearer of some (length and increased in magnitude
relative to some (length and inheres in some eye)))’
(‘and’ being used in the sense of intersection of two sets
and ‘some’ in the sense of the existential quantifier ‘there
exists a’ or ‘some instance of’), with the consequence
that ‘some antenna’ and ‘some eye’ are anonymous re-
sources so that “to be an instance of this class, an an-
tenna needs to merely be longer than at least one eye in
the world, not necessarily an eye possessed by the same
organism” ( [51], p. 643).

Phenotype knowledge graphs: phenotype descriptions as
instance-based ABox representations
Another approach for using ontologies to standardize
direct phenotype descriptions has been suggested that
represents particular phenotypes as instance-based ABox
semantic graphs, called Phenotype Knowledge Graphs
[47, 49, 57]. Phenotype Knowledge Graphs can be stored
in separate OWL files and take the form of ‘factual’ ana-
tomical descriptions. Contrary to Semantic Phenotypes,
Phenotype Knowledge Graphs refer to particulars for the
description of a given phenotype and thus minimize the
amount of required TBox expressions to the class speci-
fications that each identified part of the ODU instanti-
ates, while describing the particular qualities of the parts
and the actual relationships between them as ABox ex-
pressions, instead of describing them through class ax-
ioms. In other words, each anatomical entity, quality,
and property described in a Phenotype Knowledge
Graph is represented as a particular that possesses its
own URI and that instantiates a corresponding ontology
class, which in turn is necessarily specified using TBox
expressions. As a consequence, each described part,

quality and property can be individually referenced and
identified through its own URI.
When describing an ODU following the Phenotype

Knowledge Graph approach, one first must decompose
the ODU into the constituent parts one wants to cover
in the description. Each part belongs to a specific kind
of anatomical entity and is therefore represented as an
instance of the corresponding ontology class. All the de-
scribed parts are related to one another through part-
hood relations. The resulting parthood hierarchy
provides the organizational backbone for a Phenotype
Knowledge Graph and is in that function comparable to
the taxonomy (i.e., class-subclass hierarchy) of classes of
an ontology [57]. Next, one can describe each constitu-
ent part in more detail, specifying its various properties
and qualities, including the specification of relations be-
tween parts (Fig. 3).
By referencing the ontology classes that are instanti-

ated by described parts, Phenotype Knowledge Graphs
link to one or more ontologies, which allows applica-
tions that process and analyze Phenotype Knowledge
Graphs to utilize not only the information contained in
the descriptions themselves (instance anatomy data) but
also the information contained in all referenced ontol-
ogies (canonical anatomy and thus invariant knowledge).
The combined information can be used for inferencing
and quantitatively comparing different Phenotype Know-
ledge Graphs [29, 58, 59].
Phenotype Knowledge Graphs can be meaningfully

fragmented into several flexibly manageable subgraphs,
with each subgraph corresponding to a specific type of
descriptive statement [57]. For example, the parthood
relation between two anatomical entities, the shape spe-
cification of a particular anatomical structure, or the
specification of its weight measured in milligrams can be
associated with its own named graph resource (Fig. 3). A
named graph resource is a URI that identifies a set of
triple statements by adding this URI to each triple be-
longing to the named graph, thus turning the triples into
quads. Phenotype Knowledge Graphs can be organized
into named graphs, stored in a tuple store, and be made
accessible through a SPARQL12 endpoint [84].
Phenotype Knowledge Graphs express phenotype de-

scriptions wherever possible as assertional statements in
the form of instance-based ABox semantic graphs, re-
quiring only a minimum amount of TBox expressions.
Consequently, the Phenotype Knowledge Graph ap-
proach does not suffer from the technical implications
resulting from expressing phenotype descriptions as uni-
versal statements using the EQ format. In the following,
we discuss these technical implications and evaluate
their practical consequences based on the technical

12SPARQL is a query language for RDF [84].
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requirements for empirical data mentioned above and
their relation to eScience-compliant data and metadata
standards and the FAIR Guiding Principles.

Discussion
Before we discuss the technical advantage of the
instance-based ABox approach and its practical implica-
tions, we want to emphasize once more that the here
discussed limitations of the TBox approach apply in the
context of documenting empirical data and metadata
in a knowledge graph. There are many other contexts,
in which TBoxes can be superior to ABoxes. For in-
stance, when documenting or using invariant know-
ledge (see 104) and thus universal statements instead of
assertional statements, where ABoxes cannot be used. In
anatomy, this would relate to the context of canonical
anatomy.
When reasoning over your data is important,

TBoxes may in some cases also be superior to
ABoxes. However, whereas, reasoning has primarily
been applied for validating the consistency of class
hierarchies and for inferring additional subsumption

relationships [85], the need for reasoning over ABoxes
has been identified by now and corresponding rea-
soners such as Arachne [86] are being developed that
support reasoning on, e.g., property relationships.
Reasoners such as ELK, that are commonly used with
TBoxes, use the OWL EL profile, which does not
support ABox reasoning very well. Arachne uses the
OWL RL profile, which is better suited for instance
data. Arachne can, e.g., be used when adding an
ABox to a knowledge graph for suggesting additional
inferred statements and for checking for consistency
in real time―TBox reasoners such as ELK are well
suited for tasks like ontology classification and
consistency checking of ontology classes, but do not
perform well for real-time multi-user online systems
focused on ABox graphs, because they do not support
axioms like inverse properties, property ranges, and
materialization of object property assertions [86].
When having to compare an actual state of a system,
as it can be recorded, e.g., via sensors and docu-
mented as an ABox, against a target state, which
could be an established standard documented as a

Fig. 3 Phenotype Knowledge Graph. The instance-based ABox semantic graph shows the description of a multicellular organism. It consists of
instances (purple-bordered boxes), each of which instantiates a specific ontology class (yellow-bordered boxes with rounded corners) through
the type property. All instances referring to anatomical entities possess a human-readable label (grey-bordered box connected through the label
property) and are connected via parthood relations, forming a partonomy. The partonomy indicates that this instance of multicellular organism
possesses an instance of insect head that, in turn, possesses an instance of antenna. The multicellular organism instance is further described to
have a flattened shape and a measured live weight of 84.3 milligrams. The semantic graph is organized and fragmented into different subgraphs,
each of which is contained in its own named graph (dashed-bordered colored boxes). Each subgraph contains information relating to a specific
perceptual question that can only be answered empirically. In other words, each named graph contains a separate empirical observation. And
each named graph also possesses its own URI and instantiates a named graph ontology class. The Phenotype Knowledge Graph is the union of
all the named graphs
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TBox, you can check the ABox for consistency
against the TBox using Arachne.13

Due to the tabular architecture of relational databases,
TBoxes have an advantage over ABoxes when storing data
in a relational database, because assertional statements
can be documented as instances of ontology classes that,
in turn, follow the EQ or EAV model and provide the de-
scription of the actual content in their class axioms.
Therefore, one only has to store the URI of the ontology
class as a value in a respective table to document the con-
tent specified through that class’s axioms.
The choice of whether to use a relational database or a

knowledge graph for storing, documenting, and managing
research data should be driven by the requirements of
your study or project and the competency questions that
you derive from your respective user stories. Relational da-
tabases are well suited for closed world systems, for which
you can specify the data schema before populating your
database with data, whereas knowledge graphs are well
suited for open world systems and thus systems that as-
sume incomplete knowledge by default, where you can
easily extend the data schema on-the-fly. Also, (i) if the
query structure is well known and expected to be sta-
ble―you know, which questions the dataset has to answer
and these questions will not likely change in the future,
(ii) if you know that the dataset may grow, but only the
same type of data will be added, or (iii) if your dataset is
not complex and its data points are not heavily intercon-
nected so that it can be easily represented in the tabular
structure of a relational database, relational databases may
be superior to knowledge graphs as a technical solution
for your data management.
In the following, we discuss the technical difference be-

tween semantic phenotypes and phenotype knowledge
graphs as examples for the class-based TBox and the
instance-based ABox approach and the practical implica-
tions of this difference in the context of documenting em-
pirical data and metadata in a knowledge graph.

Decomposing phenotype descriptions into separate
observation-based statements
Unlike Semantic Phenotypes, Phenotype Knowledge
Graphs can be fragmented in various ways into mean-
ingful subgraphs. As a consequence, they provide signifi-
cantly more flexibility in what can be done with them.
Each subgraph can be organized in its own particular
named graph that possesses its own URI (see Fig. 3).
Each named graph resource can be associated with a
corresponding ontology class that it instantiates. These
classes can be defined in a domain reference ontology
for anatomy that specifies a semantic data model for

anatomy [57]. In this way, one could define an ontology
class for each type of descriptive statement relevant for
phenotype descriptions. Each class defined this way can
be understood to correlate with a specific perceptual
question that can only be answered by studying the rele-
vant parts of the given ODU. The respective question
thereby functions like a perceptual category that is part
of a general phenotype structure concept [8, 47, 49]. Ex-
amples for such questions would be: What is the weight
of this anatomical structure? What is the length of this
anatomical line? What is the volume of this anatomical
space? What is the position of this anatomical point?
What is the color of this anatomical surface? What is
the general shape of this anatomical structure? What is
the biological function of this anatomical structure?
From which structure did this anatomical structure
develop?
Each named graph belonging to a phenotype description

refers to the combination of (i) a particular part of the
ODU and (ii) a specific perceptual category. Fragmenting
a given phenotype description into several such named
graphs can be understood as the decomposition of the de-
scription into its smallest units of empirical information
and thus into a set of particular descriptive statements. As
a consequence, any given Phenotype Knowledge Graph
can be fragmented into its descriptive statements in the
form of subgraphs and these subgraphs can be united
again to return the Phenotype Knowledge Graph. This
general approach is not restricted to anatomy and can be
applied to any empirical data.
The decomposability of Phenotype Knowledge

Graphs in particular and of instance-based ABox se-
mantic graphs in general is the most important tech-
nical difference compared to Semantic Phenotypes and
class-based TBox semantic graphs and has significant
consequences that substantially affect various practical
aspects.

The explorability of phenotype descriptions
Based on the ontology classes of descriptive named
graphs discussed above, one can flexibly define various
data views for exploring Phenotype Knowledge Graphs
[57]. Each data view is defined in reference to one or
more such classes. One data view could, for instance, be
defined in reference to the class of weight measure-
ments, whereas another one could comprise all classes
that contain measurements in general. Applying the
former data view on a given description would result in
the union of all subgraphs of the description that con-
tain weight measurement data, whereas the application
of the latter would result in the union of all subgraphs
containing measurement data in general. The definition
of various such data views would significantly improve
the possibility to meaningfully navigate semantic

13This, however, could also be accomplished using an RDF graph
schema language such as SHACL or ShEx.
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graphs of phenotype descriptions without users of re-
spective applications having to write deeply nested
SPARQL queries, because only the corresponding
named graphs must be identified. This, again, applies in
general to all kinds of empirical data that are repre-
sented as instance-based ABox semantic graphs.
Unfortunately, Semantic Phenotypes and any other

class-based TBox semantic graph cannot be fragmented
this way, because the entities, related entities, and qual-
ities that class axioms refer to are anonymous resources
and thus cannot be individually referenced and identified
(see above). Therefore, Semantic Phenotypes cannot be
explored to the same degree as Phenotype Knowledge
Graphs.

Linking relevant metadata and supplementary contents to
phenotype descriptions
Metadata are statements about statements. In the case of
phenotype descriptions, metadata refer to who contrib-
uted which parts of the description, based on which evi-
dence, and using which instruments, where and when
(see Fig. 4). Modeling statements about statements
within OWL/RDF is not trivial and various approaches
have been suggested [87]. OWL itself provides the possi-
bility to make statements about statements using stand-
ard reification, by specifying the statement about which
one wants to make statements through three additional

triple statements (i.e., statement_URI subject subject_
URI; statement_URI predicate predicate_URI; state-
ment_URI object object_URI). While this may be a prac-
tical solution for making statements about a single triple
statement, it becomes very impractical if one has to
make statements about a subgraph that consists of sev-
eral triple statements (see example Fig. 4). For such
cases, the use of named graphs is a good choice. More-
over, named graphs also outperform other metadata rep-
resentation models when conducting more complex
queries [87].
Because each descriptive statement belonging to a

Phenotype Knowledge Graph is organized in its own
particular named graph and this named graph has its
own URI, it can be individually referenced for associ-
ating relevant metadata information to it, such as
on which specimen the observation is based, which
microscope has been used or the literature source
from which the information in that subgraph of the
description has been taken and how reliable that
source is [57]. Each such metadata, in its turn, can be
documented in its own named graph and thus be
clearly separated from the actual description. The
combination of a particular descriptive named graph
and its associated metadata named graph can be pub-
lished separately from the whole description as a
nano-publication [88–90].

Fig. 4 Metadata about a Phenotype Knowledge Graph. The Phenotype Knowledge Graph from Fig. 3 with its associated metadata. The Phenotype
Knowledge Graph is organized into three subgraphs (I, II, and III), each of which has its own set of metadata statements associated. When compared
to Fig. 3, one can identify the three subgraphs in reference to named graphs: subgraph I) refers to the ‘shape named graph’, subgraph II) to the
‘weight measurement named graph’, and subgraph III) to the union of the two ‘parthood named graphs’
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Moreover, by referring to the URI of the particular
named graph, one can also link natural language de-
scriptions and semantically annotated media contents to
each descriptive statement, as well as comments and
other annotations. And because each described part,
quality, and property possesses its own URI in a Pheno-
type Knowledge Graph, images can be annotated with
regions of interest using these URIs to indicate that they
depict a particular part, quality or property, which is not
possible with Semantic Phenotypes.
As a consequence, the use of the description named

graphs allows for differentially assigning metadata, un-
structured natural language texts, and media contents at
the level of smallest units of semantically meaningful
empirical information contained in a Phenotype Know-
ledge Graph instead of having to assign them to the de-
scription as a whole, and this information can be
published as a micro-publication [91]. And again, this
is not restricted to the domain of anatomy, but can be
applied to all kinds of empirical data that are repre-
sented as instance-based ABox semantic graphs.
Unfortunately, Semantic Phenotypes and any other

class-based TBox semantic graph cannot be fragmented
this way and thus assigning metadata, natural language
texts, and media contents at the level of smallest units of
empirical information is not that straight forward.

Expandability of phenotype descriptions
It is impossible to describe a given specimen covering all
aspects that could be relevant. Like any other description
of a particular material entity or process, each phenotype
description represents a decomposition that is based on
a virtual partition of the ODU into the parts that are
relevant for the specific frame of reference applied by
the person making the description [92–94]. Due to the
phenotypic complexity of anatomical entities, which
often covers several levels of granularity, ranging from
the molecular level to the cellular level and the level of
gross anatomy, descriptions of specimens are never
complete, irrespective of the applied frame of reference.
This applies to Semantic Phenotypes in the same way as
to Phenotype Knowledge Graphs. The problem of the
incompleteness of phenotype descriptions, however,
confronts the Semantic Phenotype approach and the
class-based TBox semantic graphs in general with a con-
ceptual dilemma. If a given Semantic Phenotype must be
complemented with additional information, resulting in
a more detailed representation of the described pheno-
type, one can choose between:

(1) Defining a new phenotype class that incorporates
all information of the original phenotype class and,
additionally, also covers the new information. The
new phenotype class then replaces the original class

and the new Semantic Phenotype the original
Semantic Phenotype. This, however, would not only
result in increasingly complex axiom expressions,
which become increasingly incomprehensible, but
tracking provenance and all relevant metadata
across the different versions will be problematic as
well, especially since Semantic Phenotypes cannot
be easily fragmented.

(2) Defining a new phenotype class that only covers the
additional information. The corresponding
Semantic Phenotype would complement the
original Semantic Phenotype. This is also
problematic since the parts and properties
mentioned in the class axiom of the original
phenotype class cannot be referenced in the
complementing phenotype class, because they are
anonymous resources. As a consequence, the
complementing Semantic Phenotype will, for
instance, describe in more detail one of the parts
mentioned in the class axiom of the original
phenotype class, but the original and the
complementing Semantic Phenotype graphs will not
connect due to the anonymity of the described
parts.

Phenotype Knowledge Graphs and instance-based
ABox semantic graphs in general, on the other hand,
can easily be expanded with additional information. Be-
cause each described part, property, and quality pos-
sesses its own URI, existing descriptions can be easily
expanded through nano-publications and their corre-
sponding metadata be tracked independently of the
metadata of the original description.

Integrating different frames of reference in a phenotype
description
As mentioned above, any given phenotype can be de-
scribed from different frames of reference, e.g., from a
purely spatio-structural, a functional, or a developmental
perspective. Each frame of reference will likely virtually
partition the underlying ODU in its own particular way.
Descriptions of the same phenotype that are based on
different frames of reference thus often result in incon-
gruent partitions [94]. As a consequence, the representa-
tion of a phenotype through a single phenotype ontology
class will make it very difficult to cover all information
relevant to the various frames of reference relevant in
the life sciences because the corresponding class axiom
can only model one of the many possible virtual parti-
tions. In other words, a purely spatio-structural descrip-
tion of a given phenotype must be represented with a
different phenotype class then a functional, a develop-
mental, or an evolutionary description of that same
phenotype. This would result in a spatio-structural
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Semantic Phenotype, a functional Semantic Phenotype, a
developmental Semantic Phenotype, and an evolutionary
Semantic Phenotype, each of which would refer to the
same given ODU. Due to the problem of anonymous re-
sources, even if each of these descriptions would refer to
the same part in the ODU, the resulting graphs would
not connect because this part would be represented as
anonymous resources.
With the Phenotype Knowledge Graph approach, on

the other hand, any given phenotype can be described in
reference to a specific frame of reference and the result-
ing graph will connect spatio-structural descriptions of a
given described part with its functional, developmental,
and evolutionary descriptions, because this part pos-
sesses its own URI and thus can be referenced in any
possible virtual partition of a given ODU. Contrary to
the Phenotype Knowledge Graph approach, the Seman-
tic Phenotype approach with its class axioms seems to
be not well suited for integrating different frames of ref-
erence in a given phenotype description.

The open world assumption and the need for negations
and specifications of quantities of parts
No ODU can be comprehensively described across all
possible frames of reference, scales, and granularity levels.
No semantic representation of an ODU can be exhaustive
in that respect. Any ODU possesses a virtually infinite
number of possible partitions so that no phenotype de-
scription can be considered to cover all of them. This situ-
ation is dealt with by the so-called Open World
Assumption (OWA). OWA assumes incomplete infor-
mation by default. A direct consequence of OWA is that
the lack of knowledge about a fact does not immediately
imply knowledge of the negation of that fact. This means,
for instance, that when a description does not state that a
particular insect head has cells as its parts, we cannot con-
clude that the head is not composed of cells.
OWL and description logics-based ontologies adhere

to OWA by default, and so do both the Phenotype
Knowledge Graph and the Semantic Phenotype ap-
proach. In both approaches, when starting to describe an
ODU, everything is considered to be possible. This space
of possibilities becomes more and more constrained and
restricted with the addition of information. Following
this notion, phenotype descriptions restrict what is pos-
sible [58].
OWA is not problematic for phenotype descriptions

per se. It for instance allows reusing and extending
phenotype descriptions, adding more information to
already existing descriptions whenever necessary. But in
some cases, we want to make clear that a given ODU
possesses, e.g., only two antennae and lacks an oviposi-
tor―information that cannot be provided by describing
only two antennae and not describing any ovipositor.

While one could introduce specific properties to model
such information as instance-expressions (see Fig. 5, top,
and Fig. 6, top), any such model will not be compliant
with description logics and could therefore not be rea-
soned on. Making these expressions machine-actionable
would thus require additional efforts. Alternatively, one
can describe this type of information with the help of
class-expressions and thus TBox expressions, using
OWL Manchester Syntax. The observation “insect abdo-
men lacks an ovipositor” translates to the Manchester
expression ‘not ( has part some ovipositor )’ and the ob-
servation “insect head has part exactly 3 ocelli” to ‘has
component exactly 3 ocellus’.14 Both Manchester expres-
sions can be represented as class-based semantic graphs
and be used within the Semantic Phenotype approach as
well as the Phenotype Knowledge Graph approach (see
Fig. 5, bottom, and Fig. 6, bottom).

Demarcating units of description
Another problem with Semantic Phenotypes is whether
a given specimen should be described using a single
complex Semantic Phenotype or a set of multiple Se-
mantic Phenotypes. Should a phenotype be defined in a
single phenotype ontology class or in several such clas-
ses? Should the unit of description equal the smallest
unit of semantically meaningful empirical information?
In the end, it is the question of what is the criterion for
demarcating units of description [47]? And again, part of
the problem with Semantic Phenotypes and class-based
TBox semantic graphs is the anonymity of the resources
referenced in their class axioms. If you want to describe
a given ODU using several Semantic Phenotypes, the en-
tities, related entities, and qualities mentioned in the ax-
ioms of phenotype classes of different Semantic
Phenotypes do not relate to each other, although they
may actually refer to the same real entities, because they
cannot be individually referenced and identified through
the information provided by the graph. This is not the
case with Phenotype Knowledge Graphs and instance-
based ABox semantic graphs in general because each de-
scribed part and property possesses its own URI and
thus can be referred to in several different graphs.

Correcting mistakes in phenotype descriptions
Researchers are human beings, and human beings make
mistakes. Therefore, phenotype descriptions should
allow for effective ways to correct for mistakes and
thereby unambiguously track what information has been
changed and ideally document that change in RDF as
well. And again, because Semantic Phenotypes cannot be

14has component is used instead of has part because the latter is a
transitive object property and OWL does not permit cardinality
constraints to be used in combination with transitive object properties.
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easily fragmented and the particular parts, properties,
and qualities referenced in class axioms do not possess
their own URIs, explicitly tracking what information has
been changed between the original Semantic Phenotype
and the corrected version of that Semantic Phenotype,
and documenting in RDF all the changes that have been
made, is rather difficult to accomplish. Phenotype Know-
ledge Graphs, in contrast, can be easily corrected for
mistakes. Because the descriptive statements of Pheno-
type Knowledge Graphs are organized into different
named graphs, one can easily correct information in one
of them and track provenance and relevant metadata for
it, as well as document in the metadata all changes that
have been made.

Universal usability and reusability of phenotype
descriptions
Being able to fragment a Phenotype Knowledge Graph
into smaller subgraphs allows using only those parts of
the data that are relevant for a given research question,
while ignoring all parts that are irrelevant. The differen-
tiation of types of observation and the modelling of re-
spective data into corresponding named graphs allows
meaningful fragmentation of data and reuse in various
frameworks. While this is in principle also possible with
Semantic Phenotypes, the extraction of only the relevant
data is not as straightforward.

Generation of phenotype descriptions
As already mentioned above, in order to generate a Se-
mantic Phenotype, the corresponding phenotype must
be first defined as an ontology class before the descrip-
tion itself can be generated, which in turn only specifies
that a given ODU instantiates that specific class. Tech-
nically, the actual phenotype description is contained in
the definition of the ontology class.
Defining such phenotype ontology classes is usually

conducted using OWL Manchester Syntax, which can
become very complex, especially if the underlying
phenotype is complex and the description fine-grained.
For instance the EQ statement “head color: reddish
brown, except for dark brown to black postgena, occiput,
vertex; mandibles, maxillary and labial palps yellowish;
scape, pedicel, F1 and F2 yellow, subsequent flagello-
meres progressively darker” translates to the OWL Man-
chester Syntax expression (example taken from suppl.
Material 2 of [95]):

has part some ( head and ((not ( clypeus )) and (not
( mandible and ((((not ( antenna )) and ( bearer of
some red )) and (not ( labial palp ))) and (not ( max-
illary palp )))))) and ( has part some ( labial palp
and ( bearer of some yellow ))) and ( has part some
( mandible and ( bearer of some yellow ))) and ( has
part some ( maxillary palp and ( bearer of some yel-
low ))) and ( has part some ( occiput and ( bearer of

Fig. 5 Two alternative models for documenting absences using the instance-based ABox semantic graph approach. Within the Phenotype Knowledge Graph
approach, the observation “insect abdomen lacks an ovipositor” can be modeled in two alternative ways. Top: Shows a representation of the observation using
only ABox expressions. This requires the introduction of the object property has not part any that has an instance as a domain restriction and a class as range
restriction. This is not part of the OWL syntax and would require the introduction of additional tools for making it machine-actionable. Bottom: Shows a
representation of the observation using a combination of ABox and TBox expressions. The instance of insect abdomen instantiates not only the class insect
abdomen but also the class absent ovipositor phenotype, which is characterized as the complement class of the class of entities that have some ovipositor as
their part. This description is compliant with description logics and is directly machine-actionable. Purple-bordered box = instance resource; yellow-bordered box
with rounded corners = ontology class resource; grey-bordered box with rounded corners = anonymous class; blue-bordered octagon= object property class; labeled
arrow=property resource
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some dark brown ))) and ( has part some ( pedicel
and ( bearer of some yellow ))) and ( has part some
( postgena and ( bearer of some dark brown ))) and
( has part some ( scape and ( bearer of some yellow
))) and ( has part some ( vertex and ( bearer of some
dark brown ))) and ( has part some ( first flagello-
mere and ( bearer of some yellow ))) and ( has part
some ( second flagellomere and ( bearer of some
yellow ))) and ( has part some ( fifth flagellomere
and (( bearer of some color brightness ) and ( in-
creased in magnitude relative to some ( color
brightness and ( inheres in some sixth flagellomere
)))) and ( bearer of some light brown ))) and ( has
part some ( third flagellomere and (( bearer of some
color brightness ) and ( increased in magnitude
relative to some ( color brightness and ( inheres in
some fourth flagellomere )))) and ( bearer of some
light brown ))) and ( has part some ( fourth flagello-
mere and (( bearer of some color brightness ) and (

increased in magnitude relative to some ( color
brightness and ( inheres in some fifth flagellomere
)))) and ( bearer of some light brown ))) and ( has
part some ( sixth flagellomere and (( bearer of some
color brightness ) and ( increased in magnitude
relative to some ( color brightness and ( inheres in
some seventh flagellomere )))) and ( bearer of some
light brown ))) and ( has part some ( seventh flagel-
lomere and (( bearer of some color brightness ) and
( increased in magnitude relative to some ( color
brightness and ( inheres in some eighth flagellomere
)))) and ( bearer of some light brown ))) and ( has
part some ( eighth flagellomere and (( bearer of
some color brightness ) and ( increased in magni-
tude relative to some ( color brightness and (
inheres in some ninth flagellomere )))) and ( bearer
of some light brown ))) and ( has part some ( ninth
flagellomere and (( bearer of some color brightness )
and ( increased in magnitude relative to some (

Fig. 6 Two alternative models for documenting exact counts of parts using the instance-based ABox semantic graph approach. Within the Phenotype
Knowledge Graph approach, the observation “insect head has part exactly 3 ocelli” can be modeled in two alternative ways. Top: Shows a representation of the
observation using only ABox expressions. This requires modeling the parthood relation as a directed relational quality and as a consequence of that the
introduction of an object property towards class that has an instance as a domain restriction and a class as range restriction. Unfortunately, modeling the
observation this way is not compliant with description logics and would require the introduction of additional tools for making it machine-actionable. Bottom:
Shows a representation of the observation using a combination of ABox and TBox expressions. The instance of insect head instantiates not only the class insect
head but also the class exact ocellus count phenotype, which is characterized as a cardinality restriction on a combination of a property and a class. This
description is compliant with description logics and is directly machine-actionable. Purple-bordered box= instance resource; yellow-bordered box with rounded
corners = ontology class resource; grey-bordered box with rounded corners = anonymous class; grey-bordered box with sharp corners = value; blue-bordered octagon=
object property class; labeled arrow=property resource
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color brightness and ( inheres in some tenth flagel-
lomere )))) and ( bearer of some light brown ))) and
( has part some ( eleventh flagellomere and ((
bearer of some color brightness ) and ( increased in
magnitude relative to some ( color brightness and (
inheres in some twelfth flagellomere )))) and (
bearer of some light brown ))) and ( has part some (
twelfth flagellomere and (( bearer of some color
brightness ) and ( increased in magnitude relative to
some ( color brightness and ( inheres in some thir-
teenth flagellomere )))) and ( bearer of some light
brown ))) and ( has part some ( thirteenth flagello-
mere and (( bearer of some color brightness ) and (
increased in magnitude relative to some ( color
brightness and ( inheres in some flagellomere 14 ))))
and ( bearer of some light brown )))).15

Obviously, respective class axioms can consist of many
levels of nested expressions organized in parentheses,
which many researchers have a hard time to read and
comprehend. Also, this method of description is very
error-prone due to this nested syntax. Alternatively, such
OWL Manchester Syntax based expressions can be re-
stricted to a certain threshold of slots. In Phenoscape, for
example, templates are used with three slots. Restricting
the descriptions to three slots keeps Semantic Phenotypes
from getting too complicated, but also prevents them
from being as precise and detailed as possible.
Another problem with the Semantic Phenotype ap-

proach becomes apparent when considering morpho-
metric data.16 When describing phenotypes based on a
set of multiple measurements, the Semantic Phenotype
approach would require for every possible combination
of measurements the definition of a corresponding
phenotype class. With the addition of more quantitative
properties, this would result in exponentially increasing
numbers of possible phenotype classes. Documenting
every type of measurement as a single Semantic Pheno-
type somewhat mitigates the problem but results in the
above-mentioned problem of disconnected information
due to anonymous resources.
Whereas the generation of Phenotype Knowledge Graphs

does not face these problems, it requires the development of
an adequate application that allows researchers describing
phenotypes respectively. This application could utilize the
hierarchical structure of parthood relations between de-
scribed parts of a given description to organize its interface.
For each description, the partonomy could be visualized as a

tree-like structure of described parts. This partonomy could
also function as a navigator for selecting a particular de-
scribed part. Each part, in turn, has its own input form asso-
ciated with it that allows a detailed description of that part
and can be accessed by selecting the part within the parton-
omy. We are currently developing such an application for
the online anatomical data repository Morph D Base [96]
and a functional prototype is available. The interface has
been developed in close cooperation with several anatomy-
experts from different backgrounds, who served as use-cases
during its development. They considerably contributed to it,
allowing an intuitive generation of Phenotype Knowledge
Graphs. All data is stored in a Jena tuple store and descrip-
tions are organized into several description named graphs as
described above. The interface provides a human-readable
HTML-version of the description while retaining a machine-
actionable and reasoning-capable version that can be
accessed through a SPARQL endpoint, thus allowing exploit-
ing semantic technology to its full potential and offering
Phenotype Knowledge Graphs as Linked Open Data.

Potential suitability of ABox and TBox semantic graphs for
data and metadata standards
In times of eScience, a standard for data and metadata
must cover machine-actionability regarding termino-
logical aspects relating to concepts (meaning) and no-
menclature (reference) and assertional aspects relating
to formats (syntax and file format) and contents (data
model) [8, 9, 19, 31] (see Table 1). Moreover, it must
also comply with the FAIR Guiding Principles [7, 97–99]
(see Table 2).
An eScience-compliant concept standard requires a

machine- and human-readable specification of the
meaning of all concepts used in data and metadata
statements. The specification provides information about
what we know of the corresponding real universal, i.e.,
the kind. Semantic Phenotypes and Phenotype Know-
ledge Graphs both comply with this by referencing
ontology terms that, in turn, provide unambiguous defi-
nitions of meanings for concepts both in human- and
machine-readable ways.
The nomenclatural standard requires unambiguous

specification of the reference of the words, symbols, and
IDs used in data and metadata statements. It provides an
unambiguous link between term and concept. Again, Se-
mantic Phenotypes and Phenotype Knowledge Graphs
both comply with this standard by using machine-
readable persistent URIs in addition to human-readable
labels for referring to ontology classes. The link between
word, symbol, or ID and its corresponding concept,
which in turn provides the meaning, is thus clear and
unambiguous. This allows the reuse of ontology terms in
any semantic graph without the necessity to include the
entire ontology specification. However, only Phenotype

15Ontology classes shown with their label in regular underlined,
ontology properties with their label in italics and underlined, ‘and’
being used in the sense of intersection of two sets and ‘some’ in the
sense of the existential quantifier ‘there exists a’ or ‘some instance of’.
16Quantitative data about the size, shape, and spatial position of
anatomical entities.

Vogt Journal of Biomedical Semantics           (2021) 12:20 Page 18 of 25

https://proto.morphdbase.de/
https://jena.apache.org/


Knowledge Graphs provide this standard also for all
parts and properties mentioned in the description, which
Semantic Phenotypes only reference anonymously.
The combination of concept and nomenclatural stand-

ard covers the terminology-related aspects of an
eScience-compliant standard and ensures that phenotype
descriptions are semantically transparent, allowing even
non-experts to understand and interpret them correctly.
In addition to these terminology-related aspects,
eScience-compliant data and metadata standards must
also cover assertions-related aspects, which is covered by
a combination of a format and a content standard that
ensures that phenotype descriptions are comparable, re-
usable, computer-parsable, and communicable through
the Web.
The format standard requires a machine-readable

specification of the syntax and file format to be used
when documenting, storing, communicating, and pro-
cessing data and metadata statements on the Web. Se-
mantic Phenotypes and Phenotype Knowledge Graphs
provide this through the possibility to store the respect-
ive semantic graphs in OWL files, which can be serial-
ized to RDF. As a consequence, Semantic Phenotypes
and Phenotype Knowledge Graphs both provide a basic
level of findability, accessibility, and explorability be-
cause they can take the form of semantic graphs and any
semantic graph can be searched using SPARQL. The
query pattern of a SPARQL query is itself represented as
a semantic graph that may contain variables and wild-
cards. The main mechanism of a SPARQL query is
matching the query pattern with the semantic graph to
be queried. A repository for Semantic Phenotypes or
Phenotype Knowledge Graphs stored in a tuple store
would allow searching for descriptions of heads of a spe-
cific taxonomic group that possess a specific type of an-
tenna and that have a weight larger than 10mg and
retrieve a list of corresponding phenotype descriptions.
Regarding querying semantic graphs, however, it is im-

portant to note that querying TBox expressions is more
difficult than querying ABox expressions. In case the
graph contains class definitions in the form of axioms
expressed in OWL, the basic graph-pattern-matching of
SPARQL must be defined using entailment regimes
[100]. Querying under entailment regimes is more com-
plex and computationally difficult under full expressivity
of OWL [101, 102]. As a consequence, querying Pheno-
type Knowledge Graphs is more straight forward and
computationally less difficult than querying Semantic
Phenotypes.
In ABox semantic graphs, we can associate a specific

content standard for each descriptive named graph
class. The content standard specifies the general struc-
ture of how to express the corresponding type of empir-
ical information in terms of RDF triples by defining a

Table 1 Potential suitability of TBox and ABox semantic graphs
for meeting eScience-compliant data and metadata standards,
using Semantic Phenotypes and Phenotype Knowledge Graphs
as examples

TERMINOLOGY

Concept standard What is the meaning of a concept? What do
we know of the corresponding kind?

Semantic
Phenotype

✓✓ Reference to ontology terms provides
machine- and human-readable specifications
of the meaning of concepts used in data
(i.e., phenotype descriptions) and metadata
statements.

Phenotype
Knowledge
Graph

✓✓

Nomenclatural
standard

Which words or symbols are used for referring
to a specific kind?

Semantic
Phenotype

✓ URIs, preferred labels, and synonyms provide
unambiguous reference of a kind term to its
underlying class definition. However, entities
(i.e., parts, properties, qualities, relations)
mentioned in class axioms are referenced
only anonymously.

Phenotype
Knowledge
Graph

✓✓ Same as with Semantic Phenotypes, with the
addition that each particular descriptive
statement, described part, property, quality,
and relation of data and metadata
statements of Phenotype Knowledge Graphs
possess their own URI and can be
individually referenced.

ASSERTIONS

Format standard Which syntax and file format must be used?

Semantic
Phenotype

✓ Semantic Phenotypes can be documented in
RDF/OWL, which provides a machine-
actionable syntax and format. SPARQL can
be used for querying, but querying is com-
putationally more difficult than querying
Phenotype Knowledge Graphs.

Phenotype
Knowledge
Graph

✓✓ Phenotype Knowledge Graphs can be
documented in RDF/OWL, which provides a
machine-actionable syntax and format.
SPARQL can be used for querying. Querying
Phenotype Knowledge Graphs is computa-
tionally less difficult than querying Semantic
Phenotypes.

Content standard Which information is relevant? How must it be
modeled?

Semantic
Phenotype

✓ The use of domain-specific semantic data
models in Semantic Phenotypes provides a
basic categorization and classification of con-
tents relevant for a given domain.

Phenotype
Knowledge
Graph

✓✓ The use of domain-specific semantic data
models in Phenotype Knowledge Graphs
provides a basic categorization and classifica-
tion of contents relevant for a given domain.
With the identification of individual descrip-
tive statements, parts, properties, qualities,
and relations, Phenotype Knowledge Graphs
can be categorized and classified at various
levels of granularity, including levels finer
than it is possible with Semantic Phenotypes.

Vogt Journal of Biomedical Semantics           (2021) 12:20 Page 19 of 25



Table 2 Potential suitability of TBox and ABox semantic graphs for meeting the FAIR Guiding Principles, using Semantic Phenotypes
and Phenotype Knowledge Graphs as examples (criteria taken from [7], criteria for reusability not shown)

FINDABLE

F1 (meta) data are assigned a globally unique and persistent identifier

Semantic Phenotype ✓ Semantic Phenotypes reference ontology classes through their URIs, including the class defining the phenotype.
Ontologies provide persistent identifiers for kind terms and their associated universal statements.

Phenotype
Knowledge Graph

✓✓ Phenotype Knowledge Graphs not only reference ontology classes like Semantic Phenotypes do, but also provide
URIs for every particular descriptive statement, described part, property, quality, and relation and thus for kind terms,
universal statements, proper names, and assertional statements.

F2. data are described with rich metadata

Semantic Phenotype ✓ Metadata can be associated with a phenotype description as a whole, but not with each of the individual descriptive
statements it comprises.

Phenotype
Knowledge Graph

✓✓ Due to the possibility to organize a Phenotype Knowledge Graph into a set of named graphs, each of which
documenting an individual descriptive statement, metadata can be associated on the fine granular level of particular
descriptive statements of a phenotype description, in addition to the description as a whole.

F3. metadata clearly and explicitly include the identifier of the data it describes

Semantic Phenotype ✓ Metadata can include an identifier that refers to the description as a whole, but not to individual descriptive
statements.

Phenotype
Knowledge Graph

✓✓ Metadata can include an identifier that refers to the description as a whole, but also identifiers that refer to each
individual descriptive statement.

F4. (meta) data are registered or indexed in a searchable resource

Semantic Phenotype ✓✓ Metadata can be expressed as TBox or ABox semantic graphs and stored in a tuple store.

Phenotype
Knowledge Graph

✓✓

ACCESSIBLE

A1. (meta) data are retrievable by their identifier using a standardized communication protocol

Semantic Phenotype ✓ Semantic Phenotypes and their metadata can be stored in a tuple store and queried with SPARQL.

Phenotype
Knowledge Graph

✓✓ Phenotype Knowledge Graphs and their metadata can be stored in a tuple store and queried with SPARQL. Because
particular descriptive statements, described parts, properties, qualities, and relations have their own URIs, they can be
individually accessed.

A1.1 the protocol is open, free, and universally implementable

Semantic Phenotype ✓ SPARQL

Phenotype
Knowledge Graph

✓

A1.2 the protocol allows for an authentication and authorization procedure, where necessary

Semantic Phenotype – This depends on the application employing the concept of Semantic Phenotypes or Phenotype Knowledge Graphs.

Phenotype
Knowledge Graph

–

A2. metadata are accessible, even when the data are no longer available

Semantic Phenotype – This depends on the application employing the concept of Semantic Phenotypes or Phenotype Knowledge Graphs.

Phenotype
Knowledge Graph

–

INTEROPERABLE

I1. (meta) data use a formal, accessible, shared, and broadly applicable language for knowledge representation

Semantic Phenotype ✓ Semantic Phenotypes and Phenotype Knowledge Graphs both can be represented in RDF/OWL.

Phenotype
Knowledge Graph

✓

I2. (meta) data use vocabularies that follow FAIR principles

Semantic Phenotype ✓ Semantic Phenotypes and Phenotype Knowledge Graphs both use ontologies and other controlled vocabularies that
provide URIs for their terms.

Phenotype
Knowledge Graph

✓

I3. (meta) data include qualified references to other (meta)data
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corresponding semantic graph pattern [57], for ex-
ample using an RDF graph schema language such as
SHACL or ShEx. The same can be applied using TBox
semantic graphs for standardizing the definitions of
ontology classes. When applied consistently throughout
a data repository that stores and manages phenotype de-
scriptions, the set of templates would specify a semantic
model for phenotype data and metadata [57]. Such
data and metadata models would not only complement
the format standard by further specifying the syntax of
all types of descriptive and metadata statements relevant
for phenotype descriptions but also specify the content
standard aspect of eScience-compliant standards [8, 9,
19, 31]. The content standard requires the specification
of which information is relevant for a specific type of
data or metadata statement and provides a basic
categorization and classification of possible contents be-
longing to a given domain and the corresponding sche-
mata for modeling and documenting them. The graph
pattern associated with each descriptive named graph
class specifies which information must be provided for
the given type of data statement. The same can be done
with metadata statements, which should be associated
with their own particular named graphs too. This signifi-
cantly increases the comparability of Semantic Pheno-
types and Phenotype Knowledge Graphs [57].
Whereas the specification of templates for class ax-

ioms guarantee a certain level of comparability between
different Semantic Phenotypes [51], these templates are
very general and not customized to basic perceptual cat-
egories such as the semantic graph templates associated
with Phenotype Knowledge Graphs. Therefore, Semantic
Phenotypes are not to the same degree comparable with
each other as Phenotype Knowledge Graphs.
Regarding the FAIR Guiding Principles, Phenotype

Knowledge Graphs are slightly superior to Semantic
Phenotypes with respect to the findability, accessibility,
and interoperability criteria mentioned by Wilkinson
et al. [7] (see Table 2). With respect to the criterion of
reusability, the way phenotype data are represented is ra-
ther irrelevant, and it is more a question of implementa-
tion within an application and the quality of the
metadata provided by the creators of a given phenotype
description. Anyhow, what both representations of phe-
notypes lack is good human-readability of their data and

associated metadata. This is a general problem with se-
mantic graphs: whereas their machine-actionability can
be excellent, their human-readability is usually poor—
humans neither want to read RDF/OWL files nor triple
statements or complex graphs. Moreover, since ma-
chines have problems with fuzzy and context-dependent
information—something typically found in natural lan-
guage texts—semantic graphs tend to be more complex
and explicit than human readers need, adding informa-
tion that human readers distract from the information
they are interested in. Ideally, applications storing data
in the form of semantic graphs feature tools that trans-
late semantic graphs into human-readable statements
that can be presented, for instance on an HTML page.

Machine-actionability of phenotype descriptions
As already discussed above, both Semantic Phenotypes
and Phenotype Knowledge Graphs are machine-
actionable. However, because each particular descriptive
statement and described part, property, quality, and rela-
tion in a Phenotype Knowledge Graph possesses its own
URI and reasoning over instance-based ABox semantic
graphs is computationally less difficult than reasoning
over class-based TBox semantic graphs, the machine-
actionability of Phenotype Knowledge Graphs allows for
broader practical applicability. Algorithms can use the
information contained in a given set of Phenotype
Knowledge Graphs together with the information con-
tained in all ontologies they reference. By traversing the
parthood hierarchy of a Phenotype Knowledge Graph
and the class-subclass hierarchy of referenced ontologies,
algorithms could match and map nodes between differ-
ent Phenotype Knowledge Graphs and align them, in
order to identify units of comparison between them
and measure the overall degree of similarity between
them [29]. Results of respective comparisons could
themselves be documented as for instance separate con-
sensus Phenotype Knowledge Graphs [29] that supple-
ment the originally compared Phenotype Knowledge
Graphs. The ability to measure the degree of similarity
between a particular Phenotype Knowledge Graph and
all Phenotype Knowledge Graphs stored in a phenotype
repository would also greatly facilitate searching across
phenotype descriptions, resulting in a search

Table 2 Potential suitability of TBox and ABox semantic graphs for meeting the FAIR Guiding Principles, using Semantic Phenotypes
and Phenotype Knowledge Graphs as examples (criteria taken from [7], criteria for reusability not shown) (Continued)

Semantic Phenotype ✓ This depends on how and which (meta) data are provided, but Semantic Phenotypes and their associated metadata
can include cross-references and inter-relationships to other Semantic Phenotypes and their metadata.

Phenotype
Knowledge Graph

✓✓ This depends on how and which (meta) data are provided, but Phenotype Knowledge Graphs and their associated
metadata can include cross-references and inter-relationships to other Phenotype Knowledge Graphs and their meta-
data and that to a finer degree of granularity than Semantic Phenotypes due to the fact that they provide URIs to in-
dividual descriptive statements and to each described part, property, quality, and relation.
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functionality comparable to the BLAST search for DNA
sequences.

Conclusion
Class-based and instance-based semantic representations
of phenotypes are both overall FAIRer than phenotype
descriptions in the form of unstructured natural lan-
guage texts, especially regarding their machine-
actionability. By linking URIs to corresponding ontology
class definitions, they both provide unambiguous links
to the meaning of the terms used in the descriptions and
therewith provide the much-needed semantic transpar-
ency. This allows researchers to understand the descrip-
tions, independent of their backgrounds within the life
sciences and their expertise with the particular anatomy
of the respective taxon. Moreover, when stored in ad-
equate repositories, phenotype descriptions in the form
of Semantic Phenotypes and Phenotype Knowledge
Graphs become findable and accessible. Due to their use
of URIs, searching a repository for specific phenotype
data becomes possible. Searching for specific phenotype
data in published literature, in contrast, is not only tedi-
ous and exhausting but significantly less efficient and
often also hampered by pay-walls.
The incomprehensibility of phenotype descriptions for

non-experts and their limited findability and accessibility
has been one of the most detrimental problems of anat-
omy/morphology as a discipline in academia. If col-
leagues from other disciplines have problems finding
your data and when they find them, they have problems
understanding them, they will likely think twice to col-
laborate with you and are therefore less interested in
your research. Both the Semantic Phenotype approach
and the Phenotype Knowledge Graph approach have the
potential to change this. Moreover, both approaches en-
able the application of machine-reasoning, which can be
utilized for various analytical purposes, for inferencing,
and for checking the consistency of the data [86, 103–
105]. However, with respect to the FAIR Guiding Princi-
ples and their suitability for meeting eScience-compliant
standards, the Phenotype Knowledge Graph approach is
superior to Semantic Phenotypes, because querying its
graphs is computationally less difficult and integrating
metadata straight forward.
Apart from that, looking at the various practical impli-

cations of the technical differences between the two gen-
eral approaches, the instance-based ABox semantic
graphs approach seems to be in general superior to the
class-based TBox semantic graphs approach in the con-
text of documenting and managing empirical data in
knowledge graphs, because it allows the identification of
each particular descriptive statement, each described en-
tity, quality, and relation, enabling the decomposition of
the data graph into various fragments. This

characteristic of instance-based ABox semantic graphs is
not limited to semantic descriptions of phenotypes,
but applies to the description of any type of ODU, in-
cluding all sorts of particular material entities, spaces,
and processes. Thus, when describing a particular entity,
instance-based semantic graphs are in general superior
to class-based semantic graphs for the same reasons that
Phenotype Knowledge Graphs are superior to Semantic
Phenotypes.
Coupled with their better querying properties, Phenotype

Knowledge Graphs together with semantic technologies pro-
vide a promising framework for developing not only new in-
novative analytical methods but also new applications that
will substantially support everyday research in the life sci-
ences. We could, for instance, develop algorithms for taxono-
mists that facilitate statistical evaluation of species
affiliation in an anatomically heterogeneous population based
on phenotype descriptions. Once we can semi-automatically
annotate images and automatically produce Phenotype
Knowledge Graphs based on these annotations, the algo-
rithms could compare these graphs and identify putative
sub-populations and even suggest adequate diagnostic char-
acters to differentiate these sub-populations. As soon as tax-
onomists then decide which specimen is the holotype, the
algorithms could statistically evaluate the Phenotype Know-
ledge Graphs of all other previously described specimens be-
longing to the taxon and generate a consensus description
containing all possible conditions found in that taxon. This
could be done automatically, and the consensus description
would be adjusted dynamically with every new specimen of
that taxon being described. Phenotype Knowledge Graphs
could even be used for taxonomically identifying the species
affiliation of a described specimen. All the resulting informa-
tion could be documented in a Taxonomy Knowledge
Graph, which could provide various valuable services to the
life science community, such as automatically generated dy-
namic multi-entry keys that could add annotated images to
each of their decision points.
In any case, being able to represent the anatomy of

particular specimens in a machine-readable and
machine-actionable format is not only going to change
the way anatomical research will be done in the future,
but it will also increase the visibility and importance of
anatomy/morphology and taxonomy as scientific disci-
plines. Exciting times ahead for morphologists!
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