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Abstract

Background: Drug repurposing can improve the return of investment as it finds new uses for existing drugs.
Literature-based analyses exploit factual knowledge on drugs and diseases, e.g. from databases, and combine it with
information from scholarly publications. Here we report the use of the Open Discovery Process on scientific literature
to identify non-explicit ties between a disease, namely epilepsy, and known drugs, making full use of available
epilepsy-specific ontologies.

Results: We identified characteristics of epilepsy-specific ontologies to create subsets of documents from the
literature; from these subsets we generated ranked lists of co-occurring neurological drug names with varying
specificity. From these ranked lists, we observed a high intersection regarding reference lists of pharmaceutical
compounds recommended for the treatment of epilepsy. Furthermore, we performed a drug set enrichment analysis,
i.e. a novel scoring function using an adaptive tuning parameter and comparing top-k ranked lists taking into account
the varying length and the current position in the list. We also provide an overview of the pharmaceutical space in the
context of epilepsy, including a final combined ranked list of more than 70 drug names.

Conclusions: Biomedical ontologies are a rich resource that can be combined with text mining for the identification
of drug names for drug repurposing in the domain of epilepsy. The ranking of the drug names related to epilepsy
provides benefits to patients and to researchers as it enables a quick evaluation of statistical evidence hidden in the
scientific literature, useful to validate approaches in the drug discovery process.

Keywords: Epilepsy, Ontology, Open discovery process, Knowledge discovery, Top-k, Enrichment analysis, Drug
repurposing, Drug discovery, Information extraction, Text mining

Background
Drug repurposing provides an alternative approach to
drug discovery by identifying novel disease indications for
already approved pharmaceutical compounds, reducing
time and risks involved in the regular process of drug dis-
covery [1]. By the year 2020, approximately 30 % of the US
Food andDrug Administration (FDA) approved drugs and
vaccines have been repurposed wrt their original disease
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indication [2]. Drug repurposing uses known informa-
tion about drugs and diseases as well as complementary
data sources to determine similarities across drugs and
diseases and thus identify new uses for existing drugs.

Data resources for drug repurposing
The hypothesis behind drug repurposing is that similar
properties of drugs and diseases allow the inference for
new application domains. The vast amount of publicly
available biomedical databases provide a rich resource for
factual knowledge on drug and disease-related properties
that can be later used to calculate similarities.
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Fig. 1 Annual and cumulative growth of citations in NLM’s Medline and ontologies in NCBO’s BioPortal from 2015 until 2020

Diseases can show similarities regarding, for instance,
clinical symptoms, diagnosis, disease progression, and co-
morbidities that can be used to make statements about
the application of different drugs for similar diseases.
There is a variety of biomedical sources providing rel-
evant information to find such similarities, e.g. pheno-
types, gene expression and gene-disease association. The
database Online Mendelian Inheritance in Man (OMIM)
[3] is a comprehensive resource for genetic phenotypes.
Gene expression profiles are available in databases such as
ArrayExpress [4] andGEO [5]. DisGeNET [6] is a database
about gene-disease associations extracted from the liter-
ature and linked to database records. Ontologies provide
background information that can help glue together data
from different sources including semi or unstructured
data such as that one coming from literature.. For exam-
ple, domain-specific ontologies contain semantic relations
of diseases and drugs that are not directly available in
literature or databases.
Biomedical ontologies provide information useful to

calculate semantic similarities between heterogeneous
data sources beyond implicit relationships, and to con-
nect databases with bibliographic information. Although
manual curation of relevant information from literature
is a practice followed by some domain specific databases,

using such approach over the whole literature is not a
scalable option as the published literature exceeds man-
ual curation capacity. For instance, Medline introduced
almost 1.1million new publications in 2020 reachingmore
than 27 Million publications in total [7]. In parallel, the
National Center for Biomedical Ontology (NCBO) Bio-
Portal [8] adds about 75 new ontologies each year with
a total of a bit more than 900 ontologies in 2020. Both
annual and cumulative growth rates of Medline citations
and ontologies in BioPortal are shown in Fig. 1. It is
hardly possible for any researcher to keep track of their
domain knowledge represented as ontologies without
incorporating automated methodologies for the retrieval
and discovery of relevant information from literature.
The automated extraction of the drug-disease association
from literature resources is a yet neglected but very valu-
able contribution to current drug repurposing approaches
because many relationships between drugs and diseases
are still buried in the free-text of biomedical publications,
unavailable in biomedical databases but decipherable with
the help of text mining and domain ontologies.

Related work
Recent approaches incorporate different types of seman-
tic information useful for the computation of association
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and similarity between drugs and diseases. Zhang et al.
[9] used a matrix factorization method to represent drug-
disease associations for the projection in low-rank spaces
for the prediction of novel associations. Jiang et al. [10]
developed a sparse auto-encoder as a symmetrical neural
network for the prediction of novel drug-disease associ-
ations incorporating existing data sets; they include an
evaluation of their approach on obesity, and lung and
stomach neoplasms. Zhu et al. [11] constructed a knowl-
edge graph for the integration of various drug knowledge
bases in order to derive novel disease associations com-
prising a case study for the association of the anti-diabetic
drug metformin to various cancer types. Despite the cur-
rent efforts, the application, the application of text mining
methods to compute semantic similarities has still more
to offer wrt the discovery of novel relationships between
drugs and diseases.

Using term sources for knowledge discovery
Using domain ontologies for text mining on neurodegen-
erative diseases literature leads to successful outcomes
that could be used for drug repurposing as shown on
the following examples. The Alzheimer Disease Ontology
has been developed as a resource for preclinical, clini-
cal, etiological, and molecular/cellular mechanisms with
a successful application in text mining for the automated
extraction of comorbidities [12]. The Multiple Sclerosis
Ontology has successfully been employed for the auto-
mated extraction of drug-targets with their functional
biological pathways from free-text in PubMed articles
and electronic medical records [13]. The Parkinson Dis-
ease Ontology has been developed for the use of text
mining by automatically annotating the free-text of data
sets describing gene expression profiles [14]. For other
neurodegenerative diseases, including epilepsy, there are
some other domain-specific ontologies that can be used
for text mining and potentially for drug repurposing.
Literature-based discovery is the process of connecting

"islands of knowledge" from articles published in differ-
ent journals and scientific disciplines by linking the co-
occurring concepts, even if they do not appear within the
same document [15]. In the mid-1980s, Don R. Swan-
son developed the foundations of literature-based discov-
ery for drug repurposing with the so-called ABC model
[16] with discoveries of fish oil for treating Raynaud’s
disease [17], magnesium for preventing migraine [18],
arginine increasing blood levels of somatomedin C [19],
magnesium deficiency playing a role in neurological dis-
eases [20], the potential protective effect of indomethacin
in Alzheimer’s disease [21], estrogen replacement ther-
apy lowering the risk of Alzheimer’s disease [22], and
calcium-independent phospholipase A2 playing a role in
Schizophrenia [23]. The linkage of different types of con-
cepts is conducted by using the B-Terms which co-occur

with a concept A and a concept C while concept A and
conceptC do not necessarily co-occur, forming an implicit
link between A and C through the B-Terms. The Open
Discovery Process [24] is an extension of the ABC-model
connecting a set of concepts A with a set of concepts C
through a set of B-Terms.

Using epilepsy ontologies
For the domain of epilepsy, several domain-specific
ontologies have been constructed for various applica-
tions. The Epilepsy and Seizure Ontology (EpSO) [25]
has been developed to extract epilepsy-related concepts
from the free-text of electronic medical records and there-
fore categorize information on epilepsy and seizures [25,
26]. The Epilepsy Syndrome Seizure Ontology (ESSO) has
been developed to capture the various historical classifi-
cation systems of epilepsy [27, 28]. The Epilepsy Ontol-
ogy (EPILONT) has been constructed for the translation
of epilepsy and seizure information from English into
Portuguese [29, 30]. The ontology Epilepsy Semiology
(EPISEM) contains signs and symptoms for epilepsy syn-
dromes and seizure types [31]. The ontology Functional
Epilepsy Nomenclature for Ion Channels (FENICS) is
designed to capture electrophysiological experiments on
Ion Channels in the context of epilepsy [32]. To the best of
our knowledge, none of these ontologies has been yet used
for the automated extraction of drug-disease associations
for drug repurposing.
In this study, we use the Open Discovery Process to

connect epilepsy to drug names with the help of co-
occurring B-Terms from epilepsy-specific domain ontolo-
gies as shown in Fig. 2. The different ontologies are
considered as set of terms regarding the Swanson and
Smalheiser discovery approach, going a step ahead by tak-
ing the ontologies as a whole and thus creating a large
set of terms to characterize the retrieval of drug names,
i.e. C-Terms. All available concepts from each of the con-
sidered ontologies are taken as B-Terms. The results of
this approach could pinpoint towards novel applications
of drugs such as Ketamine [33], a drug well-known for its
use as anesthetic since the 60’s but nowadays also used to
treat refractory depression [34] and showing efficacy for
the management of refractory epilepsy [35].
The fundamental hypothesis behind this approach is

that underlying malfunctioning processes are potentially
shared between different neurological and neurodegen-
erative diseases and disorders. Therefore, drugs which
are approved for one neuropathological indication could
show efficacy for a different neurological indication area
because the drugs modulate similar or even shared
malfunctioning neurological processes. Drug repurpos-
ing for neurological drugs is especially complex for the
neurological domain as "the structural complexity of the
nervous system and influence of the blood-brain barrier
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Fig. 2 The Open Discovery Process according to Swanson’s ABC-model implicitly connecting Epilepsy (A) with Drug Names (C) through
co-occurring terms from the epilepsy-specific domain ontologies (B − Terms)

permeability often becomes more difficult to develop new
drugs in neuropathological conditions than diseases in
other organs" [36]. Due to this complexity, the result
sets of extracted drug names undergo a special filtering
step for the selection of neurological drug names only. In
any case, a combination of multiple solutions have to be
brought together to achieve drug repurposing; our sug-
gested solution helps identify candidates and it lies in the
hands of the researcher performing the search / retrieval,
what candidates could be taken into account for further
consideration.

Limitations
The Open Discovery Process groups drugs related to
epilepsy by identifying drug names co-occurring with
terms from different epilepsy ontologies in the 2021
BioASQ corpus, and thus enables the extraction of drug
names in context of epilepsy even if the term epilepsy
does not occur in the same document with the drug name.
However, this approach fails to detect the type of the
relation between epilepsy and the respective drugs. Such
relation should be determined by other means which are
out of the scope of the present manuscript.

Evaluation with reference lists
In order to evaluate the extracted drug names, they are
ranked according to their co-occurrence frequency and
compared to several reference sets of drugs recommended

for the treatment of epilepsy. For instance, Perucca
and Tomson suggest drugs for the first-line treatment
of epilepsy in adults [37] (reference data set known
as Lancet) while Trinka and colleagues suggest vari-
ous drugs for treating early, established, and refractory
seizures as well as for other stages of epilepsy [38] (ref-
erence data set called DRUGSE). The Epilepsy Foundation
also provides a list of medications for seizures on their
website [39] (reference data set called EFO). Similarly, an
updated list of drugs for the initial treatment of epilepsy in
adults is available at the U2D data set [40]. As a minimum,
the ranking of extracted drug names should recover drugs
that are already approved as anti-epileptics or drugs that
are frequently used as first-line treatment for epilepsy in
the reference lists. As part of the discovery process, other
types of relations between drugs and epilepsy should be
found, including, for instance, drugs that could be used
for treating epilepsy, drugs having some type of relation to
epilepsy or drugs causing seizures as side effects.

Results
The terms from the source ontologies are used as sets of
terms to identify B-Terms in the documents as part of the
discovery process.

Identification of B- and C-Terms
After creating the dictionaries corresponding to drug
names and terms from the epilepsy ontologies, named
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Table 1 Number of concepts and synonyms for the dictionaries created from the source ontologies corresponding to drug names.
Additionally, number of documents from the BioASQ 2020 corpus of 15,501,443 citations where (B-Terms) co-occur with (C-Terms)

EpSO ESSO EPILONT EPISEM FENICS

Concepts 1,357 2,694 137 1,591 141

Unshared Concepts 87.693% 77.803% 56.204% 76.996% 100%

Shared Concepts 12.307% 22.197% 43.796% 23.004% 0%

Synonyms 3,059 7,284 530 4,847 708

Unshared Synonyms 91.01% 85.214% 81.698% 81.886% 100%

Shared Synonyms 8.99% 14.786% 18.302% 18.114% 0%

Synonyms per Concept 2.268239 3.048998 3.912409 3.253300 5.021277

Documents

with B-Terms 9,202,628 14,329,391 1,842,409 5,293,385 62

with B- & C-Terms 4,484,726 7,586,298 819,922 2,578,483 43

Docs. with B- and C-Terms per

Docs. with B-Terms 48.733% 52.942% 44.503% 48.711% 69.355%

Concepts per Document

with B-Terms 0.000147 0.000188 0.000074 0.000301 2.274194

with B- & C-Terms 0.000303 0.000355 0.000167 0.000617 3.279070

Synonyms per Document

with B-Terms 0.000332 0.000508 0.000288 0.000916 11.419355

with B- & C-Terms 0.000682 0.000960 0.000646 0.001880 16.465116

entity recognition (NER) was applied to the 2021 BioASQ
corpus [41, 42], which contains 15,501,443 citations from
Medline. Each identified term in the text either by a
matching synonym or label forms a so called stand-off
annotation which comprises the character offset in the
document, the matched text, the length of the matched
text, the label, and the source dictionary. The result-
ing stand-off annotations together with the aggregation
of documents containing drug names co-occurring with
terms from the epilepsy ontologies are stored in a Mon-
goDB, Table 1 shows data related to the number of
concepts as well as documents where B- and C-Terms,
i.e. drug names, (co-)occur. The number of terms in the
different source ontologies varies from a small number,
e.g. 530 terms in the ontology EPILONT, up to 7,284
terms in the ontology ESSO. Numbers shown in the table
indicate already that the term sets from the different
ontologies have different characteristics, when serving as
B-Terms in the discovery process.
The number of documents containing terms extracted

from ESSO corresponds to more than 90% of the total
of processed documents meaning that the ESSO ontology
includes terms that are the least specific for the analyzed
corpus in comparison to the other ontologies. For the
ontologies EpSO and EPILONT the coverage is slightly
above half the size of the corpus or somewhat below the
average, respectively. From a broad perspective, we could
argue that the term set from EPILONT produces a rather

narrow and possibly very specific set of documents from
the 2021 BioASQ corpus while, by contrast, the term set
from ESSO a very unspecific and a large document set.
The term set from EpSO has a slightly lower number of

concepts in comparison to EPISEM, but generates a much
larger retrieval of documents when considering either the
B-Terms only or the co-occurrence of B- and C-Terms.
From these results, we can conclude that EPISEM cov-
ers a more specific set of terms in comparison to EpSO.
When comparing the document retrieval for the B-Terms
against that for the B- and C-Terms, it turns out that
sets of documents are proportional across the different
source ontologies ranging from 44% for EPILONT to 69%
for FENICS; however, the quota is higher if the source
ontology covers a smaller amount of terms and concepts,
i.e. when it could be considered to be more specific.

Comparison of the source ontologies
String similarity on concept names and synonyms is used
to get further insights from the term sets across the dif-
ferent ontologies. Each concept on the source ontologies
holds a set of synonyms. Although not a common practice,
a synonym for a concept can be reused by another con-
cept within the same ontology. Reuse of synonyms across
different ontologies is much more common and can help
match concepts with each other. We therefore computed
the synonym overlapping within and across the ontolo-
gies. A synonym is considered to overlap if it is used by
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Fig. 3 Quad Venn diagram for the concepts: Two concepts are considered to match if they share at least one synonym with each other. Set
properties for FENICS are excluded as it is completely disjunctive to any of the other ontologies

two or more different concepts, showing a degree of sim-
ilarity between them. Synonym-based similarity can be
explicit or implicit. For instance, having a concept b1 with
synonyms s1 and s2, a concept b2 with synonym s1 and a
concept b3 with synonym s2 leads to (i) explicit similari-
ties between b1 and b2 via s1 and between b1 and b3 via
s2, but also to (ii) an implicit similarity between b2 and b3
because they are both, on its own, similar to b1.
The intersections between the source ontologies are

visualized as a quad Venn diagram in Fig. 3. FENICS is
omitted as it does not share any concept or synonym
with any other source ontology. Furthermore, the result-
ing synonym-based mapping across the source ontologies
is publicly available at NCBO Bioportal as Mapping of
Epilepsy Ontologies (MEPO) [43].
Overall, the four sets of terms from the source ontolo-

gies cover 5,920 concepts with 5,603 unique concepts,
out of which 4,588 concepts are only provided by a sin-
gle source ontology, i.e. these concepts are not shared
between any two ontologies. Concepts are considered to
be redundant if they share one or more common syn-
onym which applies to 317 concepts. This leaves 1,015
concepts that are shared between at least two source
ontologies: 598 (22.197 %) out of the total number of
concepts in the ontology of the concepts from ESSO are
shared, 366 (23.004 %) from EPISEM, 167 (12.307 %)

from EpSO, 60 (43.796 %) from EPILONT, and none for

FENICS. EPISEM and ESSO share the biggest portion of
concepts (689 concepts, i.e. 76.30 % of the shared con-
cepts in ESSO and 88.33 % of those shared in EPISEM).
These numbers show that FENICS is quite specific and
therefore more useful for specialized retrieval, i.e. based
on terms found only in this ontology, while EpSO and
EPISEM could be used to narrow down results as they
offer a low number of shared concepts. When comparing
EPISEM against EpSO, the overlap is very small, only 39
concepts, i.e. they can be considered disjoint.
The shared synonyms from the source ontologies show

a similar overall distribution when compared to the con-
cepts one, see Fig. 4 (FENICS has been omitted as it
is disjoint regarding all of the other ontologies). The
ontologies provide 15,720 synonyms with 14,516 unique
synonyms, out of which 13,393 synonyms are not shared
between any two ontologies, i.e. about 92 %. From the
remaining 1,123 shared synonyms, ESSO contains 1,077
shared synonyms (14.79 % out of the total synonyms in
the ontology), EPISEM 878 (18.11 %), EpSO 275 (8.99 %),
EPILONT 97 (18.30 %), and none from FENICS. ESSO
has by far the largest amount of shared synonyms almost
covering all of the shared synonyms, having the largest
intersection of 852 synonyms with EPISEM followed by
232 shared synonyms with EpSO. In contrast, EPILONT
has a low number of intersecting synonyms showing a
disjunctive shape with regards to the other ontologies.
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Fig. 4 Quad Venn diagram for synonyms: All the synonyms from all concepts from each of the source ontologies are matched to each other. Again,
FENICS is excluded as it is completely disjunctive

Comparison of the document sets with B- and C-Terms
The 2021 BioASQ corpus was annotated with concepts
from the source ontologies matching tokens of text with
either preferred labels or synonyms. These annotations
were used to compare the different subsets emerged
from the of annotated documents. The proportion of
shared concepts and synonyms from the source ontolo-
gies is also reflected in the document subsets tagged
with terms from the respective ontologies, i.e. the set
of documents containing B-Terms. Additionally, docu-
ments with co-occurring drug names are also taken into
consideration for their representation of document sub-
sets in the corpus, i.e. documents containing B- and
C-Terms.
From the 15,501,443 documents in the 2021 BioASQ

corpus, 14,759,054 (95.21 %) documents were anno-
tated with B-Terms from which 10,205,663 (69.15 %)

are shared by at least two ontologies. There are only
two documents exclusively annotated by FENICS omit-
ted hereafter for being too specific. ESSO has terms
occurring in 5, 982, 059 (58.90 %) documents with terms
from other ontologies whereas EPISEM has co-occurring
terms in 5, 221, 235 (99.31 %) documents with other
ontologies, EpSO 8.550.970 (96.33 %) and EPILONT
1, 806, 895 (99.02 %). This shows that ESSO adds a very
large amount of documents to the set of documents
regarding the B-Terms leading to low specificity as it cov-
ers almost the entire corpus of documents. Moreover,

EpSO and EPISEM also share a very large amount of
several million documents in the corpus that appear to
be very general and unrelated to the domain of epilepsy
which is probably caused by highly common terms that are
not specific to epilepsy. From the source ontologies, it is
EPILONT the one adding more specific documents to the
set of those that can be used for B-Terms. In Fig. 5, doc-
uments containing B-Terms are visualized as quad Venn
diagram.
The document set containing B-Terms co-occurring

with C-Terms from the Drug Name vocabulary shows
a similar proportion of shared documents regarding B-
Terms only. Most of the source ontologies contribute to
the identification of about 97 % of documents containing
drug names, i.e. C-Terms, except for ESSO which con-
tributes only to 66.67 % of these documents. This large
fraction of documents corresponding to ESSO annota-
tions not shared with any of the other source ontologies
suggests that ESSO is not specific enough for document
retrieval regarding epilepsy. Similarly, EpSO and EPISEM
appear to add quite general documents to the set of anno-
tated documents with several million of documents there.
EPILONT is the only ontology whose annotations sug-
gest a good specificity for document retrieval aligned to
epilepsy, with only 811,634 documents where drug names,
i.e. C-Terms, co-occur with B-Terms in the 2021 BioASQ
corpus. Nevertheless, most of these documents with EPI-
LONT annotations also exhibit annotations from other
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Fig. 5 Quad Venn diagram for documents with B-Terms: The documents containing annotations from a source ontology are matched against each
other. FENICS is excluded as terms from it are recognized only in two documents

ontologies. In Fig. 6, the quad Venn diagram shows docu-
ments containing B-Terms co-occurring with C-Terms.

Prioritization of drugs
The extracted drugs are sorted according to the document
frequency and their co-occurrence with B-Terms; they are
stored into ranked lists of drug names. One ranked list is
produced per ontology containing 8,010 drugs for EpSO,
8,620 for ESSO, 6,318 for EPILONT, 7,641 for EPISEM
and 74 for FENICS. Repurposing candidate drugs for the
neurological domain requires further scrutiny than drugs
for other pathological indications. One common con-
straint for neurological drugs is to be able to pass the
blood-brain barrier. Therefore, the ranked lists are filtered
by drug names classified as relevant to the Nervous Sys-
tem according to the Anatomical Therapeutic Chemical
(ATC) Classification System’s [44] class N. Table 2 shows
the top 25 drug names per ranked list, with FENICS show-
ing only four drug names after the filtering process. The
total length of the ranked lists of drug names after the fil-
tering process selecting only neurological drugs is 465 for
EpSO, 471 for ESSO, 431 for EPILONT, 465 for EPISEM
and 6 for FENICS. The lists of drug names produced per
ontology are composed approximately by the same drugs
before as well as after the filtering process (except for
FENICS). The major difference between the lists is not the
varying number of drugs but the ranking of those drugs
within these ontology-derived lists.

The results show that each of the different ontolo-
gies prioritize drugs related to the treatment of epilepsy
(e.g. Ketamine), the treatment of the nerve system (e.g.
Fentanyl) or known to generate epileptic reactions (e.g.
Lidocaine). Notingly, Capsaicin appears in the ranking for
EPISEM as a pharmaceutical compound with neuropro-
tective properties in the context of seizure prevention in
rodentmodels [45, 46]. Furthermore, the five ranked list of
drug names are combined into a final ranked list using an
alignment algorithm to determine the prioritization of the
drugs based on our ABC discovery approach. The align-
ment algorithm minimizes the distances used for the final
ranking.
Table 3 shows the final combined ranked list of drug

names, including columns for priority, the intersections
with co-occurrences in the source ontologies, the type of
relation with epilepsy, the ATC class, and the match with a
reference set. The first column, Priority, provides an infor-
mative measure on how many intersections match to the
reference lists and the ATC classesAnti−Epileptics(N03),
having the optimal Score = 5 when there is an intersection
with all four reference lists and the ATC class N03.
Table 3 compares the ranking of well-established drugs

according to known reference sets (uppert part), against
drugs with a high ranking according the presented
approaches (middle part) and the remaining known
drugs. This comparison allows the assessment of well-
established drugs (known from different sources) with
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Fig. 6 Quad Venn diagram for documents with B- and C-Terms: The documents containing at least one term from an ontology with at least one
co-occurring drug name in the same document are matched against each other. FENICS is excluded due to its almost complete disjunctiveness

drugs from the literature, where the thereapeutic bene-
fits are more questionable. To judge the findings from the
table, we chose Phenobarbital, which has a priority score
of 5, and is a well-established drug for epiplepsy and thus
well known to the reference resources. For the substance
Dextroamphetamine we see a ranking of 9 (in the top 10)
but it does not appear in any of the reference sets. Last,
Melatonin has the highest rank at position 12 with a prior-
ity of 1. In summary, the upper part of Table 3 is sorted by
priority while the middle part by rank. Since the suggested
approach does not differenciate between drugs used for
treatment and drugs having epilepsy as side effect, thus
being active on the neural system, we can conclude that
the lower part comprises alternative candidates for drug
repurposing.
The reference lists come from the journal Lancet [37]

(reference data set called Lancet), the journal Drugs [38]
(reference data set called DRUGSE), the Epilepsy Foun-
dation website [39] (reference data set called EFO), and
an updated list of epilepsy drugs [40] (reference data set
called U2D). Enriched plots for the ranked lists comparing
them to the reference lists are used for the evaluation. Fur-
thermore, an enrichment analysis is used to compare the
lists ranking regarding to the union of the four reference
sets Lancet, DRUGSE, EFO, and U2D.
The Drug Set Enrichment Analysis provides a scoring

for each of the ranked lists for the respective epilepsy
ontologies as well as for the final combined ranked list

by adding either a bonus for a match or a penalty for
a miss with regards to the reference list. In Fig. 7, the
drug set enrichment score is plotted for each of the five
ranked list and for the final combined ranked list includ-
ing a marker for the maximum drug set enrichment score
with its position k. The ranked list of drug names for
EPILONT shows the highest enrichment score with a
maximum at position k = 93 doubling out the maximum
score from any of the other ranked lists, including the final
combined ranked list. This shows that, although the dic-
tionary of terms from the EPILONT with 137 concepts
and 530 synonyms is rather small in comparison to the
ones for EpSO, ESSO, and EPISEM, the co-occurring drug
names show a high specificity for relevant drug names for
epilepsy.

Discussion
Other text mining approaches on literature-based dis-
covery for drug repurposing, e.g. [47–49], also provide
rankings for the extracted drug disease associations eval-
uated by comparing them to factual databases, e.g. the
Comparative Toxicogenomics Database (CTD) [50, 51],
or to expert judgment on the significance of the involved
biological pathways. These types of evaluation follow the
assumption that biological interactions, e.g. biological
pathways, support the identification of drug disease asso-
ciations. As the mechanism of action is often unknown,
especially for neurological drugs, it is also not known
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Table 2 The top-25 most frequently co-occurring neurological drugs with terms wrt the epilepsy ontologies. The list of FENICS has
only five entries as there are no more co-occurring neurological drug names in FENICS

Rank EpSO ESSO EPILONT EPISEM FENICS

1 Ketamine Ketamine Ketamine Morphine Phenytoin

2 Morphine Morphine Valproic acid Ketamine Caffeine

3 Nicotine Tryptophan Carbamazepine Nicotine Eslicarbazepine

4 Dextroamphetamine Diethyl ether Levodopa Levodopa Oxcarbazepine

5 Tryptophan Nicotine Morphine Lidocaine Carbamazepine

6 Diazepam Caffeine Nicotine Naloxone Disulfiram

7 Haloperidol Naloxone Phenytoin Fentanyl

8 Amphetamine Lidocaine Diazepam Acetaminophen

9 Phenobarbital Acetaminophen Tryptophan Tryptophan

10 Levodopa Melatonin Propofol Capsaicin

11 Diethyl ether Dextroamphetamine Phenobarbital Levobupivacaine

12 Valproic acid Propofol Caffeine Dextroamphetamine

13 Naloxone Levodopa Naloxone Diazepam

14 Carbamazepine Phenobarbital Lidocaine Propofol

15 Lidocaine Diazepam Haloperidol Bupivacaine

16 Melatonin Chloroform Esketamine Caffeine

17 Caffeine Fentanyl Dextroamphetamine Melatonin

18 Propofol Haloperidol Pentobarbital Haloperidol

19 Acetaminophen Amphetamine Diethyl ether Esketamine

20 Fentanyl Pentobarbital Lamotrigine Valproic acid

21 Fluoxetine Esketamine Midazolam Amphetamine

22 Esketamine Valproic acid Levetiracetam Diethyl ether

23 Phenytoin Capsaicin Melatonin Phenobarbital

24 Pentobarbital Levobupivacaine Amphetamine Pentobarbital

25 Clozapine Isoflurane Dalfampridine Midazolam

which neurological drugs potentially target the common
underlying malfunctioning neurological processes shared
between different types of neurodegenerative diseases.
The approach described in this work differs from exist-

ing approaches as it identifies implicit relationships and
then aggregates several ranked lists of identified drug
names. Furthermore, the ranked lists of drug names are
enriched by incorporating the novel drug set scoring
method. The results presented in this paper provide an
overview of the relevant drug names for the entire domain
of epilepsy and adjunct neurological disorders.

Drug associations in the context of epilepsy
The drug associations in the context of epilepsy are fur-
ther explored by the manual inspection of the information
available about the mode of actions on the DrugBank
database as well as from literature search where each evi-
dence is cited accordingly. The ranked and extracted drug
names can be categorized with regards to their relation to

epilepsy. The assigned categories are: (i) drugs being cer-
tainly used for epilepsy, (ii) potentially used for epilepsy,
(iii) having some type of relation to epilepsy or (iv) caus-
ing seizures as side effect. The properties of the drugs
can be derived from their classification according to ATC,
evidence in literature or descriptions of side effects and
mechanism of action on databases such as DrugBank [52].
In the following, the top 10 drugs from the combined
ranked list are discussed together with their association to
epilepsy.

Drugs certainly used for treating epilepsy
Phenobarbital can certainly be used for the treatment of
epilepsy as it has been approved as an anti-epileptic drug
while Diazepam is recommended in the reference sets
DSE and EFO. Phenobartibal is used for seizure control
for all types of seizures except absent seizures. Diazepam
is a psycholeptic drug used for the treatment of seizures
due to its anticonvulsant effects.
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Table 3 The final ranked list of drug names co-occurring with terms from the respective Epilepsy Ontologies showing columns for ATC
classes as well as matches with reference lists: DRUGSE from the journal Drug [38], EFO [39], U2D [40, 53], Lancet from the journal
Lancet [37]. The score in the first column is based on the number of reference lists recommending the drug for the treatment of
epilepsy. The column “Rank” provides the original rank from the aggregation of the combined ranked list according to the TopKLists
calculations. The column “Type” refers to wether the drug can be categorized to either “T: Certainly used for treating epilepsy”, “P:
Potentially be used for treating epilepsy”, “R: Having some kind of relation to epilepsy” and “S: Causing epilepsy as side effect.” The Type
is only provided for scores above 1 and for drugs ranked within the top 10 of the final combined ranked list

Drugs potentially used for treating epilepsy
Drugs with a potential use for epilepsy are Tryptophan
and Ketamine. Tryptophan potentiates serotonin release
in brain activity which can also improve seizure control in
refractory epilepsy [54]. Ketamine is a common anesthetic
which was later approved for refractory depression [34]; it
has also shown efficacy for the management of refractory
epilepsy [35].

Drugs having some relation to epilepsy
The administration of drugs affecting the activity of neu-
rological receptors such as dopamine receptors has a
potential effect on the onset of epilepsy. Children with
attention deficit disorder having epilepsy as co-morbodity
are speculated to be safe for being treated with Dextroam-
phetamine; however, controlled studies about the effect
of Dextroamphetamine in patients with epilepsy are still
missing [55]. Levodopa causes an increase of dopamine
release useful to reduce the effects of Parkinson’s Dis-
ease but the clinical effects of Levodopa on epilepsy
patients is barely studied [56]. As opiod-derivatives such

as Diazepam are used for seizure control, the adminis-
tration of Naloxone might be used for epilepsy patients
because it is an opioid antagonist medication that blocks
or reverses the effects of opioid drugs [57].

Drugs causing seizures as adverse effect
Some medications cause seizures as adverse effects. Lido-
caine can cause seizures in patients having a history of
epilepsy [58]. Antipsychotic drugs such as Haloperidol
are associated to lowering the threshold of seizures and
potentially induce seizures [59]. Opiod therapy with Mor-
phine might cause seizures but the effect is still poorly
understood [60].

Limitations
Although drugs frequently have an off-label use, the major
limitation of drug repurposing approaches is that the
actual approval of a drug for a new disease indication still
has to undergo clinical testing. Nevertheless, automated
workflows enable domain experts to quickly evaluate val-
idation approaches. The ranking and aggregation of drug
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Fig. 7 For the comparison of different ranked lists, enrichment scoring provides an impression of how much a ranked list of entities intersects with a
reference list by the step-wise increment. The Drug Set Enrichment Scoring function is a specialized enrichment scoring function that calculates
bonuses and penalties with an adaptive step size adjusted for short lists. Here, the reference list is composed of drugs that are used in the clinical
practice for epilepsy. The Drug Set Enrichment Scores for the five ranked lists of drug names produced by each of the epilepsy ontologies visualized
the enrichment in comparison to the reference list. Additionally, the scores for the final combined ranked list are visualized in magenta color
indicated as "Final". Maximum values are marked with arrows for x and y values

names with the aggregation of a top-k ranked list as well
as the drug set enrichment analysis scoring function allow
for a graphic interpretation of the neurological drug space
in the context of epilepsy. This can easily be transferred to
other disease indications by incorporating other domain-
specific ontologies for the extraction of relevant chemical
compounds for drug repurposing such as for the viral
domain.
Our tailored implementation of the Open Discovery

Process is narrowed down to the domain of epilepsy
allowing for manual inspection of the mode of action
(such as a drug used on treatments for epilepsy or caus-
ing seizures) of the top ranked drug names in high-quality
databases such as DrugBank. This manual inspection
would still be possible when applying our method to dif-
ferent diseases as DrugBank, for instance, also includes
drugs for other diseases. In case of a generalization to the
a broader coverage of neurological diseases, the type of
relation will still be dependent on the respective disease

and potentially require the automated detection of rela-
tionship types by using methods such as the one proposed
by [61]. Nevertheless, the incorporation of further expert
knowledge from curated databases provides an opportu-
nity to improve the automated detection of relationship
types in the free text of biomedical publications which
could include some mismatches (as any other prediction
method).
However, neurological drugs which do not have many

mentions in the literature but contrastingly have a poten-
tial relevance for the domain of epilepsy will hardly be
identified with our approach. The major measurement for
the implication of relevance in our approach is based on
frequent occurrences of terms in documents. As clini-
cal practice as well as related scientific publications are
purely dependent on the opinion of medical practition-
ers, their current view on the pharmacology of epilepsy
will be taken into account. This will potentially neglect
pharmaceutical compounds that were not in the focus of
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current clinical practice or by related scientific publica-
tions.
Furthermore, the filtering step excluding any non-

neurological drugs from further investigation might drop-
out drugs that are not yet identified for their efficacy in the
neurological domain. For example, certain drugs which
are improved for the treatment of organ diseases could
have an unknown effect on the brain. Future work could
include the investigations of neurological side effects of
non-neurological drugs in order to identify such a poten-
tial efficacy for neuropathological disorders and diseases.

Outlook
With the increased risk of epidemiological outbreaks,
novel approaches for drug repurposing incorporating stat-
istical evidence derived from large-scale literature analy-
sis are urgently needed. Drug repurposing is particularly
valuable for rare or new diseases, e.g. COVID-19 in 2019,
as there is not enough clinical data that can be reli-
ably used. New techniques, e.g. RNA-based, to produce
vaccines has also been favored in recent years as their
development process can go faster than traditional meth-
ods. The use of existing biomedical ontologies for text
mining on biomedical literature and its combination with
knowledge contained in biological databases becomes
an in-silico asset to fight diseases via drug repurposing.
As future work, the incorporation of more biomedical
ontologies into the Open Discovery Process will allow for
a wider range of applications. Especially, the incorporation
of large ontologies such as the International Classifica-
tion for Drugs and Drug Dosages (ICD) or SNOMED-CT
will be of greater interest. Also, the idea behind the pre-
sented work is the use of complete ontologies with a
domain focus. This is new and gives new opportunities in
the future. A broad disease ontology, like SNOMED-CT
will be explored in future experiments, but this approach
used only ontologies that are definitely focused to epilepsy
only.

Conclusions
Text Mining can contribute to the process of drug repur-
posing by providing empirical evidence about the simi-
larity of entities related to drugs and diseases. The Open
Discovery Process is a systematic approach to find implicit
relationships between previously unrelated concepts. In
this project, it has been used with textual evidence of
B-Terms from epilepsy-specific domain ontologies co-
occurring with drug names. The data analysis on the drug
set enrichment scoring function and used to compare
the ranked result lists of drug names is a novel approach
to incorporate ontologies for the extraction of relevant
drug names for drug repurposing. The extracted ranked
list of drug names from the literature could reduce the
amount of time and money spent for the pre-clinical

stratification of new applications of neurological drugs for
epilepsy.
The retrieval of biomedical documents shows a high

diversity where the use of domain-specific ontologies pro-
vide the advantage of having a high coverage with regards
to epilepsy as well as drugs. The ranking of drug names in
these documents provides a more tuned retrieval towards
other types of drugs than the general occurrence of com-
mon drug names. This ranking of drug names specific to
the domain of epilepsy can provide benefits to patients
by giving an overview of potential drugs for their disease
indications. Furthermore, the ranking is also relevant for
researchers in order to identify drugs for epilepsy as well
as epilepsy-related drug names.
Future work will incorporate recent advancements in

natural language processing and further sets of drug
names beyond those identified as neurological drug
names according to ATC. This will overcome the limita-
tions related to the filtering by neurological drug names
only. Furthermore, the construction of a hybrid named
entity recognition system (hNER) making use of dictio-
naries and pre-trained language models will potentially
provide a substantial boost in performance. Additionally,
more generalized ontologies would also cover a broader
spectrum of potentially novel relations between existing
drug names and diseases and disorders. Further evalua-
tion against similar approaches and corpora will also be
included in our next iteration.

Methodology
The main goal of this work is creating a list of candidate
drugs for epilepsy. This is achieved by following the model
of the Open Discovery Process, i.e., in this case, connect-
ing the disease epilepsy as setA through B-Terms from the
epilepsy ontologies with a resulting set C of drug names.
The top-k repurposing candidate drugs for epilepsy are
calculated based on the co-occurrence frequency regard-
ing terms from the epilepsy-specific domain ontolo-
gies, i.e. EpSO, ESSO, EPILONT, EPISEM, and FENICS,
identified in the 2021 BioASQ corpus corresponding to
15,501,443 articles fromMedline [62].
The initial step is creating dictionaries for each of the

ontologies and drug name sources; these dictionaries are
used as part of a NER pipeline to extract drug names co-
occurring with terms from the epilepsy ontologies. The
annotations obtained from the NER pipeline are stored
and used to create drug candidate lists per each ontol-
ogy. These lists are combined into a ranked list containing
the best drug candidates according to the Open Discov-
ery Process. The final step consists in scoring the drug
candidate regarding a reference set of drug names. The
overview is depicted in Fig. 8.
In the following, the different components of the

methodology are explained in more detail including the
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Fig. 8 The UIMA-based text mining workflow reads all documents from the 2021 BioASQ corpus in order to tokenize, stem, and annotate them with
terms from the ontologies EpSO, ESSO, EPILONT, EPISEM, FENICS, an DrugBank. The resulting annotations are stored in MongoDB and later used for
aggregating the frequency of co-occurring drug names for each of the ontologies

creation of the dictionaries, the text mining workflow for
recognizing terms in publications, and the data analysis
using R.

Approach
The dictionaries for each of the ontologies (EpSO, ESSO,
EPILONT, EPISEM, and FENICS) as well as drug names
are created by extracting names, labels, and synonyms
from the respective source files; additional synonyms
are created with the snowball stemming algorithm [63].
The ontologies were downloaded in OWL format from
BioPortal [8], while the DrugBank vocabulary in XML
format was obtained from the DrugBank Open Data
data set [52]. All the generated dictionaries are available
online [64].
A UIMA [65]-based text mining workflow is used for

NER on documents from the 2021 BioASQ corpus. This
workflow has also been used to annotate life science enti-
ties with the UIMA ConceptMapper [66] in the corpus
behind the search engine LIVIVO [67, 68], and evaluated
for their use on literature information retrieval [69]. The
workflow was extended for its application on the BioASQ
challenge using a pre-trained language model. The goal
there was re-ranking MeSH terms found in Medline cita-
tions according to their term similarity, resulting in a
boost of performance [70]. The NER process used in the

present work, including reading the documents and writ-
ing the annotations, took a total runtime of 7.73 hours on
a laptop.
The annotations corresponding to the different dictio-

naries are written into a MongoDB [71] collection with a
size of 43.3Gigabytes for later analyses. Every time that
a drug name co-occurs with at least one ontology term
in the same document is counted as a hit and recorded
in MongoDB. This results in five MongoDB drug name
aggregations, one per source ontology. In this way it is
possible to link drug names, i.e. C-Terms to epilepsy via
epilepsy-related B-Terms. The annotated corpus with its
aggregations is available online as BioASQ Sub-Corpus for
the Pharmacology of Epilepsy (BioPepsy) [72].
The five MongoDB aggregations are processed and ana-

lyzed with the R-package epos [73, 74]. Lists are created
out of the aggregations and drug names are sorted based
on their document frequency.
These drug name sorted lists are filtered according to

ATC so only neurological drugs are retained. The R-
package TopKLists is used [75] to combined the sorted
and filtered lists into one final ranked list. TopKLists uses
the Cross Entropy Monte Carlo algorithm to rank the
combined element and determine the optimal resulting
length k. Table 3 presents the final ranked list includ-
ing the final score, the rank within the combined list, the
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ontologies where co-occurring terms were identified, the
drug name and additional information regarding refer-
ence lists of epilepsy-related drug names and ATC classes.
The score on the first column is calculated using the
Drug Set Enrichment Analysis (DSEA), see the paragraph
below. A summary of the DSEA score for the final ranked
list as well as the individual ontologies is visualized in
Fig. 7.
The DSEA was particularly developed for the work pre-

sented in this manuscript. It calculates and assigns a score
to elements of a drug ranked list based on the compari-
son against a reference set of drug names. Matches to the
reference set are favored with a bonus while mismatches
are penalized. The DSEA score is similar to the gene set
enrichment analysis (GSEA) score used for gene expres-
sion data sets [76, 77]. In comparison to the GSEA score,
the DSEA scoring function is more relaxed with regards to
a shorter length of the sets. In particular, it uses an adap-
tive variable τ as controlling parameter for adjusting the
penalty and bonus with an increasing length of the list, as
shown in Eq. 1 and corresponding Algorithm 1.

For D = {d1, . . . , dN }; R = {r1, . . . , rS}; x0 = 0

DSEA(D,R) �→ �(x) =
N∑

i=1
(xi−1 + ϑ)

with ϑ = ln
(
S−τ
S+τ

)
, if di ∈ R

ln
(
N−τ
N+τ

)
, otherwise

with τ =
j=i∑

j=1
|dj ∈ R|

(1)

Implementation and availability
The implementations in JAVA are published on GitHub
as part of the Project SNOKE, a frozen version has
been archived and is publicly available [78]. The imple-
mentations creating the dictionaries from the ontolo-
gies are available at the module snoke.ontology while
the components for the UIMA-framework at the mod-
ule snoke.uima. Documentation for all the modules is
available as Javadoc.
The source code for the statistical analysis together

with the analysed data sets are published on the Com-
prehensive R Archive Network (CRAN) as the R-package
EPOS, a frozen version has been archived and is publicly
available [73, 74]. The published data sets comprise the
reference sets of drug names as well as the ranked list
of drug names co-occurring with terms from the source
ontologies EpSO, ESSO, EPILONT, EPISEM, and FEN-
ICS, and archived version is available [79]. The source
code also contains the implementation of the algorithm

Algorithm 1: Computation of the Drug Set Enrich-
ment Analysis score for a ranked set of drug names in
comparison to a reference set of drug names. The input
is the reference list of drug names R and the list of drug
names to be compared with the reference listD. S is the
length of the reference lists (|R|). N is the length of the
list of drug names to be compared (|D|).
Input: DSEA(R,D)

Output: �(R,D)

begin
S ←− |R|
N ←− |D|
� ←− ∅
τ ←− 0
for x ∈ D do

if x ∈ R then
ϑ ←− ln (S − τ) − ln (S + τ)

τ ←− τ + 1

else
ϑ ←− ln (N − τ) − ln (N + τ)

end
� ←− � + ϑ

end
return �

end

for the DSEA scoring function. Additionally, the package
contains unit tests as well as documentation of the source
code.
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