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Abstract 

Background  Information pertaining to mechanisms, management and treatment of disease-causing pathogens 
including viruses and bacteria is readily available from research publications indexed in MEDLINE. However, identify-
ing the literature that specifically characterises these pathogens and their properties based on experimental research, 
important for understanding of the molecular basis of diseases caused by these agents, requires sifting through a 
large number of articles to exclude incidental mentions of the pathogens, or references to pathogens in other non-
experimental contexts such as public health.

Objective  In this work, we lay the foundations for the development of automatic methods for characterising men-
tions of pathogens in scientific literature, focusing on the task of identifying research that involves the experimental 
study of a pathogen in an experimental context. There are no manually annotated pathogen corpora available for 
this purpose, while such resources are necessary to support the development of machine learning-based models. We 
therefore aim to fill this gap, producing a large data set automatically from MEDLINE under some simplifying assump-
tions for the task definition, and using it to explore automatic methods that specifically support the detection of 
experimentally studied pathogen mentions in research publications.

Methods  We developed a pathogen mention characterisation literature data set —READBiomed-Pathogens— auto-
matically using NCBI resources, which we make available. Resources such as the NCBI Taxonomy, MeSH and GenBank 
can be used effectively to identify relevant literature about experimentally researched pathogens, more specifically 
using MeSH to link to MEDLINE citations including titles and abstracts with experimentally researched pathogens. We 
experiment with several machine learning-based natural language processing (NLP) algorithms leveraging this data 
set as training data, to model the task of detecting papers that specifically describe experimental study of a pathogen.

Results  We show that our data set READBiomed-Pathogens can be used to explore natural language processing 
configurations for experimental pathogen mention characterisation. READBiomed-Pathogens includes citations 
related to organisms including bacteria, viruses, and a small number of toxins and other disease-causing agents.

Conclusions  We studied the characterisation of experimentally studied pathogens in scientific literature, developing 
several natural language processing methods supported by an automatically developed data set. As a core contribu-
tion of the work, we presented a methodology to automatically construct a data set for pathogen identification using 
existing biomedical resources. The data set and the annotation code are made publicly available. Performance of the 

*Correspondence:
Antonio Jose Jimeno Yepes
antonio.jose.jimeno.yepes@rmit.edu.au
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13326-023-00282-y&domain=pdf


Page 2 of 14Jimeno Yepes and Verspoor ﻿Journal of Biomedical Semantics            (2023) 14:1 

pathogen mention identification and characterisation algorithms were additionally evaluated on a small manually 
annotated data set shows that the data set that we have generated allows characterising pathogens of interest.

Trial registration  N/A.

Keywords  Pathogen characterisation, Data set generation, Scientific literature, Natural language processing, Text 
mining

Introduction
Pathogens are organisms that can cause disease. Most 
typically, the term refers to microorganisms such as 
viruses and bacteria that are ubiquitous within our bodies 
(e.g. in the gut) and in our environment [1]. Most of these 
microorganisms are harmless, but some are pathogenic, 
i.e. causing disease. The interactions between humans 
and biological pathogens have shaped human history and 
affected the way we live, with COVID-19 being a recent 
example.

The study of pathogens has many practical applica-
tions, from identifying the disease mechanisms of a 
pathogen [2] to understanding antibiotic resistance [3]. 
Furthermore, pathogens are relevant in the development 
of new biomaterials [4, 5] and have applications in other 
non-pathogenic scenarios [6]. New discoveries related to 
pathogens are made available in the scientific literature, 
which is growing at a rapid pace with over 1 million arti-
cles added to MEDLINE every year. This is certainly the 
case with COVID-19 related literature, for which new 
research is quickly emerging in large volumes [7, 8].

The identification of scientific literature on pathogens, 
in particular research that involves experimental study of 
their molecular properties and disease mechanisms, can 
provide timely information for pathogen management 
and treatment of the diseases they cause. Furthermore, 
retrieval and analysis of literature describing such experi-
mental use of pathogens can also support identifying who 
is doing research on specific pathogens in the context of 
biosurveillance [9].

Currently, retrieval of literature relevant to specific 
pathogens typically relies on keyword search of the path-
ogen names, and results in many spurious matches to 
articles where a pathogen may be mentioned although it 
is not a primary focus of the research presented, or not 
studied directly through experimental methods. In this 
work, we seek to lay the foundation for automatic meth-
ods for identifying literature relating to molecular study 
of pathogens. There are databases with curated biomo-
lecular information about pathogens, with the scientific 
literature a primary source of this information. On the 
other hand, there is no explicit manually annotated data 
set available to train or evaluate natural language pro-
cessing (NLP) methods that aim to extract information 
from the literature and transfer it to these databases.

In this article, we propose several strategies for uti-
lising existing biomedical resources to build a data set 
that can be used to make decisions on the design of nat-
ural language processing methods for the identification 
of literature relevant to pathogen curation. Since there 
is no large ground-truth set readily available for the 
experimental pathogen mention characterisation task, 
we have automatically constructed a large data set from 
existing public NCBI resources. To facilitate this, we 
make the simplifying assumption that the indexing of 
an article citation with a MeSH term for the pathogen 
corresponds to the notion of an experimental pathogen 
in our target task. We make this READBioMed-Patho-
gens data set available at [10]. Additional information 
about the data sets and code is available in Additional 
file 1 Appendix A of the supplementary material.

Using our data set, we also present our approach for 
addressing this task of experimental pathogen mention 
characterisation. In pathogen mention characterisation, 
we aim to identify mentions of pathogens that are the 
subject of experimental, typically molecular, research. 
We wish to ignore mentions of pathogens that are men-
tioned in non-experimental contexts, i.e. for which 
there is no evidence that the researchers presenting the 
work held and studied molecular samples of the patho-
gen in their facility. Such non-experimental mentions 
may occur for several reasons in a paper, including for 
comparison with the primary pathogen under study, or 
in discussion of related work. These mentions can be 
considered ancillary to the primary contributions of the 
research.

The outcome of the pathogen mention characterisation 
is to select only the primary pathogens experimentally 
studied in a research paper. This can support indexing 
of the scientific literature for targeted retrieval of work 
directly relevant to a pathogen, or enable summarisation, 
which requires focusing only on the key contributions of 
a paper. For instance, all entities identified in the paper 
can be used to create an index [10] or entity-oriented 
retrieval strategies involving query expansion may be 
employed [11].

In our approach, we split the pathogen mention charac-
terisation task into two steps (a) pathogen mention iden-
tification and (b) filtering of the pathogen mentions that 
are not directly related to understanding of the pathogen.
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To address the limitations of our automatic approach to 
construction of the large data set, we also test the devel-
oped methods on a small manually annotated data set 
with pathogens annotated at the document level, show-
ing the performance of various configurations of the pro-
posed methods.

Related work
Pathogen information has been curated into several 
existing databases. One key resource is the NCBI Tax-
onomy, which provides a reference set of biological 
organisms, and their taxonomic classification. We can 
identify publicly available resources specific to pathogen 
detection, e.g. NCBI Pathogen Detection [12], the study 
of pathogenic phenotyping, e.g. PathoPhenDB [2], and 
toxins related to pathogens, e.g. TADB2.0 [13], the bac-
teria type II toxin-antitoxin database. There are also other 
resources that are not publicly available [14], including 
the Biological Materials Information Program (BMIP).

The scientific literature contains information about 
research on pathogens and the research institutes per-
forming research on them through, e.g. author affilia-
tions. There is previous work in identifying pathogens in 
the scientific literature, which tends to focus on specific 
pathogens and/or specific aspects of pathogens. Among 
this work we can point to the Bacteria Biotope challenge 
task at the BioNLP shared tasks [15], which focuses on 
certain bacteria and their habitats and phenotypes, 
including 491 individual microorganisms mentioned in 
392 articles. There is previous work using the literature 
to identify the relation of pathogens to the environment 
[16], pathogen-disease prediction using ontologies and 
literature mining [17], identification of the geolocation of 
pathogen samples (e.g. GeoBoost [18, 19]) for phylogeog-
raphy or other aspects of pathogens related to biodiver-
sity [20, 21], in addition to toxins [13, 22].

Despite this existing work for the identification of 
pathogen mentions in the scientific literature, there is no 
comprehensive work on characterising a large set of dif-
ferent pathogen types, or focusing on literature describ-
ing the experimental study of pathogens that can be used 
to evaluate pathogen annotation methods or to annotate 
a broad set of microorganisms, including pathogenic 
organisms, PrPSc prions and toxins.

In terms of broad objective as well as methodologically, 
our work is related to the Chemical Indexing task of the 
recent BioCreative NLM-Chem track [23]. To construct 
the NLM-Chem dataset [24], Medical Subject Head-
ing (MeSH) index terms corresponding to chemicals are 
assigned to an article as a topic term. Similarly, we lev-
erage MeSH index terms as a proxy for identifying key 
entities in articles in our automatically constructed data-
set. The computational task in each case is primarily to 

identify the topic/key entities mentioned an article. In 
our work, we focus on biological pathogens rather than 
chemicals, and aim for a narrower definition of the enti-
ties that we consider relevant. Our dataset also takes 
advantage of resources beyond MeSH index terms over 
PubMed, to identify literature for a substantially broader 
set of pathogens.

In the following sections, we present a methodology to 
develop a data set that can be used to tune and evaluate 
pathogen identification methods. Then, we evaluate sev-
eral methods to identify and characterise experimentally 
studied pathogens that include dictionary methods and 
state-of-the-art deep learning methods, based on our 
constructed data set.

Methods
In this section, we describe the methodology used to 
construct the READBiomed-Pathogens pathogen litera-
ture data set that we use to develop and evaluate meth-
ods for pathogen identification and characterisation. This 
data set consists of MEDLINE/PubMed citation records; 
the texts that we analyse are the title and abstract texts 
within these records.

Within the set of microscopic organisms, our work 
considers specific types of pathogens that are classi-
fied within the NCBI Taxonomy [25]. The most relevant 
organism types are bacteria, fungi, protozoa, viroids and 
viruses [26, 27]. We have recovered information about 
a set of common pathogenic organisms and selection of 
less frequent ones that were found in the NCBI Taxon-
omy at the species level.

We have also considered other pathogens that cannot 
be categorised within an organism taxonomy but are 
still relevant to be studied, such as PrPSc prions [28], 
which are misfolded proteins that cause diseases such 
as Creutzfeldt-Jakob disease. We have considered prions 
of common species. As well, we have considered a set of 
common toxins generated by other pathogens including 
bacteria or fungi, such as enterotoxins that are produced 
and secreted by bacteria [29].

Finally, the pathogens represented in the READBi-
omed-Pathogens data set can be split into three main 
categories: pathogenic organisms (2848 terms), PrPSc 
prions (14 terms) and toxins (19 terms).

READBiomed‑pathogens data set generation
In this section, we describe how we generated READBi-
omed-Pathogens, leveraging existing resources from the 
National Center for Biotechnology Information (NCBI), 
which is part of the US NIH / National Library of Medi-
cine, using the E-utilities [30].

To develop this data set, we are specifically inter-
ested in recovering literature citations that are relevant 
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to the pathogens of interest. We draw on other NCBI 
resources, including Medical Subject Headings (MeSH) 
[31] corresponding to pathogen terms. MeSH headings 
are assigned manually to MEDLINE citations and pro-
vide highly reliable labels reflecting key topics addressed 
in publications. More recent MEDLINE records com-
bine manual annotation with automatic annotation, but 
our data set was developed before this automatic MeSH 
indexing was put in place. This might need to be consid-
ered by future work following our approach.

Figure  1 shows a diagram of the process that we fol-
lowed to create our data set, which is further explained 
in the following sections. We considered three types of 
pathogens – a pathogenic organism, prion proteins that 
cause infectious disease, and pathogenic toxins.

The NCBI offers other relevant resources to identify 
additional relevant scientific articles. In the case of the 
pathogenic organisms, GenBank [32] is a gene database 
with links to PubMed and allows recovering citations in 
which genes related to the pathogenic organisms have 
been identified in the scientific literature. Depending on 
the pathogen type, we queried different data sources to 
obtain document identifiers from PubMed or PubMed 
Central. We used these identifiers to build a data set with 
relevant literature for the pathogens of interest. This 
methodology can be straightforwardly applied for addi-
tional pathogens not considered in the current study.

In constructing our dataset, we have adopted two sim-
plifying assumptions about the relationship between 
experimentally studied pathogens and the literature:

If a pathogen is included as a MeSH index term for an 
article in PubMed, then it is a focus entity of the research 
described in that article, and it is experimentally studied.

If a GenBank record for a pathogen links to an article 
in PubMed, then the pathogen is a focus entity of the 
research described in that article, and it is experimentally 
studied.

While it is clear that these assumptions are overly sim-
plistic, they provide a reasonable proxy for our target 
task that allows us to conduct larger-scale computational 
experiments with machine learning methods.

Pathogenic organisms
We grouped pathogens corresponding to biological 
organisms, including bacteria, fungi, protozoa, viroids, 
and viruses, together, since most species are directly 
available from the NCBI Taxonomy [33]. The NCBI Tax-
onomy contains most of the pathogenic organisms of 
interest. To find the pathogenic organisms in the NCBI 
taxonomy database, we searched for the name of a path-
ogen in the NCBI taxonomy vocabulary, first seeking to 
match a scientific name. If there was no match, then we 
expanded the search into all name fields available in the 
NCBI Taxonomy database. We only consider cases in 
which a single NCBI Taxonomy record was returned.

For each NCBI Taxonomy pathogen recovered, we 
obtained pathogen synonyms, a list of all strains in the 
NCBI Taxonomy database and identifiers of the patho-
gen from other resources provided by NCBI such as the 
MeSH controlled vocabulary and GenBank. To obtain 

Pathogenic
organism

Pathogenic
toxins

PrPSc
prions

NCBI
taxonomy

…
<PMCID>8185355</PMCID> 
<PMCID>8185337</PMCID> 
<PMCID>8185306</PMCID>
…

...
<GenBankPMID>26579110</GenBankPMID>
<GenBankPMID>23190765</GenBankPMID>
<GenBankPMID>1977705</GenBankPMID>
...

...
<MeSHPMID>34404473</MeSHPMID>
<MeSHPMID>34397035</MeSHPMID>
<MeSHPMID>34395312</MeSHPMID>
...

Fig. 1  Diagram of the generation of the READBiomed-pathogens data set
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article identifiers (PubMed or PubMed Central IDs), we 
searched PubMed for citations indexed with MeSH terms 
corresponding to the pathogen identifiers recovered from 
the NCBI taxonomy record and extracted direct map-
pings to PubMed from GenBank records linked to from 
the NCBI Taxonomy.

As already mentioned, for each pathogen identified in 
the NCBI Taxonomy database, we recovered all the sub-
species identifiers using recursive queries. Information 
recovered for the subspecies was added to the pathogen 
record to encompass all possible variants of each patho-
gen as fully as feasible.

PrPSc prions data set
Prions are misfolded proteins that produce diseases 
such as Creutzfeldt-Jakob disease. We are interested in 
pathogenic prions such as the scrapie isoform of pro-
teins (PrPSc) associated to specific animal species such 
as sheep, human or moose. To recover citations relevant 
to PrPSc and the species of interest, we identified MeSH 
indexing as a key resource. While there is no entry in 
MeSH for variants of PrPSc prions, a MeSH heading for 
PrPSc prions in general, as well as for each of the species, 
is available. Since specific prion types do not appear as 
entries in MeSH, in order to recover MEDLINE citations 
relevant to PrPSc proteins for humans, we utilize a tem-
plate query {“PrPSc Proteins”[MH] AND humans [MH]}.

Of the 14 prions of interest, it was possible to collect 
documents for 7 of them. The following species were not 
found in MeSH: elk, greater kudu, moose, mule, nyala, 
onyx and ostrich. To collect relevant citations for the 
data set, we reused the query example presented above 
as a template. We collected the citations in MEDLINE 
that were identified by this template for each one of the 
species.

Toxins data set
Toxins, even if some are related to pathogens, are 
chemicals and hence do not appear in the NCBI Tax-
onomy database. Therefore, we explored the MeSH con-
trolled vocabulary as a resource for toxins indexing in 
MEDLINE.

13 out of the 19 toxins in our list of pathogens were 
not found in MeSH: Abrus abrin toxin, Anatoxin-A, 
Batrachotoxin, Brevetoxin, decarbamoylsaxitoxin, Fusa-
riotoxins (T-2), gonyautoxins, Maitotoxin, Mycotoxin, 
neosaxitoxin, Palytoxin, and Ricinus ricin toxin. For the 6 
toxins that could be mapped to a MeSH entry, we added 
the citations that were indexed with that toxin in Pub-
Med to our data set.

Additional work could extend our set of toxins to the 
ones available in chemical databases such as ChEBI 
(Chemical Entities of Biological Interest).

READBiomed‑pathogens data set statistics
In this section, we provide statistics of the data collected 
for the different categories of pathogens in Table  1. It 
was not possible to find PubMed citations for 122 path-
ogenic organisms in the NCBI Taxonomy database, 
which in most cases are viruses, e.g. viper retrovirus. 
We found that just over 10% of all pathogenic organ-
isms were available as MeSH headings, in comparison to 
the pathogens available in GenBank. On the other hand, 
the number of citations available per pathogen is larger 
in MeSH. Despite these differences in the information 
contained in each database, an advantage of using MED-
LINE MeSH indexing is that articles have been manually 
indexed. Hence, we can determine the articles in which 
the pathogen has been identified as sufficiently relevant 
to be included in the index terms. This allows us to iden-
tify which MEDLINE citations we should consider when 
evaluating pathogen characterisation algorithms.

Table 2 shows the top pathogenic organisms sorted by 
the number of unique citations recovered from MeSH 
indexing or GenBank. The bacteria Escherichia coli is 
the pathogen with the most citations from both sources. 
Most of these frequent pathogens appear in MeSH but 
the ranking is different in the two lists, reflecting differ-
ences in scope.

Pathogen characterisation
In our work, we define experimental pathogen charac-
terisation as the identification of a pathogen in the text 
that is experimentally studied in the published work. 
That is, we aim to ignore pathogens that are mentioned, 
but for which there is no evidence that the researchers 
presenting the work had actively experimented on the 
pathogen in their research, and hence held samples in 
their facility. Irrelevant pathogen mentions may occur 
in the context of references to previous or similar work, 
e.g. in background information, or they may be men-
tioned in the context of a comparison between organ-
isms. For example, in the citation PMID:13129609, 
Escherichia Coli is mentioned repeatedly in the arti-
cle, but the experimentally studied pathogen is Pro-
teus mirabilis. E. coli supports the research on Proteus 

Table 1  Statistics of READBiomed-Pathogens. This includes 
the number of pathogens identified in the resources MeSH and 
GenBank compared to the total number of pathogens in our set 
of interest (Total)), and the average number of PubMed citations 
(Avg. PMIDs) associated to each pathogen in MeSH and GenBank

Group Total MeSH Avg. PMIDs GenBank Avg. PMIDs

Organism 2679 360 3901.26 1785 242.36

PrPsc 14 7 346 – –

Toxins 19 6 11,730 – –
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mirabilis. As another example, PMID:21979562 men-
tions H1N1 but it is in the context of the patient pres-
entation. The patient had received a vaccine against the 
H1N1 virus. Additional examples are available in Addi-
tional file 1 Appendix C in the supplementary material.

The NLP methods were developed using the UIMA 
(Unstructured Information Management Application) 
framework [34]. Pathogen characterisation was split 
into two steps.

In the first step (pathogen identification), a specific 
case of named entity recognition of biological concepts 
[35], mentions of pathogens are identified in the text of 
the citations (title and abstract texts). Here, we utilise 
a dictionary method or regular expressions since the 
pathogen names are specific and derived from a closed 

vocabulary. The objective of this step is to identify as 
many mentions of pathogens in the texts as possible.

In the second step (pathogen filtering), the aim is to 
remove the pathogen mentions that are not relevant 
to the objective of identifying research that describes 
active experimentation with pathogens, and, con-
versely, to retain pathogen mentions that correspond to 
active experimentation.

Pathogen identification
We developed a methodology for the identification 
of pathogens in text. We followed distinct strategies 
depending on the pathogen type, as shown in Fig.  2. 
We used UIMA [36] as the framework to develop the 

Table 2  Top 10 pathogenic organisms identified from MeSH indexing and GenBank sorted by number of PubMed identifiers 
recovered from the NBCI resources. (*) Salmonella enterica subsp. enterica serovar Typhimurium

MeSH indexing GenBank

NCBI id Name PMIDs NCBI id Name PMIDs

562 Escherichia coli 288,697 562 Escherichia coli 39,836

1280 Staphylococcus aureus 80,265 11,676 Human immunodeficiency virus 1 3904

1773 Mycobacterium tuberculosis 52,603 1773 Mycobacterium tuberculosis 3822

28,901 Salmonella enterica 46,122 1423 Bacillus subtilis 3342

11,320 Influenza A virus 45,982 1280 Staphylococcus aureus 2731

287 Pseudomonas aeruginosa 44,739 287 Pseudomonas aeruginosa 2413

210 Helicobacter pylori 35,576 624 Shigella sonnei 2240

5833 Plasmodium falciparum 30,357 294 Pseudomonas fluorescens 2236

90,371 Salmonella enterica subsp. (*) 28,902 621 Shigella boydii 2207

10,407 Hepatitis B virus 27,946 622 Shigella dysenteriae 2190

Fig. 2  pathogen identification diagram. An input text is processed by a set of dictionary and regular expressions build on the pathogen list. UIMA is 
the NLP framework that we have used for the development of our method
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pathogen identification components. We explain it in 
more detail in this section.

For pathogenic organism identification, we built a dic-
tionary matching approach using a tool called Concept-
Mapper [36], which is part of the UIMA sandbox tools.1 
ConceptMapper is highly configurable and scales well 
with large dictionaries. It has previously been shown to 
be highly effective for recognising biological concepts in 
scientific publications [37]. We evaluated several of the 
ConceptMapper options, together with a dictionary con-
taining pathogenic organism terms and relevant terms 
for the identification of PrPSc prions.

For the generation of the dictionary for pathogenic 
organisms, we used a version of the NCBI Taxonomy 
available from the OBO Foundry. For each pathogenic 
organism, we selected the terms for the pathogen of 
interest and all its subspecies.

We made some modifications to the extracted terms 
from the OBO NCBI Taxonomy extracted terms. To 
increase recall, the word “subtype” was removed, e.g., 
“H1N1 subtype” becomes “H1N1”. Additionally, to reduce 
the size of the dictionary, we removed terms starting with 
“influenza a virus (”, “influenza b virus (” or “influenza 
b virus (” which removed several thousand entries with 
no impact on recall. For viruses, we removed the ending 
“virus”, which reduced the recall since in most cases the 
virus is implied, e.g. “influenza A” vs. “influenza A virus”. 
Additionally, we removed virus names with one letter, 
e.g. “B virus” from “Hepatitis B virus” which could anno-
tate “Influenza B virus” incorrectly. After this process-
ing, only terms with more than three letters were kept. 
Abbreviations are ambiguous and results showed that 
most of the abbreviations had long forms that matched 
one of the dictionary entries for that pathogen in the 
MEDLINE citations.

We have 2637 pathogenic organisms in our dictionary 
and a total of 83,757 distinct terms, with an average of 31 
terms per pathogen. A large number of terms is justified 
as well by the term variation contributed by the subspe-
cies, e.g. “Borrelia burgdorferi strain N40” for “Borrelia 

burgdorferi”. Since the longest match is preferred, the 
term linked to subspecies will be preferred.

For this PrPSc, we have split the set of PrPSc prions 
into a tuning set that includes the pathogens Sc (cattle), 
Sc (cat), Sc (deer) and Sc (goat). The testing set includes 
the pathogens Sc (human), Sc (mink) and Sc (sheep). 
Table 3 shows the results on the selected tuning set. We 
identify that missed PrPSc annotations are mostly due to 
missing species mentions in the citations. This is espe-
cially a problem in citations with no abstract. There are 
also wrong annotations, according to MeSH indexing, 
where another species might be mentioned in the cita-
tion that is not relevant to the research but is mentioned 
as background information.

For toxin identification, we initially generated a dic-
tionary using the name of the toxin and additional terms 
using their mapping to the MeSH controlled vocabulary, 
when available. As in the case of the PrPSc prions, we 
have split the toxins that could be mapped to MeSH into 
tuning and testing. The training toxins are: aflatoxins, 
botulinum toxins, ciguatoxins and conotoxins. The test-
ing toxins are: enterotoxins, saxitoxins and tetrodotoxin. 
Table  4 shows the results of applying the dictionary to 
the tuning toxins. We find that the precision tends to be 
quite high, which might indicate that if a toxin appears 
in the citation, it is very likely to be relevant. We find as 
well that some mentions are missed due to term variabil-
ity. For instance, the pathogen aflatoxins might appear in 
text as “antiaflatoxinB1”. Another example is botulinum 
toxin, that might appear in text as “onabotulinumtoxinA” 
or “botulinum neurotoxin E”. We could expand the dic-
tionary, but a change in the matching of the terms should 
be made to allow for a more flexible matching, since in 
some cases, toxin names get combined with other terms 
or more specific terms are used. This approach has been 
used in prior work on gene name normalization [38].

We also approached matching toxin names using 
regular expressions. We implemented a set of regular 
expressions based on the names of the toxins, the regular 
expressions can be found in Additional file 1 Appendix B 
of the supplementary material. Toxin synonyms extracted 
from the MeSH controlled vocabulary have been added 
and the expressions match both uppercase and lowercase 
letters by adding the case insensitive match string (?i) 

Table 3  PrPSc identification algorithm results for tuning data set

Term TP Positives FP + TP Precision Recall F1

Sc (cat) 4 9 6 0.6667 0.4444 0.5333

Sc (cattle) 145 457 170 0.8529 0.3173 0.4625

Sc (deer) 29 46 40 0.7250 0.6304 0.6744

Sc (goat) 31 68 63 0.4921 0.4559 0.4733

1  https://​uima.​apache.​org/d/​uima-​addons-​curre​nt/​Conce​ptMap​per/​Conce​
ptMap​perAn​notat​orUse​rGuide.​html

https://uima.apache.org/d/uima-addons-current/ConceptMapper/ConceptMapperAnnotatorUserGuide.html
https://uima.apache.org/d/uima-addons-current/ConceptMapper/ConceptMapperAnnotatorUserGuide.html
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within the regular expression. Results using the regular 
expressions appear in Table 4. Precision is the same while 
recall has increased significantly.

Pathogen filtering
Pathogen identification methods described in the previ-
ous section find all possible mentions of pathogens in the 
MEDLINE citations. But not all the identified pathogens 
are described as experimentally studied in those cita-
tions. Some pathogens might be mentioned as part of the 
background of existing work and others might be men-
tioned but the researchers were not directly working with 
the pathogen (e.g., mentioned in the context of a review 
paper or research describing surveillance of a pathogen-
related disease). We evaluate a strategy to identify rele-
vant training data and examine several models. As stated 
above, we assume that if a pathogen appears as a MeSH 
heading in the indexing of the citation, it might be exper-
imentally studied.

Data set for pathogen focus detection
We developed a data set that we used to identify men-
tions of pathogens mentioned in the citations as relevant 
or not to the research described in the citations, as deter-
mined by the MeSH terms assigned to a citation. These 
terms capture the key focus topics of the paper; inclu-
sion of a pathogen name in the MeSH terms for a cita-
tion indicates that the pathogen is relevant to the core 
research contribution of the paper. This was created by 
identifying mentions of pathogens using the diction-
ary method described above, like the processing done in 
[39], and then deciding on their relevance based on the 
inclusion of the pathogen name in the set of MeSH index 
terms for the article. The mentions of the pathogens of 
interest were substituted within the text of the citation 
by a common text representation @PATHOGEN$. This 
resulted in a total of 133,076 examples.

Pathogen filtering methods
We used the data set developed in the previous section 
to train several classifiers based on supervised machine 
learning algorithms. We trained a linear Support Vector 
Machine (SVM) [40] using a stochastic gradient descent 
implementation using the modified Huber loss [41] 
suited for imbalanced data [42] and AdaBoostM1 [43] 
(using the MTIMLExtension package [44]).

For both methods, the text of the citations, which 
includes the title and the abstract, was tokenized, stop 
words were removed and both unigrams or unigrams and 
bigrams were used as features. This processing was done 
using the BinaryPipeFeatureExtractor from the MTIM-
LExtension package.

In addition, we fine-tuned a BERT [45] based classi-
fier using HuggingFace pre-trained models [46]. We spe-
cifically used a pre-trained model named BioBERT [47], 
which has been pre-trained using biomedical literature. 
BERT has a limit of 512 tokens, so documents larger than 
512 tokens were truncated. BERT-like models tokenize 
text using a Wordpiece algorithm that breaks words into 
several subwords.

Table 5 shows the performance of the machine learning 
algorithms on this set. We find that BERT has the best 
performance. These trained algorithms will be evalu-
ated on the pathogen filtering results using the manually 
annotated set described in the Results section. The fine-
tuned BioBERT models perform better than SVM and 
AdaBoostM1, the difference in performance is similar to 
other related MEDLINE categorization tasks [48, 49].

Table 4  Toxin identification on tuning data set

Dictionary TP Positives FP + TP Precision Recall F1
aflatoxins 9106 10,131 9109 0.9997 0.8988 0.9466

botulinum 9903 16,780 9915 0.9988 0.5902 0.7419

ciguatoxins 386 529 390 0.9897 0.7297 0.8400

conotoxins 2340 3144 2453 0.9539 0.7443 0.8362

Regex TP Positives FP + TP Precision Recall F1
aflatoxins 9127 10,131 9130 0.9988 0.9009 0.9477

botulinum 13,664 16,780 13,697 0.9976 0.8143 0.8967

ciguatoxins 386 529 390 0.9897 0.7297 0.8400

conotoxins 2352 3144 2465 0.9542 0.7481 0.8387

Table 5  Classification results

READBiomed-Pathogens Precision Recall F1

SVM 0.8975 0.9450 0.9206

AdaBoostM1 0.8654 0.9682 0.9139

BERT classifier 0.9359 0.9631 0.9493
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We experimented with enriching the text with addi-
tional information provided by the Scientific Discourse 
Tagger [50], based on evidence that discourse infor-
mation may be valuable for our task [51]. Using these 
features with the learning algorithms did not provide 
a significant change in results and additional work is 
needed to identify the best way to leverage the discourse 
annotations.

Results
In this section, we present the results obtained using the 
pathogen identification and characterisation methods on 
the data sets that we have developed automatically on a 
manually annotated data set.

READBiomed‑pathogens data set
Pathogen identification results for the pathogenic organ-
isms for which we could recover the MeSH indexing and 

are available in Table 6. The dictionary described in the 
Methods section has been used to obtain these results. 
F1 results for macro and micro averaging (averaging by 
pathogen class or an overall average across all instances, 
respectively) are quite similar, while the largest differ-
ences are in the precision and recall values.

Table 7 shows the results on the testing set of the PrPSc 
prion pathogens. We identify that missed annotations are 
mostly due to missing species mentions in the citations, 
which is specially a problem in citations with no abstract. 
There are also wrong predictions according to MeSH 
indexing, where another species might be mentioned 
in the citation that is not relevant to the research but is 
mentioned as background information.

Results for toxin identification are available from 
Table  8. Regular expressions have comparable precision 
to the dictionary approach, but the recall has slightly 
increased.

Results on a small manually annotated set
We report results on a small additional data set of 87 
manually annotated citations (again including title and 
abstract text only); these were annotated by patho-
gen biology experts in line with our objective to iden-
tify experimentally researched pathogens. Pathogenic 
organisms were assigned identifiers obtained from the 
NCBI Taxonomy database, and PrPSc prions and toxins 
have been assigned specific identifiers using the pre-
fixes prpsc- or toxin- accordingly. Only two pathogens 
annotated in this corpus could not be mapped to the 

Table 6  Identification performance of dictionary-based 
pathogen identification on the READBiomed-Pathogens data 
set, considering more/less frequent pathogenic organisms 
separately. More frequent means the top 10 pathogens as shown 
in Table 2, while the remaining pathogens have been grouped in 
the Less frequent category

More frequent Precision Recall F1

Macro-average 0.9198 0.7335 0.8161

Micro-average 0.9141 0.7209 0.8061

Less frequent Precision Recall F1

Macro-average 0.7771 0.8063 0.7914

Micro-average 0.8790 0.7245 0.7943

Table 7  PrPSc identification algorithm results for testing data set

Term TP Positives FP + TP Precision Recall F1

Sc (human) 531 1266 604 0.8791 0.4194 0.5679

Sc (mink) 11 16 18 0.6111 0.6875 0.6471

Sc (sheep) 323 559 381 0.8478 0.5778 0.6872

Table 8  Toxin identification on testing set

Term TP Positives FP + TP Precision Recall F1
enterotoxins 8477 25,679 8490 0.9985 0.3301 0.4962

saxitoxins 909 1270 980 0.9279 0.7157 0.8080

tetrodotoxins 7944 12,848 8109 0.9797 0.6183 0.7581

Regex TP Positives FP + TP Precision Recall F1
enterotoxins 8504 25,679 8517 0.9985 0.3312 0.4974

saxitoxins 939 1270 1012 0.9279 0.7394 0.8230

tetrodotoxins 7958 12,848 8123 0.9797 0.6194 0.7590
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NCBI Taxonomy because they are very generic organ-
isms (parainfluenza and adenovirus).

Pathogen identification
For pathogen identification, we used the best configu-
ration based on the automatically generated set as pre-
sented in the previous section. Combining the outcome 
of the three methods, we obtain a precision of 0.5506, a 
recall of 0.8305 and a F1 of 0.6622, as shown in Table 9. 
The missing terms using the dictionary approach are 
due to term variation. For example, the term Influenza 
A and B viruses in citation PMID:25179390 refers to 
two virus types in a coordination. With the current dic-
tionary approach, influenza virus A would be identified, 
while influenza B virus would be missed. Existing work 
[52] could be explored to identify more complex term 
variations.

Pathogen characterisation
In the pathogen identification step, we aim to find as 
many pathogen mentions as possible in the citation texts, 
even though not all the correctly identified pathogens 
will be of interest for our broader objective of finding lit-
erature related to experimental study of those pathogens. 
Thus, we propose to filter irrelevant pathogen mentions 
after the identification step with a data set described in 
the Methods section. This data set was automatically 
generated leveraging MeSH indexing to identify patho-
gens that are not the main objective of the research men-
tioned in the citation. The filtering was adjusted based on 
prediction confidence of the classifier, which should be 
better tuned if a larger data set is made available.

Table  9 shows the result of the various evaluated 
methods. We see that the pathogen identification (PI) 
method has the largest recall, which is expected since 
the other methods are intended to increase precision 
(which might come at the cost of reduced recall). Using 
the pathogen focus (PF) filtering methods, the pre-
cision can be improved, which increases the F1 value 
with different recall reduction.

Discussion
We have evaluated the identification of pathogens and 
their characterisation using two data sets, one gener-
ated by manual annotation and another one using exist-
ing biomedical resources. The READBiomed-Pathogens 
automatically generated data set is based on manu-
ally curated pathogen knowledge. Using this data set, 
we developed the dictionary and used the data to train 
machine learning algorithms to filter some of the dic-
tionary annotations. Then, we tested the developed 
system on a manually annotated set, from where we 
evaluated the dictionary and trained models. The data 
set contains just a fraction of the pathogens of inter-
est, which is due to the coverage of the resources used. 
MeSH is the only resource we could use to recover all 
types of pathogens of interest while GenBank was rele-
vant to find relevant citations for pathogenic organisms. 
Even if all pathogens of interest were not identified in 
these sources, we could still use the available informa-
tion to develop and tune our pathogen identification and 
characterisation algorithms.

We observe that the recall obtained evaluating our 
algorithm on the automatic data set citations is high, but 
there are still pathogens that were not identified. After 
manual analysis of randomly selected missed patho-
gen mentions we found that some of these pathogens 
were not mentioned in the citation. In some cases, cita-
tions contained a title but did not contain the abstract. 
Table  10 shows that approximately 19% of the citations 
have no abstract, or 10% if we consider the cases in which 
a pathogen is not found and there is no abstract. This 
justifies some of the missing pathogen mentions, which 
might be in the full text of the article.

MeSH indexing of MEDLINE is done by (primarily 
human) indexers that have access to the full text ver-
sion of the article. This means that just using the citation 
information for pathogen characterisation might miss 

Table 9  Pathogen characterisation results. Pathogen 
identification (PI) is filtered with either a SVM or a BERT classifier 
that identifies and removes non-relevant pathogen mentions (PF, 
pathogen focus)

Method Precision Recall F1

Pathogen identification 0.5632 0.8305 0.6712

PI + PF filtering SVM 0.5581 0.8136 0.6621

PI + PF filtering BERT 0.6104 0.7966 0.6912

Table 10  Distribution of pathogenic organism mentions. False 
negatives estimated using citations with missing pathogens after 
the dictionary method

Type Count Percentage

All documents 1,224,707 100.00%

With Open Access 125,265 10.23%

No Abstract 240,330 19.62%

With Abstract 984,377 80.38%

With Abstract and With Open Access 121,223 9.90%

No Abstract and With Open Access 4042 0.33%

With False Negatives 322,638 26.34%

With False Negatives and No Abstract 133,657 10.91%

With False Negatives and With Open Access 21,233 1.73%
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many mentions. On the other hand, full text articles are 
not as readily available as MEDLINE citations – only a 
small set of full text articles are available under an Open 
Access Creative Commons license provided by PMC. We 
have estimated the information that might be available as 
full text articles for pathogen characterisation. As shown 
in Table  10, from the total number of citations that we 
recovered using NCBI resources, we find that only 10% 
align with Open Access articles from PMC. From the set 
of citations where we identify false negatives, the over-
lap with PMC Open Access is less than 2%, which means 
that we could still identify a subset of full text articles we 
use for pathogen identification, but it will be a small frac-
tion of what would be available from MEDLINE. From 
the citations, somewhat less than 20% have no abstract, 
so the pathogen characterisation relies solely on the title 
of the article. Unfortunately, the overlap of these articles 
with PMC Open Access is 0.33%, so there is no signifi-
cant benefit to using the available full text articles.

We used the PMIDs recovered from MeSH index-
ing because we could obtain a set of positive and 
negative examples for pathogen identification and char-
acterisation. From the information recovered from the 
NCBI resources, we did not use the PMIDs recovered 
from GenBank or PubMed Central. We observed that the 
PMIDs obtained from PubMed Central denote pathogens 
that appear in the full text, but do not necessarily need 
to be the focus of the paper. In the case of GenBank, it 
might be interesting to further explore the information 
from the referenced PMIDs.

For the pathogen identification task, we have consid-
ered the NCBI taxonomy from the OBO repository and 
the MeSH controlled vocabulary. On the other hand, 
there are additional resources in the OBO Foundry that 
could be used to extend the terms included in our diction-
ary. For instance, the NCI Thesaurus available from OBO 
could contribute with additional synonyms to some of the 
selected toxins, such as botulinum neurotoxin serotype E. 
We leave this for future expansion of the work.

We have evaluated an additional filtering method for 
pathogen characterisation. Articles might mention path-
ogens that are the focus of the article while the research-
ers that published the paper might have not directly 
worked experimentally with the pathogen, e.g., in review 
papers or for disease surveillance/prevalence analysis. 
There are several strategies that could potentially be used 
to identify these articles automatically, e.g., identifying if 
an article is a systematic review using MeSH indexing. 
However, there are many varied reasons for the mention 
of a pathogen not to be relevant for pathogen characteri-
sation so this alone would be too narrow.

We therefore collected a set of random citations 
from the PMIDs recovered from NCBI resources and 

annotated them manually. From the 1000 retrieved 
citations, we removed (a) one that was incorrectly for-
matted, (b) citations that contained no abstract (e.g., 
PMID: 26268688 with title “An opportunity for further 
control of hepatitis B in China?” since the title does 
not provide enough context) – and (c) citations for 
which we could not determine the class label from the 
abstract text (e.g., PMID:16716232 with title “Topology 
and weights in a protein domain interaction network–
a novel way to predict protein interactions”), which 
might also indicate that not all the information is avail-
able from the citation text.

After manual review and annotation, this set of non-
relevant documents (NRDs) contained 793 citations, of 
which 502 were positive (relevant) and 281 were nega-
tive. We split this set into 523 training citations and 263 
testing citations.

In Table  11, when combining the pathogen identifi-
cation method and filtering using both models trained 
using the NRDs and the non-relevant pathogens / path-
ogen focus (PF) sets, we see the largest increase in pre-
cision and F1. These results show that it is possible to 
reuse available biomedical resources to prepare annota-
tors prior to using task specific data.

There are several directions for extending the current 
work for pathogen characterisation (Table 12). In path-
ogen identification, it would be interesting to evaluate 
different methods to deal with term variability for path-
ogenic organisms. The data sets that we have automati-
cally generated can help identify the variations with 
the largest gain in recall. In pathogen characterisation, 
further annotation of relevant citations with pathogens 
of interest would be of interest. The current manually 
annotated data set contains 87 citations, which are 
mostly focused on influenza.

Conclusions and future work
We studied the annotation of pathogens in scientific 
literature, developing several natural language process-
ing methods supported by an automatically developed 
data set. As a core contribution of the work, we pre-
sented a methodology to automatically construct a data 
set for pathogen identification using existing biomedi-
cal resources, including NCBI databases and MeSH 

Table 11  NRDs (non-relevant documents) and the non-relevant 
pathogens / pathogen focus (PF) sets

Manual set Precision Recall F1

SVM 0.9022 0.9222 0.9121

AdaBoostM1 0.8333 0.9167 0.8730

BERT classifier 0.9158 0.9667 0.9405
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indexing of PubMed. The resulting data set, READBi-
omed-Pathogens, was used to develop and tune algo-
rithms for pathogen identification and characterisation. 
The data set and the annotation code are publicly 
available.

Performance of the pathogen identification and 
characterisation algorithms were additionally evalu-
ated on a small manually annotated data set shows 
that the data set that we have generated allows charac-
terising pathogens of interest. Even though our work 
has focused on pathogenic microorganisms, the same 
methodology could in principle be used for other 
types of microorganisms not covered in our current 
list of pathogens.

MEDLINE citation data offers good coverage and a 
reasonable proxy for the pathogen characterisation task, 
based on the results obtained on the manually anno-
tated data set. This is an important finding, since citation 
metadata is more widely available as compared to full 
text articles. The current work could also be extended to 
full text to estimate the coverage more precisely to allow 
for comparison of the information present in full text 
articles cf. their citations. Meaningful evaluation of this 
would require extending the manually annotated data set 
to full text articles. In addition, during the development 
of our data set, were covered and made publicly available 
information in relation to GenBank and PubMed Central, 
which can be considered in further studies.
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